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This paper discusses the prediction of time series with missing data. A novel forecast model is
proposed based on max-margin classification of data with absent features. The issue of modeling
incomplete time series is considered as classification of data with absent features. We employ
the optimal hyperplane of classification to predict the future values. Compared with traditional
predicting process of incomplete time series, our method solves the problem directly rather than
fills the missing data in advance. In addition, we introduce an imputation method to estimate the
missing data in the history series. Experimental results validate the effectiveness of our model in
both prediction and imputation.

1. Introduction

The subjects of time series prediction have sparked considerable research activities, ranging
from short-range-dependent series to long-range-dependent series [1–4], from conventional
time series to fractal time series [5, 6]. Traditional predicting technologies are targeted for
complete time series, such as Neural networks (NNs) [7], and Support Vector Regression
(SVR) [8], and so forth. However, the time series we encountered in real life often contain
missing data due to malfunctioned sensors, human factors, and other reasons. When dealing
with prediction of incomplete time series, traditional process consists of two steps. The first
step is to recover the incomplete time series by an imputation model, and the second step is to
estimate the predicting model as complete time series. This process is shown in Figure 1(a).
It may consume large number of calculations, and bring deviation for inaccurate imputation.
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Figure 1: Two distinct processes of incomplete time series prediction.

In this paper, we propose a novel predicting model built directly by incomplete time series,
which is shown in Figure 1(b).

The issue of modeling incomplete time series is interpreted as classification of data
with missing features in this paper. We use the optimal hyperplane of the classification
to determine the prediction values. A similar approach has been applied to prediction of
complete data [9]. In addition, our model is also used as an imputation method, which means
estimating the missing data of history series. There have been several works carried out on the
imputation of missing data. In the following, these methods are separated into two groups.

(1) Statistical Methods. Examples include Maximum likelihood (ML) algorithm [10],
expectation maximization (EM) algorithm [11], Multiple Imputation [12], and
so forth. Based on statistical theory, ML and EM algorithms need to know the
distribution model of data and often have higher computational complexity.
Multiple Imputation, which imputes the missing data M times, assumes that the
missing data are Missing At Random (MAR).

(2) Machine Learning Methods. Examples include mean, K-Nearest Neighbor (KNN)
[13], Varies Windows Similarity Measure (VWSM) [14] and Regional Gradient
Guided Bootstrapping (RGGB) [15], and so forth. KNN algorithm finds a plausible
value of missing data by measuring the distance. VWSM algorithm fills the missing
data by complete subsequences which are in the similar cycles. RGGB algorithm
imputes the missing data by estimating the slopes of the imputing boundary
regions. From the results of [15], RGGB algorithm outperforms other traditional
imputation methods, such as MI and VWSM. However, it cannot be used to analyze
dataset with high fluctuations.

Compared with traditional imputation methods, different samples can be selected to
calculate the absent data in the history series using our model, which ensures the imputing
accuracy of missing data.

The rest of this paper is organized as follows. Section 2 introduces the establishment of
our model. The theory of max-margin classification of data with absent features is reviewed
briefly in Section 3. The solution and algorithm of our model are discussed in Section 4.
Section 5 follows with the experiments, in which the prediction and imputation performance
of our model are tested in detail. Finally, conclusions are presented in Section 6.

2. Presentation of Our Model

We start by formalizing the problem of incomplete time series. Assume that a time series with
missing data is given as

{
x1, x2, ?3, . . . , xd, xd+1, ?d+2, . . . , xq−1, ?q, ?q+1, . . . , xn

}
, (2.1)
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Figure 2: The implementation process of our model.

where “?” represents the missing data. The sample set X = {X1, . . . , Xd |Xd+1} of the
incomplete time series can be formulated as

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1 x2 · · · xd |xd+1

x2 ?3 · · · xd+1 |?d+2

?3 x4 · · · ?d+2 |xd+3

...
...

. . .
...

...

xn−d xn−d+1 · · · xn−1 |xn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.2)

where d denotes the embedding dimension.
Predicting technologies usually establish regression models by X, where Xd+1 acts as

the predicting target. In order to predict the value of xk+d, {xk, xk+1, . . . , xk+d−1} must be the
input data of the model.

The implementation process of our model starts by dividing the sample set X into two
parts: training set Xt and imputing set Xm. The predicting targets of the training samples
in Xt are existing values, while those of the imputing samples in Xm are missing values.
Training set is used to construct our predicting model. The role of imputing set is to estimate
the missing values.

