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The purpose of this study is to evaluate the efficiency indices for 60 Brazilian electricity distribution
utilities. These scores are obtained by DEA (Data Envelopment Analysis) and Bayesian Stochastic
Frontier Analysis models, two techniques that can reduce the information asymmetry and improve
the regulator’s skill to compare the performance of the utilities, a fundamental aspect in incentive
regulation schemes. In addition, this paper also addresses the problem of identifying outliers and
influential observations in deterministic nonparametric DEA models.

1. Introduction

In the Brazilian Electrical Sector (SEB, for short), the supply of energy tariffs is periodically
revised within a period of 4 to 5 years, depending on the distributing utility contract. On
the very year of the periodical revision, the tariffs are brought back to levels compatibles
to its operational costs and to guarantee the adequate payback of the investments made by
the utility, therefore, maintaining its Financial and Economical Equilibrium (EEF, for short).
Over the period spanned between two revisions, the tariffs are annually readjusted by an
index named IRT given by

IRT =
VPA1

RA0
+

VPB0(IGPM − X)
RA0

, (1.1)
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where VPA1 stands for the quantity related to the utility nonmanageable costs (acquisition
of energy and electrical sector taxes) at the date of the readjustment, RA0 stands for the
utility annual revenue estimated with the existing tariff (free of the ICMS tax) at the previous
reference date IGPM (market prices index), and VPB0 stands for the quantity related to
the utility manageable costs (labor, third part contracts, depreciations, adequate payback of
invested assets, and working capital) on the previous reference date (VPB0 = RA0 − VPA0).

As shown in (1.1), the nonmanageable costs (VPA) are entirely passed through to the
final tariffs, while the amount related to the manageable costs (VPB) is updated using the
IGPM index discounted by the X factor. This factor applies only to the manageable costs and
constitutes the way whereby the productivity gains of the utilities are shared with the final
consumers due to the tariff reduction they introduce. The National Electrical Energy Agency
(ANEEL) resolution 55/2004 defines the X factor as the combination of the 3 components
(XE, XA, and XC), according to the following expression

X = (XE + XC) × (IGPM − XA) + XA. (1.2)

The component XA accounts for the effects of the application of the IPCA index (prices
to consumer index) on the labor component of the VPB. The XC component is related to
the consumer perceived quality of the utility service and the XE component accounts for the
productivity expected gains of the utility due to the natural growth of its market. The latter
is the most important and its definition is based on the discounted cash flow method of the
forward looking type, in such a way to equal the present cash flow value of the utility during
the period of the revision, added of its residual value, to the utility assets at the beginning of
the revision period. In summary,

A0 =
N∑

t=1

⎡
⎢⎣

(
ROt · (1 − XE)t−1 − Tt − OMt − dt

)
· (1 − g) + dt − It

(1 + rWACC)t

⎤
⎥⎦ +

AN

(1 + rWACC)N
, (1.3)

where N is the period, in years, between the two revisions, A0 is the value of the utility
assets on the date of the revision, AN is the utility assets value at the end of the revision
period, g stands for both; the income tax percentage and the compulsory social contribution
of the utility applied to the utility liquid profit, rWACC is the average capital cost, ROt is the
utility operational revenue, Tt represents the various taxes (PIS/PASEP, COFINS and P&D),
OMt is the operational and maintenance utility costs, It is the amount corresponding to the
investments realized, and dt is the depreciation, all of them are related to year t.

The quantities that form the cash flow in (1.3) are projected according to the criteria
proposed by ANEEL, resolution 55/2004. As an example, the projected operational revenue is
obtained as the product between the predicted marked and the average updated tariff, while
the operational costs (operational plus maintenance, administration, and management costs)
are projected based on the costs of the “Reference Utility”, all are related to the date of the
tariff revision.

To avoid the complexity of the “Reference Utility” approach and in order to produce
an objective way to obtain efficient operational costs, ANEEL envisages the possibility of
using benchmarking techniques, among them, the efficient frontier method, as adopted by
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the same ANEEL to quantify the efficient operational costs of the Brazilian transmission lines
utilities [1]. The frontier is the geometric locus of the optimal production. The straightforward
comparison of the frontier with the position of the utilities allows the quantification of the
amount of improvement each utility should work on in order to improve its performance
with respect to the others.

