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We propose a Gibbs sampling algorithm to detect additive outliers and patches of outliers in
bilinear time series models based on Bayesian view. We first derive the conditional posterior
distributions, and then use the results of first Gibbs run to start the second adaptive Gibbs
sampling. It is shown that our procedure could reduce possible effects on masking and swamping.
At last, some simulations are performed to demonstrate the efficacy of detection and estimation by
Monte Carlo methods.

1. Introduction

Dynamic systems or engineering time series observations [1] are often perturbed by some
interrupting phenomena which generate aberrant data. They may be due to some unusual
events, such as sudden disturbed factor, noise, and even recording errors. Such values are
usually referred to as outliers, which may be isolated or of patch. Because outliers and patches
in a time series can have adverse effects in data analysis, which maybe make the resultant
inference unreliable or even invalid, it is important to detect and remove such outlier’s effects.
Some authors have considered the detection problem in the linear and nonlinear models.
Abraham and Box [2] analyzed some outlier problems based on Bayesian methods in time
series. Tsay [3] considered time series model specification in the presence of outliers. Ljung
[4] presented outlier detection in time series. Justel et al. [5] studied detection of outlier
patches in autoregressive time series. Battaglia and Orfei [6] considered outlier detection and
estimation in nonlinear time series. Chen et al. [7] studied similar problem in ARMAX time
series models. P. Chen and Y. Chen [8] gave the identification of outliers in ARMAX models
via genetic algorithm.
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Based on some different prior distributions, a new Gibbs sampling algorithm is
proposed for identifying additive isolated outliers and patches of outliers in bilinear time
series. This paper considers detection of outliers and patches in bilinear time series models,
which are one of the fractal time series models [9]. Wang and Wei [10] analyzed the
probabilistic structure for a rather general class of bilinear models systematically. Wang
[11] considered parameter estimation and subset selection for separable lower triangular
bilinear models. In particular, Chen [12] proposed a procedure for detecting additive
outliers in bilinear time series, which also discusses some major problems encountered
in practice, such as how one can distinguish between ARMA model with outliers and a
bilinear model without outliers. Some special cases of bilinear models, such as diagonal
bilinear model, vector bilinear model and so on, have been studied by many authors
on not only probabilistic structure but also statistical inferences; for instance, Subba Rao
[13], Subba Rao and Gabr [14], Kim et al. [15], and Sesay and Subba Rao [16], among
others.

The format of the paper is as follows. Section 2 gives the outliers model of bilinear
series. Section 3 presents a method to detect outliers in bilinear model via standard Gibbs
sampling. In Section 4, we propose an adaptive Gibbs sampling method to detect patches of
outliers in bilinear model. Section 5 gives simulated examples and some conclusions.

2. Outliers Models of Bilinear Time Series

The time series {yt} is called a bilinear process, if it satisfies the model

yt =
p∑

i=1

φiyt−i + εt +
q∑

j=1

θjεt−j +
r∑

i=1

k∑

j=1

ηijyt−iεt−j , (2.1)

where εt ∼ IIDN(0, σ2), and φi, θj and ηij are unknown parameters. This model is called
a bilinear model with order (p, q, r, k). The bilinear time series models were introduced by
Granger and Anderson [17]. It is a generalization of the linear ARMA model by incorporating
the product term of time series yt−i and innovation εt−j . This bilinear model has attracted
much attention in the recent time series literature. In terms of potential applications, bilinear
models are known to be able to mode occasional outbursts in time series, which might be
useful for modeling seismological data such as records for explosions and earthquakes.

When additive outliers (AO) are present, yt is disturbed and unobservable. In this
case, it is assumed that the observed series {zt} follows

zt = yt + βtδt, (2.2)

where δt’s are independent and identically distributed Bernoulli random variables with
P(δt = 1) = α, and βt’s are random variables from normal distribution. That means that
the observation zt may be AO with probability α; its magnitude is βt at time t.

For simplicity, let s = max{p, r} and assume that y1, . . . , ys are fixed and zt = yt for
t = 1, . . . , s, that is, there exist no outliers in the first s observations. The indicator vector of
outliers then becomes δ = (δs+1, δs+2, . . . , δn)

′ and the size vector is β = (βs+1, βs+2, . . . , βn)
′.