We construct two classes of incomplete data C1 and C2 by Xt, which can be expressed
as

C1 =
{
Xt1, . . . , Xtp−1, Xtp, . . . , Xtd+1 + ε

}
,

C2 =
{
Xt1, . . . , Xtp−1, Xtp, . . . , Xtd+1 − ε

}
,

(2.3)

where ε is the fitting error. Being the optimal hyperplane of classification of C1 and C2, H is
obtained by the theory of max-margin classification of data with missing features. Predicting
samples must fall on the hyperplane determined by the training set for a small ε; thus the
prediction values can be calculated by H.

This model can also be used to predict the missing data of incomplete time series.
The imputing samples, taken from the sample set, also fall on the hyperplane. Therefore
the missing values can be estimated in the same way as the prediction values. The
implementation process of our model is shown in Figure 2.
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In the process of imputation, each missing data can be estimated by all the samples
containing it in X, not just the imputing sample in Xm. Assume that xi is absent; the number
of different samples we can use to compute the value of xi is

Ni =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i, 1 ≤ i ≤ d,

d + 1, d + 1 ≤ i ≤ n − d,

n − i + 1, n − d + 1 ≤ i ≤ n,

(2.4)

where Ni is equal to the frequency of xi in X.

3. Max-Margin Classification of Data with Missing Features

In the previous discussion, the issue of modeling incomplete time series is interpreted as
classification of data with missing features. In this section, we review the theory of max-
margin classification of data with missing features proposed by Chechik [16].

Assume a set of samples x1, . . . , xn with missing features. yi denotes the binary class
label of xi, and yi ∈ {−1, 1}. Each sample is characterized by a subset of features from a full
set F.

The problem of classification can be interpreted as to find an optimal hyperplane with
the max-margin framework. In the case of classification of incomplete data, the instance
margin treating the margin of each instance in its own relevant subspace is defined as

ρi(w) =
yi
(
w(i)xi + b

)

∥∥w(i)
∥∥ , (3.1)

wherew(i) is a vector obtained by taking the entries ofw that are related to xi. Considering the
geometric margin to be the minimum over all instance margins, it comes to an optimization
problem

max
w

(

min
i

yi
(
w(i)xi + b

)

∥∥w(i)
∥∥

)

. (3.2)

Define the scaling coefficients si = ‖w(i)‖/‖w‖, and rewrite (3.2) as

max
w

(

min
i

yi
(
w(i)xi + b

)

∥∥w(i)
∥∥

)

= max
w

1
‖w‖

(

min
i

yi
(
w(i)xi + b

)

si

)

, si =

∥∥w(i)
∥∥

‖w‖ . (3.3)
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For a given set of si, we can solve a constrained optimization problem

max
α∈Rn

n∑

i=1

αi −
1
2

n∑

i,j=1

αi
yi
si

〈
xi, xj

〉yj
sj
αj

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n,

n∑

i=1

αi
yi
si

= 0,

(3.4)

where the inner product 〈·, ·〉 is taken only over features that are valid for both xi and xj . The
nonlinear classification is solved by using kernels. Thus we obtain the optimal separating
hyperplane of classification of data with missing features, which is expressed as

n∑

i=1

αi
yi
si
K(x, xi) + b = 0, (3.5)

where b is set as in Support Vector Machines [17, 18].

4. Solution and Algorithm

In our model, the hyperplane of classification of data with missing data is used to compute
the estimation values. Both predicting samples and imputing samples satisfy (3.5). In this
section we introduce the solution and algorithm of our model.

4.1. Analytical Solution

Suppose a test sample x′ = {x′1, x
′
2, . . . , x

′
d, x

′
d+1}, where x′d+1 is the value to be estimated. In

this paper we use the kernel function K′(xi, xj) = (〈xi, xj〉F + 1)2. Replacing the kernel of
(3.5), we obtain

n∑

i=1

αi
yi
si

(〈
x′, xi

〉
F
+ 1
)2 + b = 0. (4.1)

The simplification of (4.1) is

n∑

i=1

αi
yi
si
x2
i,d+1 · x

′2
d+1 + 2

n∑

i=1

αi
yi
si

⎛

⎝
d∑

j=1

xi,j · x′j + 1

⎞

⎠xi,d+1 · x′d+1

+
n∑

i=1

αi
yi
si

⎛

⎝
d∑

j=1

xi,j · x′j + 1

⎞

⎠

2

+ b = 0,

(4.2)
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where the product operator “·” is taken only over features that are valid for both xi and x′.
Equation (4.2) is a quadratic equation of x′

d+1, and can be solved easily.