The international review conducted by Jamasb and Pollitt [2] shows that the most
important benchmarking approaches used in regulation of the electricity services provided
by utilities are based upon Data Envelopment Analysis [3] and Stochastic Frontier Analysis
[4]. As cited in Souza [5], the first method is founded on linear programming, while the
second is characterized by econometric models.

Studying cases of the SEB, authors such as Resende [6], Vidal and Távora Junior [7],
Pessanha et al. [8], and Sollero and Lins [9] have used different DEA models to evaluate the
efficiency of the Brazilian distributing utilities. On the other hand, Zanini [10] and Arcoverde
et al. [11] have also obtained efficient indices for the Brazilian distributing utilities using SFA
models. Recently, Souza [5] has proposed to gauge the cost efficiency using Bayesian Markov
Chain Monte Carlo (MCMC) algorithm.

DEA and SFA approaches have distinct assumptions on their inner concept and
present pros and cons, depending on the specific application. Therefore, there is no such
statement as “the best” overall frontier analysis method.

In order to measure the efficiency (rather than inefficiency), and to make some
interesting interpretations of efficiency across comparable firms, it is recommended to
investigate efficiency indices obtained by several methods on the same data set, as carried
out in the present work, where DEA and Bayesian SFA (BSFA hereafter) models are used to
evaluate the operational costs efficiency of 60 Brazilian distributing utilities.

The paper is organized as follows. In Section 2, the basic concepts of the DEA and
BSFA formulations are discussed. In addition, the Returns to Scale (RTS) question, the
problem of detecting outliers, influential observations and Gibbs Sampler (MCMC) method
are presented. Section 3 comments on the results. Conclusions are given in Section 4.

2. Methodology and Mathematical Models

2.1. The Deterministic DEA Approach

Data Envelopment Analysis is a mathematical programming-based approach for assessing
the comparative efficiency of the set of organisational units that perform similar tasks and
for which inputs and outputs are available. It is meaningful to point out that in the DEA
terminology, those entities are so-called Decision Making Units (DMUs).

The survey by Allen et al. [12] reports that DEA was proposed originally by Farrell
[13] and developed, operationalised, and popularised by Charnes et al. [14]. Ever since, this
technique has been applied in a wide range of empirical work, such as education, banking,
health care, public services, military units, electrical energy utilities, and others institutions.
Zhu [15] describes that one of the reasons for this argumentation could be that DEA has the
ability to measure the relative “technical efficiency” in a multiple inputs and multiple outputs
situation, without the usual information on market prices.

In the framework here (DEA methodology), consider the case where there are nDMUs
to be evaluated. Each DMUj (j = 1, . . . , n) has consumed varying amounts of m different

inputs xj =
[
x1j · · · xmj

]T ∈ Rm
+ to produce s different outputs yj =

[
y1j · · · ysj

]T ∈ Rs
+.
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A set of feasible combinations of input vectors and outputs vector composes the Production
Possibility Set T (PPS, for short), defined by

T =
{
(x,y) ∈ Rm+s

+ | x can produce y
}
. (2.1)

It is informative, here, to stress the study developed by Banker et al. [16]. In short, they
postulated the following properties for the PPS, which are worthwhile

(i) postulate 1. Convexity;

(ii) postulate 2. Ineficiency Postulate;

(iii) postulate 3. Ray Unboundedness;

(iv) postulate 4. Minimum Extrapolation.

Subsequent to some algebraic manipulations under the above-mentioned four
postulates, it is possible to show that the PPS T is given by

T = {(x,y) | x ≥ Xλ, y ≤ Yλ, λ ≥ 0}, (2.2)

where X is the (m × n) input matrix, Y is the (s × n) output matrix, and λ is a semipositive
vector in Rn.

If postulate 3 is removed from the properties of the PPS, it can be verified that

T =
{
(x,y) | x ≥ Xλ, y ≤ Yλ,

−→
1λ = 1, λ ≥ 0

}
, (2.3)

where
−→
1 is the (1 × n) unit vector. A complete presentation of this demonstration, worth

reading, can be found in Forni [17].
Such results lead directly to two seminal DEA models. The first invokes the

assumption of the Constant Returns to Scale (CRS) and convex technology, Charnes et al.
[14]. On the other hand, the second assumes the hypothesis of Variable Returns to Scale
(VRS), Banker et al. [16].

In the following section, methods for measuring Return to Scale (RTS) of the
technology are presented.

