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Virtual enterprise (VE) has to manage its risk effectively in order to guarantee the profit. However,
restricting the risk in a VE to the acceptable level is considered difficult due to the agility and
diversity of its distributed characteristics. First, in this paper, an optimization model for VE risk
management based on distributed decision making model is introduced. This optimization model
has two levels, namely, the top model and the base model, which describe the decision processes of
the owner and the partners of the VE, respectively. In order to solve the proposed model effectively,
this work then applies two powerful artificial intelligence optimization techniques known as
evolutionary algorithms (EA) and swarm intelligence (SI). Experiments present comparative
studies on the VE risk management problem for one EA and three state-of-the-art SI algorithms. All
of the algorithms are evaluated against a test scenario, in which the VE is constructed by one owner
and different partners. The simulation results show that the PS2O algorithm, which is a recently
developed SI paradigm simulating symbiotic coevolution behavior in nature, obtains the superior
solution for VE risk management problem than the other algorithms in terms of optimization
accuracy and computation robustness.

1. Introduction

A virtual enterprise (VE) [1] is a dynamic alliance of autonomous, diverse, and possibly
geographically dispersed member companies composed of one owner and several partners
that pool their resource to take advantage of a market opportunity. Each member company
will provide its own core competencies in areas such as marketing, engineering, and
manufacturing to the VE. When the market opportunity has passed, the VE is dissolved.
With the rapidly increasing competitiveness in global manufacturing area, VE is becoming
essential approach to meet the market’s requirements for quality, responsiveness, and
customer satisfaction. As the VE environment continues to grow in size and complexity, the
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importance of managing such complexity increases. In the VE environment, there are various
sources of risks that may threaten the success of the projects, such as market risk, credit risk,
operational risk, and others [2]. Therefore, an effective approach that can actually deal with
the risk measurement and management problem is a major concern in VE.

Up to date, risk management of VE has received considerable research attentions.
Various models and algorithms are developed to provide a more scientific and effective
way for managing the risk of a VE. Ma and Zhang [3] analyzed all kinds of risks during
the organization of a VE. They then proposed the defensive measures on the established
risk of a VE in order to offer a reference to risk management for the new form of the VE
organization. Huang et al. [4] introduced a fuzzy synthetic evaluation model for evaluating
the risk of the VE, which focuses on the project mode and the uncertain characteristics of the
VE. Ip et al. [1] proposed a risk-based partner selection model, which considers minimizing
the risk in selecting partners and ensuring the due date of a project in a VE. By exploring
the characteristics of the problem considered and the knowledge of project scheduling, a
Rule-based Genetic Algorithm with embedded project scheduling is developed to solve the
problem. Sun et al. [5] employed a constructional distributed decision making (DDM) model
for risk management of VE that focuses on the situation of team or enforced team relationship
between partners. A taboo search algorithm was designed to solve the model. Lu et al. [6]
introduced a DDM model for VE risk management that has two levels, namely, the top-
model and the base-model, which describe the decision processes of the owner and the
partners, respectively. A particle swarm optimization approach was then designed to solve
the resulting optimization problem.

Nature serves as a fertile source of concepts, principles, and mechanisms for designing
artificial computation systems to tackle complex computational problems. In the past
few decades, many nature-inspired computational techniques were designed to deal with
practical problems. Among them, the most successful are evolutionary algorithms (EA)
and swarm intelligence (SI). Evolutionary algorithms are search methods that take their
inspiration from natural selection and survival of the fittest in the biological world.
Several different types of EA methods were developed independently. These include genetic
programming (GP) [7], evolutionary programming (EP) [8], evolution strategies (ES)
[9], and genetic algorithm (GA) [10]. Swarm intelligence (SI), which is inspired by the
collective behavior of social systems (such as fish schools, bird flocks, and ant colonies),
is an innovative computational way to solve hard optimization problems. Currently, SI
includes several different algorithms, namely, ant colony optimization (ACO) [11], particle
swarm optimization (PSO) [12, 13], bacterial foraging algorithm (BFA) [14–16], and artificial
bee colony algorithm (ABC) [17]. In our previous works [18, 19], we also proposed a
novel hierarchical swarm optimization algorithm called PS2O, which extends the single
population PSO to interacting multi-swarm model by constructing hierarchical interaction
topologies and enhanced dynamical update equations. By incorporating the new degree of
complexity, PS2O can avoid premature convergence drawback of traditional SI algorithms
and accommodate a considerable potential for solving more complex problems.