4.2. Numerical Solution

Sometimes, analytical solution is meaningless or nonexistent. We need to get numerical
solution of our model by iterative algorithms [19, 20]. Still take x′ as an example, supposing
we use Newton method, the object function of our model can be represented as

F
(
x′d+1

)
=

n∑

i=1

αi
yi
si
K
(
x′, xi

)
+ b. (4.3)

The iterative equation of x′d+1 can be expressed as

x
′(i+1)
d+1 = x′(i)d+1 −

F
(
x
′(i)
d+1

)

F
(
x
′(i)
d+1

) . (4.4)

Therefore, the estimation values are calculated by our model effectively. Numerical
solution is more complicated, but applicable in every case.

In conclusion, we have introduced the establishment and solution of our model. The
key idea is to first identify a hyperplane of classification of data with missing features
by incomplete time series. Then, the hyperplane is used to calculate the estimation values
in predicting and imputing samples. Figure 3 provides the algorithms of our model for
prediction and imputation.

5. Experiments

To check the validity of our model, four experiments are conducted in this section. Firstly,
the prediction performance of our model is evaluated in test A. Given that conventional
imputation methods usually perform distinctly when incomplete time series are missing
discretely and continuously, we examine the imputation performance of our model in two
missing modes in test B and test C, respectively. The performance of our model is compared
with that of RGGB and other two classical imputation methods: Mean and KNN. Finally, we
verify the prediction performance of incomplete time series imputed by different models in
test D.

The time series used in the experiments are Mackey-Glass time series and Henon time
series. Mackey-Glass time series is generated by the chaotic equation

dx

dt
= −b∗x(t) + a∗x(t − τ)

1 + x10(t − τ)
, (5.1)
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Figure 3: The algorithms of our model for prediction and imputation.

where parameter τ is set to 17, a = 0.2, and b = 0.1. The interval of t is 5. Henon time series is
generated by the nonlinear equation

x(n + 1) = 1 − 1.4x(n)2 + 0.3x(n). (5.2)

By contrast, Henon time series has a higher volatility. The dimension of the sample set
d = 15. Parameters of our model are ε = 0.001 and C = 100. The value of K in KNN is set to 5.



8 Mathematical Problems in Engineering

1817161514131211109876543

(%)

MSE
MAE

0.04
0.05
0.06
0.07
0.08
0.09

0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19

0.2

Figure 4: Prediction results of our model in Mackey-Glass time series.
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Figure 5: Prediction performance of our model in Mackey-Glass time series.

MSE (Mean Squared Error) and MAE (Mean Absolute Error MAE) are used to
evaluate the performance of the experiments. All the results are obtained by repeating the
algorithms 10 times.

5.1. Prediction of Incomplete Time Series

In this test, continuous 115 data of Mackey-Glass time series with the missing level from 3%
to 18% are used to construct the initial sample set, and the next 65 data are for testing the
prediction performance of our model. The prediction results are shown in Figure 4.

From Figure 4 we can see that, with the increase of the missing level, larger deviations
of the prediction results occur inevitably due to the decrease of the number of training
samples. However, in practice, we can use an acceptable limit of error as the basis for
judgment. For example, set the acceptable limit of error MAEl = 0.1, which equals to the
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Figure 6: Prediction results of our model in Henon time series.
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Figure 7: Prediction performance of our model in Henon time series.

minimum scale of Mackey-Glass time series. Thus our model performs well even when
the missing level reaches 17%. Figure 5 shows an example of prediction performance of
our model in Mackey-Glass time series with the missing level of 3% and 17%. From
Figure 5, our model predicts the future time series roughly when 17% of the history
data are absent. Compared with the performance of missing level at 3%, only some
details are missing. Similar results are obtained in Henon time series, which are shown in
Figures 6 and 7.
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Table 1: Imputation results of Mackey-Glass time series with discrete missing data.

Missing level Our Mean KNN RGGB
MSE MAE MSE MAE MSE MAE MSE MAE

4–6% 0.0716 0.0626 0.0628 0.0545 0.0728 0.0602 0.0692 0.0594
7–9% 0.0783 0.0744 0.0809 0.0657 0.0823 0.0612 0.0840 0.0771
10–12% 0.0912 0.0865 0.0969 0.0833 0.0795 0.0669 0.0979 0.0857
13–15% 0.1064 0.0933 0.1010 0.0836 0.1086 0.1050 0.1242 0.1098

Table 2: Imputation results of Henon time series with discrete missing data.