2.2. Returns to Scale

As pointed out in Simar and Wilson [18], it is very important to examine whether the
underlying technology exhibits nonincreasing, constant, or nondecreasing RTS. Of course,
large amount of literature has been developed on the problem of testing hypotheses regarding
RTS. For example, Färe and Grosskopf [19] suggested an approach for determining local
RTS in the estimated frontier which involves comparing different DEA efficiency estimates
obtained under the alternative assumptions of constant, variable, or nonincreasing RTS, but
did not provide a formal statistics test of returns to scale. On the other hand, Simar and Wilson
[18], again, discussed various statistics and presented bootstrap estimation procedures.

In some situations, it could be interesting to solve the RTS question by estimating total
elasticity (e). Following Coelli et al. [20], this estimate, certainly attractive from the point of
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view of simplicity, can be computed by using the partial elasticity estimates (Ei). However,
it is easy to verify that this approach will fail in the very general setup of a multioutput and
multiinput scenario.

In terms of the partial elasticity estimates again, (Ei) is given by

Ei =
∂y

∂xi
· xi
y
. (2.4)

From its definition, the total elasticity (e) is expressed as follows:

e = E1 + E2 + · · · + Ei. (2.5)

Once the value of the total elasticity (e) is measured, immediately it is possible
to identify the returns to scale type. Following Coelli et al. [20], three possible cases are
associated with (2.5) as follows:

(i) e = 1 ⇒ Constant Returns to Scale (CRS);

(ii) e > 1 ⇒ Nondecreasing Returns to Scale (NDRS);

(iii) e < 1 ⇒ Nonincreasing Returns to Scale (NIRS).

In conformity with what is mentioned up to here, the next section focuses on how to
find the feasible DEA model based on the resulting total elasticity.

2.3. DEA Models Regarding Returns to Scale

As mentioned above, it is possible to determine the DEA best-practice frontier type through
(e). In this context, let the CRS and VRS DEA models defined in (2.6) and (2.7), respectively,
be

Min{θ | y0 ≤ Yλ, θx0 ≥ Xλ, λ ≥ 0}, (2.6)

Min
{
θ | y0 ≤ Yλ, θx0 ≥ Xλ,

−→
1λ = 1, λ ≥ 0

}
, (2.7)

where λ is a (n × 1) row vector of weights to be computed, x0 is a (m × 1) vector of inputs for
DMU0, and y0 is a (s × 1) vector of outputs for DMU0.

By inspection of (2.6) and (2.7), it is remarkable to notice that the VRS model (BCC
model) differs from the CRS model (CCR model) only in the adjunction of the condition−→
1λ = 1. Cooper et al. [3] point out that this condition, together with the condition λj ≥ 0,
for all j, imposes a convexity condition on allowable ways in which the n DMUs may be
combined.

Based on the appointed comments, it may be found in Zhu [15] that if we replaced−→
1λ = 1 with

−→
1λ ≥ 1, then we would obtain Nondecreasing Returns to Scale (NDRS) model,

alternatively, if we replaced
−→
1λ = 1 with

−→
1λ ≤ 1, then we would obtain Nonincreasing

Returns to Scale (NIRS) model.
With regard to the interpretation of these models, it is straightforward that DEA

minimizes the relative efficiency index (θ) of each DMU0, comparing simultaneously all
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DMUs, subject to the constraints (remember that these constraints are equivalent to (2.2)
and (2.3)).

Given the data, it is necessary to carry out an optimization for each of the n DMUs.
Accordingly, a DMU is said to be fully efficient when θ∗ = 1 and, in this case, it is located on
the efficiency frontier (reference set).

At this point another question arises: DEA models, by construction, are very sensitive
to extreme values and to outliers. Even though Davies and Gather [21] reasoned that the word
outlier has never been given a precise definition, Simar [22] defined an outlier as an atypical
observation or a data point outlying the cloud of data points. This way, it is noteworthy
that the outlier identification problem is of primary importance and it has been investigated
extensively in the literature.

Besides this, it is important to stress that outliers can be considered influential
observations. As stated by Dusansky and Wilson [23], influential observations are those that
result in a dramatic change in parameter estimates when they are removed from the data.
For some interesting discussions about outliers and influential observations, see also Wilson
[24, 25], Pastor et al. [26], and Forni [17].