In this paper, we develop an optimization model for distributed decision making of
risk management in VE based on the evolutionary and swarm-based methods. Here the VE
risk management problem is described and formulated as a two-level DDM model, which is
in order to minimize the aggregate risk level of the VE to a reasonable lower level. Then, in
order to solve this complex problem effectively and efficiently, the optimization procedure
based on EA and SI systems is developed. Experiments are performed on three VE risk
management cases with different scales. In the experiments, a comprehensive comparative
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study on the performances of four well-known evolutionary and swarm-based algorithms,
namely, GA, PSO, ABC, and the recently proposed PS2O, is presented. Results show that the
performance of the PS2O is better than or similar to those of other EA and SI algorithms
with the advantage of maintaining suitable diversity of the whole population in optimization
process.

The paper is organized as follows. Section 2 describes the two-level DDM model of
VE risk management. In Section 3, the GA, PSO, ABC, and PS2O algorithms are summarized.
Section 4 describes a detailed design optimization procedure of risk management in VE by
evolutionary and swarm-based algorithms. In Section 5, the simulation results obtained are
presented and discussed. Finally, Section 6 outlines the conclusions.

2. Problem Formulation of Risk Management in a VE

In this paper, the two-level risk management model suggested by Lu et al. [6] is employed
to evaluate the performance of the proposed methods. This model can be described as a two-
level distributed decision making (DDM) system that is depicted in Figure 1.

In the top-level, the decision maker is the owner who allocates the budget (i.e., the
risk cost investment) to each member of VE. The decision variables are therefore given by
I = (I0, I1, . . . , In). Here I0 denotes the budget to owner and Ii (i = 1, 2, . . . , n) represents the
budget to Partner i. That is, there are n + 1 members in a VE. Then the top-level objective
of risk management in a VE is to allocate the optimal budget to each member in order to
minimize the total risk level of the VE. The top-level model can be formulated as a continuous
optimization problem that is given in what follows:

min
I

FT (I) =
n∑

i=0

wiRi(Ii), (2.1)

s.t.
n∑

i=0

Ii ≤ Imax, (2.2)

Ri(Ii) ≤ Rmax, (2.3)

where Ri(Ii) is the risk level of ith member under risk cost investment Ii, wi represents the
weight of member i, Imax is the maximum total investment budget, and Rmax stands for the
maximum risk level for each member in the VE.

In the base-level, the partners of VE are making their decisions according to the top-
level’s instruction (i.e., the budget to partners). The base-level risk management is that the
decision maker selects the optimal series of risk control actions Ai = (ai1, a

i
2, . . . , a

i
m) for each

partner i (i = 1, 2, . . . , n) to minimize the risk level with respect to the allocated budget Ii.
Here m is the number of risk factors that affect each partner’s security. Then the base-level
model can be formulated as a discrete optimization problem that is given in what follows:

min
A

FB(A) =
n∑

i=1

wiRi(Ai | Ii),

s.t.
m∑

j=1

Ci
j

(
aij

)
≤ Ii,

aij ∈ {0, 1, 2, . . . ,W},

(2.4)
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Figure 1: DDM model for risk management in a VE.

(1) Begin
(2) Initialize population
(3) Repeat
(4) Evaluation
(5) Reproduction
(6) Crossover
(7) Mutation
(8) Until requirements are met
(9) End

Algorithm 1

where Ri(Ai | Ii) is the risk level of ith partner under risk control action Ai with respect to the
top-level investment budget Ii, Ci

j(a
i
j) represents the cost of partner i under the risk control

action aij for the risk factor j, and W stands for the number of available actions for each risk
factor of each partner.

3. Description of the Involved Evolutionary and
Swarm Intelligence Algorithms

3.1. The Genetic Algorithm

Genetic algorithm is a particular class of evolutionary algorithms that use techniques inspired
by evolutionary biology such as inheritance, mutation, selection, and crossover. A basic GA
consists of five components. These are a random number generator, a fitness evaluation unit,
genetic operators for reproduction, crossover, and mutation operations. The basic algorithm
is summarized in Algorithm 1 .

At the start of the algorithm, the population initialization step randomly generates a
set of number strings. Each string is a representation of a solution to the optimization problem
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(1) Begin
(2) Initialize population
(3) Repeat
(4) Place the employed bees on their food sources
(5) Place the onlooker bees on the food sources depending on their nectar amounts
(6) Send the scouts to the search area for discovering new food sources
(7) Memorize the best food source found so far
(8) Until requirements are met
(9) End

Algorithm 2

being addressed. Continuous and discrete strings are both commonly employed. Associated
with each string is a fitness value computed by the evaluation unit. The reproduction operator
performs a natural selection function known as seeded selection. Individual strings are
copied from one set (representing a generation of solutions) to the next according to their
fitness values; the better the fitness value, the greater the probability of a string being selected
for the next generation. The crossover operator chooses pairs of strings at random and
produces new pairs. The simplest crossover operation is to cut the original parent strings
at a randomly selected point and to exchange their tails. The number of crossover operations
is governed by a crossover rate. The mutation operator, which is determined by a mutation
rate, randomly mutates or reverses the values of bits in a string. A phase of the algorithm
consists of applying the evaluation, reproduction, crossover, and mutation operations. A new
generation of solutions is produced with each phase of the algorithm [20].