Assume that a vector of residuals ε̂ = (ε̂1, . . . , ε̂n−1)
′ of model (2.1) is available. And

let ε = (ε1, . . . , εn−1)
′, Θ = (φ1, . . . , φp, θ1, . . . , θq, η11, . . . , ηrk)

′, z = (z1, z2, . . . , zn)
′, and
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Φt−1 = (yt−1, . . . , yt−p, ε̂t−1, . . . , ε̂t−q, yt−1ε̂t−1, . . . , yt−r ε̂t−k)
′, where ε̂j denotes the estimation of εj

in model (2.1) without AO. Then the model (2.1) and (2.2) may be transformed as the follows

yt = Θ′Φt−1 + εt,

zt = yt + βtδt.
(2.3)

3. Outliers Detection via Standard Gibbs Sampling

In order to detect outliers in the bilinear model, it is essential to derive the conditional
posterior distributions of parameters Θ,β,δ, α, σ2, δj = 1, and βj .

For computational reason, we give the following conditions: (1) using conjugate
prior distribution for parameters Θ and σ2, which distributed as multidimensional uniform
distribution on [0, 1] region and inverted-Gamma distribution IG(ν/2, νλ/2), respectively.
(2) Assume that the outlier indicator δt and the outlier magnitude βt are independent and
distributed as Bernoulli(α) and N(0, τ2), respectively for all t. (3) The prior distribution
of the contamination parameter α is Beta(γ1, γ2), and (βt)

′s are i.i.d. for all t. (4) The
hyperparameters in our model are λ, ν, γ1, γ2, and τ2, all of which are assumed to be known.

Note that the prior probability of being contaminated by an outlier is the same for all
observations, namely, P(δt = 1) = α, for t = s + 1, . . . , n. Then, under these conditions and by
using the standard Bayesian method, we can obtain the following results.

Theorem 3.1. The conditional posterior distribution of Θ isN(Θ∗, V −1
∗ ), where

Θ∗ = V −1
∗

(∑n
t=s+1 Φt−1yt

σ2

)
, V∗ =

∑n
t=s+1 Φt−1Φ′t−1

σ2
. (3.1)

Proof. Under the conditions above, we have that

p
(
Θ | z,δ,β, α, σ2

)
∝ L

(
Θ, σ2,δ,β, α | z

)
p(Θ)

∝ exp

{
− 1

2σ2

n∑

t=s+1

(
yt −Θ′Φt−1

)2

}

∝ exp

{
− 1

2σ2

[
Θ′

n∑

t=s+1

Φt−1Φ′t−1Θ − 2Θ′
n∑

t=s+1

Φt−1yt +
n∑

t=s+1

y2
t

]}

∝ exp

{
−1

2

[
Θ′

n∑

t=s+1

Φt−1Φ′t−1

σ2
Θ − 2Θ′

∑n
t=s+1 Φt−1yt

σ2
+ Θ∗′

Φt−1Φ′t−1

σ2
Θ∗

]}

...

∝ exp
{
−1

2
(Θ −Θ∗)′V∗(Θ −Θ∗)

}

∼N
(
Θ∗, V −1

∗

)
.

(3.2)

This completes the proof of the theorem.
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Theorem 3.2. (1) The conditional posterior distribution of σ2 is IG((ν + (n − s))/2, (νλ + S
2)/2),

where S
2 =

∑n
t=s+1(yt −Θ′Φt−1)

2.
(2) The conditional distribution of α given the sample and the other parameters is Beta(γ1 +

k, γ2 + n − s − k), where k denotes the number of δj = 1, j = 1, . . . , n.
(3)When δj = 0, there is no new information about the posterior distribution of βj , namely, βj

distributed asN(0, τ2).When δj = 1, since zt contains information of βj , we have that

p
(
βj | z,δ, β(−j),Θ, σ2, α

)
∼N

(
β∗j , τ

∗
j

)
, (3.3)

where β(−j) is obtained β by eliminating the element βj , and β∗j = Aτ2/(Bτ2+σ2), τ∗j = σ2τ2/(Bτ2+

σ2), where A = −
∑Tj

t=j at(1)ϕt−j and B =
∑Tj

t=j ϕ
2
t−j . The proof of this Theorem is very tedious and

similar to that in MuCulloch and Tsay [18]; we omit it here.