Herein, it is used to help detecting potential outlier the Wilson [24] method.
This technique generalizes the outlier measure proposed by Andrews and Pregibon [27]
to the case of multiple outputs. Nevertheless, as is seen from Wilson [25], it becomes
computationally infeasible as the number of observations and the dimension of the input-
output space increases.

This discussion ends by assuming that these very rich results obtained will be
extended in the BSFA context.

2.4. The Statistical Model

The stochastic frontier models (also known in literature as composed error models) were
independently introduced by Meeusen and van den Broeck [28], Aigner et al. [29], and
Battese and Corra [30] and have been used in numerous empirical applications. Some of
the advantages of this approach are (a) identifying outliers in the sample; (b) considering
nonmanageable factors on the efficiency measurement.

Unfortunately, this method may be very restrictive because it imposes a functional
form for technology.

This article uses a stochastic frontier model in Bayesian point of view. This technique
allows to realize inference from data using probabilistic models for both quantities observed
as for those not observed. Another feature of the BSFA framework is to enable the expert to
include his previous knowledge in the model studied. For these reasons, Bayesian models
are considered more flexible and thus, in most cases, they are not treatable analytically. To
circumvent this problem, it is necessary to use simulation methods. The most used are the
Markov Chain Monte Carlo (MCMC) methods.

2.4.1. Bayesian Stochastic Cost Frontier

The econometric model with composed error for the estimation of the stochastic cost frontier
can be mathematically expressed as follows:

yj = h
(
xj ;β

)
exp
(
vj + uj

)
. (2.8)
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Assuming that h(xj ;β) is linear on the logarithm, the following model is obtained after
the application of a log transformation in (2.8):

lnyj = β0 +
m∑

i=1

βi lnxji +
m∑

i≤k

m∑

k=1

βik lnxji lnxjk + vj + uj. (2.9)

The equation (2.9) is called in literature as Translog function. When the crossed
products are null, there is a particular case called Cobb-Douglas function. With this
information, the deterministic part of the frontier can be defined as follows:

(i) lnyj—natural logarithm of the output of the jth DMU (j = 1, . . . , n);

(ii) lnxji—natural logarithm of the ith input of the jth DMU (including the intercept);

(iii) β =
[
β0 β1 · · · βm

]T
—a vector of unknown parameters to be estimated.

In (2.9), the deviation between the observed production level and the determinist part
of the frontier is given by the combination of two components: uj , an error that can only take
nonnegative values and capture the effect of the technical inefficiency, and vj , a symmetric
error that captures any nonmanageable random shock. The hypothesis of symmetry of the
distribution of vj is supported by the fact that environmental favorable and unfavorable
conditions are equally probable.

It is worthwhile to consider that vj is independent and identically distributed (i.i.d,
in short) with symmetric distribution, usually a Gaussian distribution, and that it is
independent of uj . Taking into account the component uj (uj ≥ 0 ), this is not evident
and thus can be specified by several ways. For example, Meeusen and van den Broeck
[28] used the Exponential distribution, Aigner et al. [29] recommended the Half-Normal
distribution, Stevenson [31] proposed the Truncated Normal distribution, and finally Greene
[32] suggested the Gamma distribution. More recently, Medrano and Migon [33] used the
Lognormal distribution. The uncertainty related to the distribution of the random term u as
well as the frontier function suggests the use of Bayesian inference techniques, as presented
in pioneer works of van den Broeck et al. [34] and Koop et al. [35].

To this end, the sampling distribution is initially formulated. For example, considering

the random term vj
iid∼ N(0, σ2), that is, the Normal distribution with mean 0 and variance σ2

and uj
iid∼ Γ(1, λ−1) ( Γ(·): Gamma function.), that is, uj

iid∼ exp(λ−1), the joint distribution of yj

and uj , given xj and the vector of parameters ψ (ψ =
[
βT σ2 λ−1

]T
) is given by

p
(
yj , uj | xj , ψ

)
=N

(
yj | h

(
xj ;β

)
+ uj, σ2

)
· Γ
(
uj | 1, λ−1

)
. (2.10)