3.2. The Artificial Bee Colony Algorithm

Artificial bee colony (ABC) algorithm is one of the most recently introduced SI algorithms.
ABC simulates the intelligent foraging behavior of a honeybee swarm. In ABC model, the
foraging bees are classified into three categories: employed bees, onlookers, and scout bees.
The main steps of the algorithm are as shown in Algorithm 2 .

ABC starts by associating all employed bees with randomly generated food sources
(solution). In mathematical terms, S is total number of food sources; the ith food source
position can be represented as Xi = (xi1, xi2, . . . , xiD) in the D-dimensional space. F(Xi) refers
to the nectar amount of the food source located at Xi. In each iteration t, every employed bee
determines a food source in the neighborhood of its current food source and evaluates its
nectar amount (fitness). This comparison of two food source position by each employed bee
is manipulated according to the following equations:

xij(t) = xij(t − 1) + rand[−1, 1]
(
xij(t − 1) − xkj(t − 1)

)
, (3.1)

where k ∈ [1, 2, . . . , S] and j ∈ [1, 2, . . . , D] are randomly chosen indexes, and k /= j. Equation
(3.1) controls the production of neighbor food sources around Xi. If its new fitness value is
better than the best fitness value achieved so far, then the bee moves to this new food source
abandoning the old one; otherwise it remains in its old food source. When all employed bees
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have finished this process, they share the fitness information with the onlookers; each of
which selects a food source according to probability pi defined as

pi =
F(Xi)

∑S
n=1 F(Xn)

. (3.2)

For each onlooker that selects the food source Xi, it will find a new neighborhood food source
in the vicinity of Xi by using (3.1). Also, the greedy selection mechanism is employed by this
onlooker as the selection operation between the old and the new food sources. With this
scheme, good food sources will get more onlookers than the bad ones. In ABC, if a food
source position cannot be improved further through a predetermined number of cycles, then
that food source is assumed to be abandoned and the scout bee will randomly choose a new
food source position in the search space.

3.3. The Particle Swarm Optimization

The canonical PSO is a successful SI-based technique. In PSO model, the rules that govern
particles’ movements are inspired by models of fish schooling and bird flocking [21]. Each
particle has a position and a velocity, and experiences linear spring-like attractions towards
two attractors:

(i) its previous best position,

(ii) best position of its neighbors.

In mathematical terms, the ith particle is represented as xi = (xi1, xi2, . . . , xiD) in the
D-dimensional space, where xid ∈ [ld, ud], d ∈ [1, D], and ld, ud are the lower and upper
bounds for the dth dimension, respectively. The rate of velocity for particle i is represented as
vi = (vi1, vi2, . . . , viD) clamped to a maximum velocity Vmax which is specified by the user. In
each time step t, the particles are manipulated according to the following equations:

vid(t) = χ
(
vid(t − 1) + R1c1

(
pid − xid(t − 1)

)
+ R2c2

(
pgd − xid(t − 1)

))
,

xid(t) = xid(t − 1) + vid(t),
(3.3)

where R1 and R2 are random values between 0 and 1, c1 and c2 are learning rates, which
control how far a particle will move in a single iteration, pid is the best position found so far
of the ith particle, pgd is the best position of any particles in its neighborhood, and χ is called
constriction factor, given by:

χ =
2

∣∣∣2 − ϕ −
√
ϕ2 − 4ϕ

∣∣∣
, (3.4)

where ϕ = c1 + c2, ϕ > 4. Main steps of the PSO procedure are as shown in Algorithm 3.
Kennedy and Eberhart [13] proposed a binary PSO in which a particle moves in a state

space restricted to zero and one on each dimension, in terms of the changes in probabilities
that a bit will be in one state or the other. The velocity formula (2.1) remains unchanged
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(1) Begin
(2) Initialize Population
(3) Repeat
(4) Calculate fitness values of particles
(5) Modify the best particles in the swarm
(6) Choose the best particle
(7) Calculate the velocities of particles
(8) Update the particle positions
(9) Until requirements are met
(10) End