Theorem 3.3. For the conditional posterior distribution of δj = 1, we have

p
(
δj = 1 | z, δ(−j),β,Θ, σ2, α

)
=

[
1 +

1 − α
α

B10(j)
]−1

, (3.4)

where δ(−j) is obtained δ by eliminating the element δj , Tj = min{n, j + s}, and

B10
(
j
)
= exp

⎧
⎨

⎩
1

2σ2

⎡

⎣
Tj∑

t=j

a2
t (1) −

Tj∑

t=j

a2
t (0)

⎤

⎦

⎫
⎬

⎭; (3.5)

here at(1) = (yt − Θ′Φt−1)δj=1, at(0) = (yt − Θ′Φt−1)δj=0, and at(0) = at(1) + ϕt−jβj . When s = 0,
then ϕi = 0 for all i; when s > 0, we have that

ϕi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1, i = 0,

φi, i = 1, . . . , s,

0, i ≥ s + 1.

(3.6)
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Proof. The conditional posterior distribution of δj (j = s + 1, . . . , n) is Bernoulli with
probability

p
(
δj = 1 | z, δ(−j),β,Θ, σ2, α

)

=
αL

(
Θ, σ2, δj = 1,β, α | z

)

αL
(
Θ, σ2, δj = 1,β, α | z

)
+ (1 − α)L

(
Θ, σ2, δj = 0,β, α | z

)

=
α exp

{
−
(
1/2σ2)∑Tj

t=j

(
yt −Θ′Φt−1

)2
}

δj=1

α exp
{
−(1/2σ2)

∑Tj
t=j

(
yt−Θ′Φt−1

)2
}

δj=1
+(1−α) exp

{
−(1/2σ2)

∑Tj
t=j

(
yt−Θ′ Φt−1

)2
}

δj=0

=
α

α + (1 − α) exp
{
(1/2σ2)

[∑Tj
t=j [at(1)]

2 −
∑Tj

t=j [at(0)]
2
]}

=
[

1 +
1 − α
α

B10(j)
]−1

.

(3.7)

So the conclusion is obtained.

4. Detection of Outlier Patches via Adaptive Gibbs Sampling

Similar to Justel et al. [5], our procedure also consists of two Gibbs runs. In the first run, the
standard Gibbs sampling based on the results of Section 3 is carried out. The results of this
Gibbs run are then used to implement a second Gibbs sampling that is adaptive in treating
identified outliers and in using block interpolation to reduce possible masking and swamping

effects. Let Θ̂
(m)
, σ̂(m), β̂

(m)
, and α̂(m) be the posterior means of Θ, σ2, β, and α respectively

based on the m iterations of the first Gibbs run. First, we select an appropriate critical value
c1 to identify potential outliers. An observation zj is identified as an outlier if the posterior
probability p̂(m)

j > c1. Let {t1, . . . , tg} be the collection of time indexes of outliers identified by
the first Gibbs run. Second, let c2 (c2 ≤ c1) be another appropriate critical value to specify
the beginning and end points of a potential outlier patch. We select a window of length 2h
around the identified outlier to search for the boundary points of a possible outlier patch by a
forward-backward method. Exampling an identified outlier zti , for the h observations before
zti if their posterior probabilities p̂(m)

j > c2, then these points are regarded as possible outlier
patch associated with zti . We then select the farthest point from zti as the beginning point
of the outlier patch. Denote the point by zti−ki . Then we do the same for the h observations
after zti and select the farthest point from zti with p̂

(m)
j > c2 as the end point of the outlier

patch. Denote the end point by zti+vi . Combine the two blocks to form a possible outlier patch
associated with zti , which is denoted by (zti−ki , . . . , zti+vi). Consecutive or overlapping patches
should be merged to form a larger patch. Lastly, draw Gibbs samples jointly within a patch.
Suppose that a patch of d outliers starting at time index j is specified. Denote the vectors
of outlier indicators and magnitudes by δj,d = (δj , . . . , δj+d−1)

′ and βj,d = (βj , . . . , βj+d−1)
′,
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respectively, associated with the patch. We give the conditional posterior distributions of δj,d
and βj,d in the next proposition; its derivation is similar to Theorem 1 of Justel et al. [5].