Integrating (2.10) with respect to uj , one arrives at the sampling distribution

p
(
yj | xj , ψ

)
= λ−1 · exp

[
−λ−1

(
mj +

1
2
σ2λ−1

)]
Φ
(mj

σ

)
, (2.11)

where mj = yj−h(xj ; β)−σ2λ−1 and Φ(·) is the cumulative distribution function for a standard
normal random variable.
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To use the Bayesian approach, prior distributions are added to the parameters and,
following the hierarchical modeling, posterior distributions are given. In principle, prior
distribution of ψ may be any. However, it is usually nonadvisable to incorporate much
subjective information on them and, in this case, appropriate prior specifications for the
parameters need to be included. Here, consider the following prior distributions:

β ∼N+
(

0, σ2
β

)
,

σ−2 ∼ Γ
(n0

2
,
c0

2

)
,

(2.12)

(N+(·, ·): Truncated Normal distribution.)
According to Fernández et al. [36], it is essential that prior distribution σ−2 is

informative (n0 > 0 and c0 > 0) in order to ensure the existence of posterior distribution
in stochastic frontier model with cross-section sample.

Following, in some cases, it is reasonable to identify similar characteristics among the
companies evaluated and then, for including these information in the model, this procedure
can be performed specifying for each of DMUs, a vector sj consisting of sjl (l = 1, . . . , k)
exogenous variables. For these cases, Osiewalski and Steel [37] proposed the following
parameterization for the average efficiency:

λj =
k∏

l=1

φ
−sjl
l
, (2.13)

where φl > 0 is the unknown parameters and, by construction, sj1 ≡ 1. If sjl are dummy
variables and k > 1, the distributions of uj may differ for different j. Thus, Koop et al.
[38] called this specification as Varying Efficiency Distribution model (VED, in short). If
k = 1, then λj = φ−1

1 and all terms related to inefficiencies are independent samples of the
same distribution. Again, according to Osiewalski and Steel [37], this is a special case called
Common Efficiency Distribution model (CED, in short).

Regarding to priori distribution of k parameters of the efficiency distribution, Koop et
al. [38] suggested using φl ∼ Γ(al, gl) with al = gl = 1 for l = 2, . . . , k, a1 = 1, and g1 = − ln(r∗),
where r∗ ∈ (0, 1) is the hyperparameter to be determined. According to van den Broeck et al.
[4], in the CED model, r∗can be interpreted as prior median efficiency. Proceeding this way,
it could be ensured that the VED model is consistent with the CED model.

In agreement with the above, it is important to present posterior full conditional
distributions of parameters involved in the model

p
(
σ−2 | yj , xj , sj, uj ,β, φ

)
= p
(
σ−2 | yj , xj , uj ,β

)
= Γ

⎛

⎝(n + n0)
2

,
c0 +

∑
j

(
yj − h

(
xj ;β

) − uj
)2

2

⎞

⎠,

p
(
β | yj, xj , sj , uj , σ−2, φ

)
= p
(
β | yj , xj , uj , σ−2

)
∝N+

(
β | 0, σ−2

β

)

× exp

⎛

⎝−1
2
σ−2
∑

j

(
yj − h

(
xj ;β

) − uj
)2

⎞

⎠.

(2.14)
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The posterior full conditional distribution of φl (l = 1, . . . , k) presents the following
general form:

p
(
φl | yj, xj , sj , uj ,β, σ−2, φ(−l)

)
= p
(
φl | sj , φ(−l)

) ∝ exp

⎛

⎝−φ1

∑

j

ujDj1

⎞

⎠

× Γ

⎛

⎝φj | 1 +
∑

j

sjl, gl

⎞

⎠,

(2.15)

where

Djl =
k∏

j /= l

φ
sjl
j . (2.16)

For l = 1, . . . , k (Dj1 = 1 for k = 1), and φ(−l) denotes φ without its lth element.
With regard to inefficiencies, it can be shown that they are distributed as a Truncated

Normal distribution

p
(
uj | yj , xj , sj ,β, σ−2, φ

)
=

[
Φ

(
h
(
xj ;β

) − yj − λjσ2

σ

)]−1

×N
(
uj | h

(
xj ;β

) − yj − λjσ2, σ2
)
.

(2.17)

As the posterior full conditional distribution for u is known, Gibbs sampler could be
used to generate observations of the joint posterior density. These observations could be used
to make inferences about the unknown quantities of interest. It is worth remembering that
the technical efficiency of each DMU is determined making θj = exp(−uj).

2.4.2. The Gibbs Sampler (MCMC) Algorithm

According to Gamerman [39], the Gibbs sampler was originally designed within the context
of reconstruction of images and belongs to a large class of stochastic simulation schemes that
use Markov chains. Although it is a special case of Metropolis-Hastings algorithm, it has two
features, namely.