Algorithm 3

except that xid, pid, and pgd are integers in {0, 1} and vid must be constrained to the interval
[0.0, 1.0]. This can be accomplished by introducing a sigmoid function S(v), and the new
particle position is calculated using the following rule:

if rand < S(vid), then xid = 1, else xid = 0, (3.5)

where rand is a random number selected from a uniform distribution in [0.0, 1.0] and the
function S(v) is a sigmoid-limiting transformation as follows:

S(v) =
1

1 + e−v
. (3.6)

3.4. The Multi-Swarm Optimizer: PS2O

Straight PSO uses the analogy of a single-species population and the suitable definition of the
particle dynamics and the particle information network (interaction topology) to reflect the
social evolution in the population. However, the situation in nature is much more complex
than what this simple metaphor seems to suggest. Indeed, in biological populations there
is a continuous interplay between individuals of the same species, and also encounters and
interactions of various kinds with other species [22]. The points at issue can be clearly seen
when one observes such ecological systems as symbiosis, host-parasite systems, and prey-
predator systems, in which two organisms mutually support each other; one exploits the
other, or they fight against each other. For instance, mutualistic relations between plants and
fungi are very common. The fungus invades and lives among the cortex cells of the secondary
roots and, in turn, helps the host plant absorb minerals from the soil. Another well-known
example is the “association” between the Nile crocodile and the Egyptian plover, a bird that
feeds on any leeches attached to the crocodile’s gums, thus keeping them clean. This kind of
“cleaning symbiosis” is also common in fish.

Inspired by mutualism phenomenon, in the previous works [18, 19] we extend the
single population PSO to the interacting multi-swarm model by constructing hierarchical
information networks and enhanced particle dynamics. In our multi-swarms approach, the
interaction occurs not only between the particles within each swarm but also between
different swarms. That is, the information exchanges on a hierarchical topology of two levels
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(a) (b)

Figure 2: Hierarchical topology of the multi-swarm.

(i.e., the individual level and the swarm level). Many patterns of connection can be used
in different levels of our model. The most common ones are rings, two-dimensional and
three-dimensional lattices, stars, and hypercubes. Two example hierarchical topologies are
illustrated in Figure 2. In Figure 2(a), four swarms at the upper level are connected by a
ring, while each swarm (possesses four individual particles at the lower level) is structured
as a star. While in Figure 2(b), both levels are structured as rings. Then, we suggest in
the proposed model that each individual moving through the solution space should be
influenced by three attractors:

(i) its own previous best position,

(ii) best position of its neighbors from its own swarm,

(iii) best position of its neighbor swarms.

In mathematical terms, our multi-swarm model is defined as a triplet 〈P, T, C〉, where
P = {S1, S2, . . . , SM} is a collection of M swarms, and each swarm possesses a members set
Sk = {Xk

1 , X
k
2 , . . . , X

k
N}of N individuals. T is the hierarchical topology of the multi-swarm. C

is the enhanced control low of the particle dynamics, which can be formulated as

vkid(t) = χ
(
vkid(t − 1) + R1c1

(
pkid − x

k
id(t − 1)

)
+ R2c2

(
pkgd − x

k
id(t − 1)

)

+R3c3

(
pθgd − x

k
id(t − 1)

))
,

(3.7)

xkid(t) = x
k
id(t − 1) + vkid(t), (3.8)

where xk
id

represents the position of the ith particle of the kth swarm, pk
id

is the personal best
position found so far by xk

id
, pk

gd
is the best position found so far by this particle’s neighbors

within swarm k, pθgd is the best position found so far by the other swarms in the neighborhood
of swarm k (here θ is the index of the swarm which the best position belongs to), c1 is the
individual learning rates, c2 is the social learning rate between particles within each swarm, c3

is the social learning rate between different swarms, and R1, R2, R3 ∈ Rd are random vectors
uniformly distributed in [0, 1]. Constriction factor χ is calculated by

χ =
2

∣∣∣2 − ϕ −
√
ϕ2 − 4ϕ

∣∣∣
, (3.9)
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(1) Begin
(2) Randomize n swarms each possesses m particles;
(3) While (the termination conditions are not met)
(4) For (each swarm k)
(5) Find in the kth swarm neighborhood, the point with the best fitness;
(6) Set this point as pθ

gd
;

(7) For (each particle i of swarm k)
(8) Find in the particle neighborhood, the point with the best fitness;
(9) Set this point as pk

gd
;

(10) Update particle velocity using equations (3.7);
(11) Update particle position using equations (3.8);
(13) End For
(14) End For
(15) End While
(16) End

Algorithm 4

where ϕ = c1 + c2 + c3, ϕ > 4. Here, the term R1c1(pkid − x
k
id
) is associated with cognition since

it takes into account the individual’s own experiences; the term R2c2(pkgd −x
k
id) represents the

social interaction within swarm k; the term R3c3(pθgd − x
k
id
) takes into account the symbiotic

coevolution between dissimilar swarms. The pseudocode for the PS2O algorithm is listed in
Algorithm 4 .