Missing level Our Mean KNN RGGB
MSE MAE MSE MAE MSE MAE MSE MAE

4–6% 0.2385 0.1999 0.8352 0.6791 0.4624 0.4602 0.6683 0.5592
7–9% 0.4223 0.3120 0.9954 0.8148 0.6707 0.5534 0.7888 0.6156
10–12% 0.6461 0.4422 1.3951 1.2638 0.6746 0.6193 0.8321 0.6378
13–15% 0.6787 0.5261 1.4655 1.3114 0.7868 0.6467 1.2035 0.7639

5.2. Imputation of Incomplete Time Series with Discrete Missing Data

The continuous 115 data of Mackey-Glass time series and Henon time series with discrete
missing data are used as the experimental data in this test. The imputation results of different
models are shown in Tables 1 and 2.

From Tables 1 and 2 we can see that, the imputation performance of our model is
similar to that of KNN and RGGB in Mackey-Glass time series. However, in Henon time
series our model outperforms other three methods at every missing level. An example of
imputation performance of our model over Henon time series with the missing level of 10%
is shown in Figure 8.

Figure 8 shows that our model imputes most of the missing data in Henon time series
effectively. Compared with other methods, the performance of our model is not sensitive to
the fluctuation of time series.

5.3. Imputation of Incomplete Time Series with Continuous Missing Data

We evaluate the performance of different imputation methods by incomplete time series with
continuous missing data in the same way. Set the maximum length of continuous missing
data l = 5. The imputation results are shown in Tables 3 and 4.

Tables 3 and 4 indicate that our model outperforms other three methods in both
Mackey-Glass time series and Henon time series when the data are missing continuously.
Compared with Tables 1 and 2, no significant difference is observed between the two missing
modes in our model, while other methods perform better in the former. Figure 9 shows an
example of imputation performance of our model over Mackey-Glass time series with the
missing level of 10%.

There are three sets of continuous missing data in Figure 9. Our method imputes the
first two effectively. Based on the above observation, we conclude that our method performs
better than other traditional technologies of imputation.



Mathematical Problems in Engineering 11

120100806040200

Time series
Missing data
Imputed data

−1.5
−1
−0.5

0
0.5

1
1.5

Figure 8: Imputation performance of our model in Henon time series with the missing level of 10%.

120100806040200

Time series
Missing data
Imputed data

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Figure 9: Imputation performance of our model in Mackey-Glass time series with the missing level of 10%.

Table 3: Imputation results of Mackey-Glass time series with continuous missing data.

Missing level Our Mean KNN RGGB
MSE MAE MSE MAE MSE MAE MSE MAE

4–6% 0.0741 0.0604 0.1044 0.0941 0.0846 0.0676 0.1296 0.1013
7–9% 0.0831 0.0691 0.1718 0.1374 0.1299 0.1081 0.1531 0.1320
10–12% 0.0832 0.0748 0.1791 0.1508 0.1091 0.0853 0.2020 0.1553
13–15% 0.1082 0.0814 0.1951 0.1526 0.1347 0.1119 0.2220 0.1843

Table 4: Imputation results of Henon time series with continuous missing data.

Missing level Our Mean KNN RGGB
MSE MAE MSE MAE MSE MAE MSE MAE

4–6% 0.2409 0.1966 0.9633 0.8316 0.5449 0.4247 0.7294 0.5216
7–9% 0.3945 0.3391 1.0269 0.8957 0.5450 0.5022 0.8275 0.5777
10–12% 0.5472 0.4904 1.1343 0.9802 0.6777 0.5297 1.1462 0.7090
13–15% 0.8340 0.6190 1.3937 1.3101 0.7895 0.6711 1.2137 0.7657

5.4. Prediction after Imputation

The prediction performance of incomplete time series imputed by different models in test
B and test C is evaluated in this test. We also use the next 65 data to test the prediction



12 Mathematical Problems in Engineering

13–1510–127–94–6

Missing level (%)

Our model
Mean

KNN
RGGB

4

4.5

5

5.5

6

×10−3

M
A

E

Figure 10: Prediction results in Mackey-Glass time series imputed by different methods.
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Figure 11: Prediction results in Henon time series imputed by different methods

performance. The error-tolerant BP algorithm is used to build the predicting model. The
prediction results are shown in Figures 10 and 11.

From Figures 10 and 11 we can see that, the prediction performance in Mackey-Glass
time series and Henon time series imputed by our model are both superior to that of imputed
by other imputation algorithms.
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6. Conclusions

Learning and prediction of incomplete data are still pervasive problems, although extensive
studies have been conducted to improve the efficiency of data acquisition and transmission
[21, 22]. We have proposed a new prediction model for incomplete time series. Experiments
conducted in this paper confirm that our model can be successfully applied to prediction
of incomplete time series with a missing level below than that of acceptable error limit. In
addition, the imputation performance of our model is superior to that of other imputation
methods, and insensitive to the fluctuation of time series. Future work may focus on
applications of the model in some relevant fields [23, 24] and real-life problems.
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