Proposition 4.1. Let z = (z1, z2, . . . , zn) be a vector of observations according to (2.3), with no
outliers in the first s data points. Assume δj ∼ Bernoulli(α), j = s + 1, s + 2, . . . , n, and

p
(
Θ, σ2, α,β

)
∝

(
1
σ2

)ν/2+1

αγ1−1(1 − α)γ2−1 exp

{
− 1

2τ2

n∑

t=s+1

(
βt
)2 − υλ

2
1
σ2

}
, (4.1)

where the parameters γ1, γ2, υ, λ, and τ2 are known. Let et(0) = yt −
∑p

i=1 φiyt−i −
∑q

j=1 θj ε̂t−j −∑r
i=1

∑k
j=1 ηijyt−iε̂t−j be the residual at time t when the series is adjusted for all identified outliers not

in the interval [j, j + d − 1] with the outliers identified in δj,d, Tj,d = min{n, j + d + s − 1}, and

et
(
δj,d

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

et(0) +
t−j∑

i=0

πiδt−iβt−i, t = j, . . . , j + d − 1,

et(0) +
t−j∑

i=t−j−d+1

πiδt−iβt−i, t > j + d − 1,
(4.2)

where π0 = −1, πi = φi if i = 1, . . . , s, and πi = 0 if i ≥ s + 1. Then we have the following.

(a) The conditional posterior probability of a block configuration δj,d, given the sample and the
other parameters, is

p
(
δj,d | z, θδj,d

)
= Cαsj,d(1 − α)d−sj,d exp

⎧
⎨

⎩−
1

2σ2

Tj,d∑

t=j

et
(
δj,d

)2

⎫
⎬

⎭, (4.3)

where sj,d =
∑j+d−1

t=j δt, θδj,d denotes all the other parameters except δj,d, and C is a

normalization constant so that the total probability of the 2d possible configurations of δj,d
is one.

(b) The conditional posterior distribution of βj,d given the sample and other parameters is
Nd(β∗j,d,Ω

−1
j,d
), where

β∗j,d = − 1
σ2

Ω−1
j,d

Tj,d∑

t=j

et(0)Dj,dΠt−j ,

Ωj,d =
1
σ2
Dj,d

⎛

⎝
Tj,d∑

t=j

Πt−jΠ′t−j

⎞

⎠Dj,d +
1
τ2
I,

(4.4)

Dj,d = diag{δj , . . . , δj+d−1}, and Πt = (πt, . . . , πt−d+1)
′ with π0 = −1, πi = φi for i = 1, . . . , s, and

πi = 0 for i < 0 or i > s.
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For the second adaptive Gibbs sampling, we use the results of the first Gibbs run to
start the second Gibbs sampling and to specify prior distributions of the parameters. For each
outlier patch, we use the results of Proposition 4.1 to draw δj,d and βj,d in the second Gibbs
sampling, which is also run for m iterations.

The starting values of δt are as follows: δ(0)t = 1 if p̂(m)
t > c2, otherwise, δ(0)t = 0. Then

the prior distributions of βt are as follows.

(a) If zt is identified as an isolated outlier, then the prior distribution of βt isN(β̂(m)
t , τ2),

where β̂(m)
t is the Gibbs estimate of βt from the first Gibbs run.

(b) If zt belongs to an outlier patch, then the prior distribution of βt is N(β̃(m)
t , τ2),

where β̃(m)
t is the conditional posterior mean as follows:

β̃j,d =

⎛

⎝Dj,d

Tj,d∑

t=j

Πt−jΠ′t−jDj,d

⎞

⎠
−1⎛

⎝−
Tj,d∑

t=j

et(0)Dj,dΠt−j

⎞

⎠. (4.5)

(c) If zt does not belong to any outlier patch and is not an isolated outlier, then the
prior distribution of βt is N(0, τ2).

5. Simulated Example and Conclusions

Example 5.1. In the simulations, the designed bilinear model is BL(2,2,1,1) model:

yt = 0.5yt−1 + 0.3yt−2 + εt − 0.34εt−1 − 0.3εt−2 + 0.4yt−1εt−1,

zt = yt + 5δt,31 − 4δt,32 + 5δt,33 − 4δt,34 + 3δt,35 − 6δt,50,
(5.1)

where δt,k is Kronecker symbol: if t = k, then δt,k = 1, else δt,k = 0, and {εt} is standard normal
white noise.

We produce a set of observations of the bilinear model (5.1) by simulation. In order
to obtain stationary data, we produce 1000 observations of yt firstly; then we use the last 100
observations as our simulated sample, in which a patch of five consecutive additive outliers
has been introduced from t = 31 to t = 35, a single AO has been added at t = 50, and the outlier
magnitudes are β31 = 5, β32 = −4, β33 = 5, β34 = −4, β35 = 3, and β50 = −6, respectively.
Figure 1 shows the trend of simulated series {zt}. It is obvious that the curve of observations
had large volatility; it would be very difficult to distinguish between “outliers” and normal
points of nonlinear model.