We should note that, for solving discrete problems, we still use (3.5) and (3.6) to
discretize the position vectors in PS2O algorithm.

4. Risk Management in VE Base on Evolutionary and SI Algorithms

The detailed design of Risk management algorithm based on EA and SI algorithms is
introduced in this section. Since the risk management model described in Section 2 has a
two-level hierarchical structure, the proposed EA and SI-based risk management algorithm
is composed of two types of evolving population that search in different levels, respectively,
namely, the upper-population and the lower-population. This designed algorithm reflects a
two-phase search process, that is, top-level searching phase and base-level searching phase.
In the top-level searching phase, the upper-population searches a continuous space for the
optimal investment budget allocation by the sponsor for all VE members. While in the base-
level searching phase, the lower-population receives information from upper-population and
searches the discrete space for a best action combination for risk management of all VE
partners.

4.1. Chromosome Representation Scheme and Model Transformation

4.1.1. Definition of Continuous Individual

In upper-population, each individual has a dimension equal to n + 1 (i.e., the number of VE
members). Each individual is a possible allocation of investment budget for all members that
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Figure 3: Definition of a discrete particle (2314, 2401) for the action combination of two individuals.

have a real number representation. The ith individual of the upper-population T is defined
as follows:

XT
i =
(
xTi1, x

T
i2, . . . , x

T
i(n+1)

)
, XT

i ∈ Rn+1. (4.1)

For example, a real-number particle (286.55, 678.33, 456.78, 701.21, 567.62) is an
investment budget possible allocation of a VE consisting of 5 members. The first bit means
that the owner received investment of 286.55 units. The 2 to 5 bits mean that the amounts of
investment allocated to partner 1 to 4 are 678.33, 456.78, 701.21, and 567.62, respectively.

4.1.2. Definition of Discrete Individual

For the lower-population, in order to appropriately represent the action combination by a
particle, we design an “action-to-risk-to-partner” representation for the discrete individual.
Each discrete individual in each lower-population has a dimension equal to the number of
n ×m ×W , where W is the number of available actions for each risk factor, m is the number
of risk factors of each partner, and n is the number of VE partners. The ith individual of the
lower-population L is defined as follows:

XL
i =
(
xLi(111), x

L
i(112), . . . , x

L
i(n×m×W)

)
, xLi(αβγ) ∈ {0, 1}, (4.2)

where xL
i(αβγ) equals 1 if the risk factor β of VE partner α is solved by the γth action and 0

otherwise. That is, each partner can only select one action for each risk factor or do nothing
with this factor. For example, set n = 2,m = 4, andW = 4; suppose that the action combination
of two partners is (2314, 2401), where 0 stands for no action and is selected for the third risk
factor of the second partner in VE. By our definition, we have xL

i(112) = xL
i(123) = xL

i(131) =
xL
i(144) = x

L
i(212) = x

L
i(224) = x

L
i(241) = 1 and all other xL

i(αβγ) = 0 (see Figure 3).
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4.1.3. Model Transformation

Then, the base-level objectives, that is, (2.4), formulated in Section 2 are equivalent to the
following optimization problem:

min
X

FB
(
XL
i

)
=

n∑

α=1

wαRα

(
XL
iα | X

T
iα

)
=

n∑

α=1

m∑

β=1

l∑

λ=1

wαuβfβλ
(∣∣∣xLiαβ

∣∣∣
)
dλ

+ ϕ
n∑

α=1

⎛

⎝
m∑

β=1

Cα
β

(∣∣∣xLiαβ
∣∣∣
)
− xTiα

⎞

⎠
+

,

(4.3)

where uβ is the weight of the risk factor β, dλ is the value corresponding to the risk rating λ, l is
the number of risk ratings, and ϕ is the punishment coefficient. xLiαβ = (xLiαβ1, x

L
iαβ2, . . . , x

L
iαβW)

and |xL
iαβ
| is defined as the position index of 1 in xL

iαβ
. For example, if xL

iαβ
= (0010), the value

of |xL
iαβk
| is 3. Here fβλ(|xLiαβ|) is approximated by the convex decreasing function

fβλ
(∣∣∣xLiαβ

∣∣∣
)
= exp

(
−θβλ

∣∣∣xLiαβ
∣∣∣
)

(4.4)

to assess the probability of risk occurrence at risk rating λ under action |xL
iαβ
|. Here the

parameter θβλ is used to describe the effects of different risk factors under different risk
ratings. The cost of the action Cα

β(|x
L
iαβ|) is assumed to be a concave increasing function of

the corresponding action, which is approximated by

Cα
β

(∣∣∣xLiαβ
∣∣∣
)
= 100

(
1 − exp

(
−ταβ
∣∣∣xLiαβ

∣∣∣
))
, (4.5)

and the parameter τα
β

describes the effects of different risk factors of different partners. The
notation (x)+ is defined as follows:

(x)+ =

⎧
⎨

⎩
x if x > 0,

0 else.
(4.6)

And the top-level objectives, that is, (2.1)–(2.3), formulated in Section 2 are equivalent
to the following optimization problem:

min
X

FT
(
XT
i

)
=

n∑

α=0

wαRα

(
XT
i(α+1)

)
= w0R0

(
XT
i1

)
+ FB

(
XL∗
i

)

+ φ

(
n+1∑

α=1

xTiα − Imax

)+

+ η
n∑

α=1

⎛

⎝
m∑

β=1

l∑

λ=1

wαuβfβλ
(∣∣∣xLiαβ

∣∣∣
)
dλ − Rmax

⎞

⎠
+

,

(4.7)
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where φ and η are the punishment coefficients and XL∗

i is the last best base-level decision.
Here the risk level of the owner R0(XT

i1) is approximated by a convex decreasing function as
follows:

R0

(
XT
i1

)
= exp

(
−0.001XT

i1

)
. (4.8)

In order to easily use EA and SI algorithms to treat the risk management problem in
VE, it is clear that the rewritten model, that is, (4.3)–(4.8), is much complex than the original
model, that is, (2.1)–(2.4), for there are more variables described in it.

4.2. Risk Management Procedure

The overall risk management process based on EA and SI algorithms can be described as
follows.

Step 1. The first step in top-level is to randomly initialize the EA and SI-based upper-
population. Each individual XT

i in the top-level is an instruction and is communicated to the
base-level to drive a base-level search process (Steps 2–4).

Step 2. For each top-level instruction XT
i , the base-level randomly initializes a corresponding

lower-population. At each iteration in base-level, for each particle XL
i , evaluate its fitness

using the base-level optimization function, that is, (4.3).

Step 3. Compare the evaluated fitness values for all individuals in lower-population. Then
update each base-level individual by its updating rules according to the selected EA and SI
algorithms. For our problem, each partner can only select one action for each risk factor or
do nothing with this factor. In order to take care of this problem, for each particle, action γ is
selected for risk factor β of partner α according to following probability:

pi(αβγ) =
s
(
vL
i(αβγ)

)

∑W
γ=1 s

(
vL
i(αβγ)

) . (4.9)

Then the position of each base-level particle is updated by Algorithm 5 .

Step 4. The base-level search process is repeated until the maximum number of base-level
iteration is met. Then send the last best base-level decision variable XL∗

i to the top-level for
the fitness computation of the top-level individual XT

i .

Step 5. With the base-level reaction XL∗

i , each top-level individual XT
i is evaluated by the

following top-level fitness function, that is, (4.7).

Step 6. Compare the evaluated fitness values for all individuals in upper-population. Then
update each top-level individual by its updating rules according to the selected EA and SI
algorithms. The top-level computation is repeated until the maximum number of top-level
iteration is met.
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(1) Begin
(2) Let Xtemp be a zero vector that has a dimension equal to n ×m ×W .
(3) For (α = 1 to n)
(4) For (β = 1 to m)
(5) For (γ = 1 to W)
(6) If (rand ≤ pi(αβγ))

// Action γ is selected for risk β of partner α
(7) X

tempt
αβγ

= 1;
(8) Break;
(9) End if
(10) End for
(11) End for
(12) End for
(13) XL

i = Xtemp

(14) END

Algorithm 5

Initialize upper-population

For each particle of upper-population

Initialize one lower-population

Evaluate the lower-poulation

Update the lower-population

Termination?

Top-level search Base-level search

End

Termination?

Update the upper-population

Evaluate each particle of upper-population

Y
Y

N

N

Figure 4: The risk management process based on EA and SI.

The flowchart of this risk management process is illustrated in the diagram given in
Figure 4.