Let γ1 = 5, γ2 = 95, ν = 3, λ = σ2/2, α = 0.5, τ = 2
√

5σ, and c1 = 0.5. Here γ1 = 5
means that we believe the prior probability of each point is an outlier approximate to 0.05.
First, we detect the outliers in {zt} using the standard Gibbs sampling. We can obtain the
posterior probabilities that each observation is an outlier by using the given methods in
Section 3, which are shown in Figure 2. It displayed that the posterior probabilities of being
outliers only at t = 31 and t = 50 were larger than 0.5. Meanwhile, the outlying posterior
probabilities of other observations were lower; the posterior probability of being an outlier at
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Figure 1: The curve of the simulated observations {zt}
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Figure 2: The posterior probabilities that each point is an outlier via standard Gibbs sampling.

t = 35 was even smaller than 0.2. We see that the standard Gibbs sampling failed to detect the
inner and border points at t = 32, 33, 35, that resulted in the masking effect.

Second, in order to avoid the presence of masking and swamping problem, we use
the method given in Section 4, and take 900 iterations by the adaptive Gibbs algorithm.
Figure 3 gives the plot of the estimated posterior probability that each point is seen as an
outlier via adaptive Gibbs sampling in simulation, where the window width of search was 6.
It is obvious that the posterior probabilities of being an outlier obtained by adaptive Gibbs
algorithm for data points at t = 31, . . . , 35 and t = 50 are larger than 0.5, which meant that
these points were possible outliers. Meanwhile, the outlying posterior probabilities of other
observations are very small. Actually, if we select the critical values c1 = 0.5 and c2 = 0.15, then
we could identify the patch. On the other hand, many normal points like outliers in Figure 1
were not misspecified as outliers because the outlying posterior probabilities of these points
were smaller than 0.2, which shows that the adaptive Gibbs sampling was more effective than
the standard Gibbs sampling in mining the additive outlier patch for bilinear time series.
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Figure 3: The posterior probability that each point is an outlier via adaptive Gibbs algorithm.

Table 1: The simulated results of the model BL(2, 2, 1, 1) via adaptive Gibbs algorithm.

β31 β32 β33 β34 β35 β50

True value 5 −4 5 −4 3 −6
Posterior mean 4.7139 −3.6529 4.1193 −6.9487 4.7747 −2.6025
Standard deviation 0.6211 0.6555 0.6044 0.6374 0.6711 0.5813

Third, the posterior means of the sizes of these outliers are β̂31 = 4.6714, β̂32 = −3.4534,
β̂33 = 4.3176, β̂34 = −6.9497, β̂35 = 5.1142, and β̂50 = −2.2523, respectively.

Furthermore, we did 200 replications for the above simulation. Table 1 gives the
average values of the posterior means of β31, . . . , β35 and β50 and their standard deviations.
In these replications, the isolated outliers were identified by standard and adaptive Gibbs
sampling procedures. Through computing, we find that the standard Gibbs sampling failed
to detect all the outlier patches in 200 replications, but in 179 replications, the adaptive Gibbs
sampling successfully could specify all outliers and patches. On the other hand, we note that
the last three parameters are actually not estimated well by the adaptive Gibbs algorithm in
many replications. Investigating its reason, we think it may be the influence of nonlinearity
or the frontal outliers of patch. Such situation deserves careful investigation in the future.

Since the bilinear series will by itself produce what appears to be outliers, the
detection of the locations of outliers and patches is more difficult, and the estimation of the
magnitude of outliers and patches is more complex than autoregressive series. By a number
of simulations of detecting the outlier patches in bilinear model by adaptive Gibbs sampling,
we discovered that the critical value c2 should be selected smaller than that in ARMA model.
It may be that the variation of bilinear series is larger than that of ARMA series. On the other
hand, in the process of running, the Gibbs sampler was repeated several times with different
hyper-parameters and different numbers of iterations to reanalyze the data. The results show
that the locations of possible outliers and patch are stable, even though the estimated outlying
probabilities may vary slightly between the Gibbs samples. Some other case studies also
show that our procedure could reduce possible masking and swamping effects, which is an
improvement and extension on bilinear time series model over the existing outliers detection
methods.
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