5. Experiments Analysis

In this section, a numerical example of a VE is conducted to validate the capability of the
proposed VE risk management method. Experiments were conducted with four EA and SI-
based algorithms, namely, GA, PSO, ABC, and PS2O, to fully evaluate the performance of the
proposed optimization model.
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Table 1: Criterion of risk rating.

Value of risk probability Risk level
[0.00, 0.38] Low risk
(0.38, 0.67] Medium risk
(0.67, 1.00] High risk

Table 2: The weights of the risk factors.

Risk factor 1 2 3 4 5 6 7 8 9 10
uβ 0.1 0.15 0.10 0.05 0.10 0.10 0.15 0.10 0.05 0.10

Table 3: The summary of parameter θβλ.

β
λ

1 2 3
1 0.10 0.07 0.13
2 0.23 0.20 0.17
3 0.33 0.27 0.30
4 0.37 0.40 0.43
5 0.50 0.47 0.53
6 0.63 0.57 0.60
7 0.73 0.70 0.67
8 0.83 0.77 0.80
9 0.87 0.90 0.93
10 1.00 0.97 1.03

5.1. Illustrative Examples

In this section, the total investment is Bmax = 3500; 10 risk factors are considered for each
partner and 4 actions can be selected for each risk factor (i.e., m = 10 and W = 4); the number
of risk ratings is l = 3 and the value of each rating is d1 = 0.165, d2 = 0.335, and d3 =
0.500, respectively (according to the values of ratings, the criterion of risk rating is shown
in Table 1); the maximum risk level Rmax = 0.67, which means that the risk level of each
member must be below the medium level; the weight of risk level of each VE member is
w0 = w1 = w2 = w3 = w4 and the weights uβ of each risk factor for each partner are listed in
Table 2; the values of the parameters θβλ and τα

β
are presented in Tables 3 and 4, respectively;

the punishment coefficients φ, η, and ϕ are given as 1.5, 28, and 0.2.
This simulated VE environment can be constructed by one owner and different

number of partners. For scalability study purpose, all involved algorithms are tested on three
illustrative VE examples with 2, 4, and 9 partners (i.e., n = 2, 4, 9), respectively.

5.2. Settings for Involved Algorithms

In applying EA and SI algorithms to this case, the continuous and binary versions of these
algorithms are used in top-level and base-level of the DDM optimization model, respectively.
For the top-level algorithms, the maximum generation in each execution for each algorithm
is 50; the initialized population size of 10 individuals is the same for all involved algorithms,
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Table 4: The summary of parameter τα
β

.

Risk factor 1 2 3 4 5 6 7 8 9 10
τα
β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Table 5: Results of all algorithms. In bold are the best.

Scale of VE PSO PS2O GA ABC

3 members

Best 0.2167 0.2065 0.1901 0.2240
Worst 0.3034 0.2614 0.5420 0.2650
Mean 0.2514 0.2354 0.2356 0.2436

Std 0.0202 0.0109 0.0626 0.0112

5 members

Best 0.3396 0.3218 0.2727 0.3166
Worst 0.4804 0.3566 3.2243 0.3891
Mean 0.3739 0.3363 0.5139 0.3593

Std 0.0331 0.0091 0.6110 0.0148

10 members

Best 0.3320 0.2641 0.1970 0.3940
Worst 4.7246 1.9785 2.7449 4.2746
Mean 0.7786 0.6045 0.8987 0.7578

Std 0.9049 0.6972 0.3886 0.9817

while the whole population is divided into 2 swarms (each possesses 5 individuals) for
PS2O in the initialization step. For the base-level algorithms, the maximum generation for
each algorithm is 100; the initialized population size of 20 particles is the same for all
involved algorithms, while the whole population is divided into 4 swarms (each possesses
5 individuals) for PS2O in the initialization step. The experiment runs 30 times, respectively,
for each algorithm. The other specific parameters of algorithms are given below.

GA Settings

The experiment employed a binary coded standard GA having random selection, crossover,
mutation, and elite units. Stochastic uniform sampling technique was the chosen selection
method. Single-point crossover operation with the rate of 0.8 was employed. Mutation
operation restores genetic diversity lost during the application of reproduction and crossover.
Mutation rate in the experiment was set to be 0.01.

PSO Settings

For continuous PSO, the learning rates c1 and c2 were both 2.05 and the constriction factor
χ = 0.729; for binary PSO, the parameters were set to the values c1 = c2 = 2 and χ = 1. The
ring topology was used for both versions of PSO.

ABC Settings

The basic ABC is used in the study. Since there are no literatures using ABC for discrete
optimization so far, this experiment just used crossover operation to update individuals in
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Figure 5: The iteration courses of all algorithms on different VE scales. (a) 3 members. (b) 4 members. (c)
10 members.

ABC population. That is, the ABC position update (3.1) can be changed to the following
equation (5.1) for discrete problems:

xij(t) = xkj(t − 1). (5.1)

Then the limit parameter is set to be SN ×D for ABC in both continuous and discrete search,
where D is the dimension of the problem and SN is the number of employed bees.

PS2O Settings

For continuous PS2O, the parameters were set to the values c1 = c2 = c3 = 1.3667 (i.e., φ =
c1 +c2 +c3 ≈ 4.1 > 4) and then χ = 0.729, which is calculated by (3.9); the interaction topology
illustrated in Figure 2(a) is used. For discrete PS2O, the parameters were set to the values
c1 = c2 = c3 = 2 and χ = 1; the interaction topology illustrated in Figure 2(b) is used.
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Figure 6: ANOVA test for all candidate algorithms on different VE scales of (a) 3 members, (b) 4 members,
and (c) 10 members. (Here 1, 2, 3, and 4 are the algorithm index of PSO, PS2O, GA, ABC, resp.).

All algorithms are tested on the risk management problems with 3, 5, and 10 VE
members. The representative results obtained are presented in Table 5, including the best,
worst, mean, and standard deviation of the risk values of VE found in 30 runs. Figures 5(a)–
5(c) present the evolution process of all algorithms for the minimization of the VE risks in
3 different scales. For each trial, we can see before proceeding with the EA and SI-based
risk management procedure, the risk levels are very high for the VE. Table 5 shows that the
resulting risk levels of the VE are in the lower risk level. Therefore the budget and the actions
selected by the four EA and SI algorithms for the owner and the partners are very effective to
reduce the risks of the VE. From the results, it is clear that the PS2O algorithm can consistently
converge to better results than the other three algorithms for all test cases. Also, PS2O is the
most fast one for finding good results within relatively few generations.

In this experiment, the analysis of variance (ANOVA) test was also carried out to
validate the efficacy of four tested EA and SI methods. The graphical statistics analyses are
done through box plot. A box plot is a graphical tool, which provides an excellent visual
summary of many important aspects of a distribution. The box stretches from the lower hinge
(defined as the 25th percentile) to the upper hinge (the 75th percentile) and therefore contains
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Figure 7: ANOVA test for the risk management results with different VE scales optimized by (a) PSO, (b)
PS2O, (c) GA, and (d) ABC.

the middle half of the scores in the distribution. The median is shown as a line across the box.
Therefore, one-fourth of the distribution is between this line and the top of the box and one-
fourth of the distribution is between this line and the bottom of the box.

First, the box plots for the results presented in Table 5 are shown in Figures 6(a)–6(c).
Figure 6 implies the graphical performance representation of all algorithms in 30 runs. From
this box plot representation, it is clearly visible and proved that the PS2O provides better
results for all the test cases than those of the other three algorithms.

Second, to compare the robustness of the involved algorithms on the risk manage
problem, the experiment can be statistically considered as one-factor experiment, in which
the optimization result was the response variable and the scales of the VE were the factor,
which had 3 levels: 3, 5, and 10. The results of the ANOVA for the VE risk management
in different scales using these algorithms were presented in Figure 7 by the box plot. From
Figure 7, we can observe that the main effects of the problem scale are not significant for the
optimization results obtained by the PS2O algorithm. Therefore, against the scales variation
of the testing VE cases, the robustness of the PS2O is much better than those of the PSO, GA,
and ABC.
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6. Conclusions

In this paper, we develop an optimization model for minimizing the risks of the virtual
enterprise based on evolutionary and swarm intelligence methods. First, a two-level risk
management model was introduced to describe the decision processes of the owner and
the partners. This DDM model considers the situation that the owner allocates the budget
to each member of the VE in order to minimize the risk level of the VE. Accordingly, a
transfer optimization model, which can easily use EA and SI algorithms to treat the risk
management problem in VE, is elaborately developed. We should note that the proposed
optimization model is genetic and extendible: the model does not depend on the optimization
algorithm used and other evolutionary and swarm intelligence techniques could be equally
well adopted, which enable a comparison of various algorithms for the same application
scenario.

Experiments show comparative studies on the VE risk management problem for the
GA, PSO, ABC, and PS2O. The simulation results show that the PS2O algorithm obtains
superior solutions on three testing cases than the other algorithms in terms of optimization
accuracy and computation robustness. That is, in PS2O, with the hierarchical interaction
topology, a suitable diversity in the whole population can be maintained; at the same time,
the enhanced dynamical update rule significantly speeds up the multi-swarm to converge to
the global optimum.
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