All the points generated are accepted.
There is a need to know the full conditional distribution.
The full conditional distribution is the distribution of the ith component of the vector

of parameters ψ, conditional on all other components.
Again referring to Gamerman [39], the Gibbs sampler is essentially a sampling

iterative scheme of a Markov chain, whose transition kernel is formed by the full conditional
distributions.

To describe this algorithm, suppose that the distribution of interest is p(ψ), where
ψ = (ψ1, . . . , ψd). Each of the components ψi can be a scalar, a vector, or a matrix. It should
be emphasized that the distribution p does not, necessarily, need to be an a posteriori
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Table 1: Input and Outputs variables.

Type Variable Description

Input (DEA) or dependent (BSFA) OPEX Operational Expenditure (R$ 1.000).

Output (DEA) or independent (BSFA)
MWh Energy distributed.

NC Units consumers.

KM Network distribution length.

distribution. The implementation of the algorithm is done according to the following steps
[39]:

(i) initialize the iteration counter of the chain t = 1 and set initial values

ψ(0) =
(
ψ
(0)
1 , . . . , ψ

(0)
d

)
, (2.18)

(ii) obtain a new value ψ(t) = (ψ(t)
1 , . . . , ψ

(t)
d
) from ψ(t−1) through successive generation

of values

ψ
(t)
1 ∼ p

(
ψ1 | ψ(t−1)

2 , . . . , ψ
(t−1)
d

)
,

ψ
(t)
2 ∼ p

(
ψ2 | ψ(t)

1 , ψ
(t−1)
3 , . . . , ψ

(t−1)
d

)
,

...

ψ
(t)
d ∼ p

(
ψd | ψ(t)

1 , . . . , ψ
(t)
d−1

)
,

(2.19)

(iii) change counter t to t + 1 and return to step (ii) until convergence is reached.

Thus, each iteration is completed after d movements along the coordinated axes of
components of ψ. After convergence, the resulting values form a sample of p(ψ). Ehlers
[40] emphasizes that even in problems involving large dimensions, univariate or block
simulations are used which, in general, is a computational advantage. This has contributed
significantly to the implementation of this methodology, especially in applied econometrics
area with Bayesian emphasis.

3. Experimental Results and Interpretation

To evaluate the efficiency, the utilities have been characterized by the 4 indicators marked
in Table 1. The products are the cost drivers of the operational costs. The amount of energy
distributed (MWh) is a proxy of the total production, the number of consumer units (NC) is a
proxy for the quantity of services provided, and the grid extension attribute (KM) reflects the
spread out of consumers within the concession area, an important element of the operational
costs.

By now, it is useful to start for identifying the outliers among the utilities. This
analysis was performed using FEAR 1.11 (a software library that can be linked to the
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Figure 1: Log-Ratio Plot (Wilson [24] method).

general-purpose statistical package R), (The FEAR package is available at: http://www
.economics.clemson.edu/faculty/wilson/Software/FEAR), and it is illustrated in Figure 1.
In line with the study provided by Wilson [24], the log ratio plot showed in Figure 1 suggests
four groups of outliers (see peaks when 1, 4, 7, and 12).

Hence, the following utilities are regarded as outliers: CEEE, PIRATININGA,
BANDEIRANTES, CELESC, CELG, CEMAT, CEMIG, COPEL, CPFL, ELETROPAULO,
ENERSUL, and LIGHT. It can be observed that this technique has classified the utilities
with the largest markets, with geographical concentration and a strong industrial share
of participation, for instance, BANDEIRANTES, CEMIG, COPEL, CPFL, ELETROPAULO,
ENERSUL, and LIGHT.

Results concerning the measurement of efficiency were obtained by NIRS DEA models
because the total elasticity (e) is less than 1 (report to Sections 2.2 and 2.3).

The scores calculated, using the DEA Excel Solver developed by Zhu [15], for each of
the 60 DMUs, are exhibited in Table 2.

By analyzing the scores obtained by M1 in Table 2, it can be observed that
nine companies are on the best-practice frontier. Note also that seven (PIRATININGA,
BANDEIRANTES, CEMIG, COPEL, CPFL, ELETROPAULO, and ENERSUL) were labeled as
outliers. As shown in Souza et al. [41], these observations influence efficiency measurement
for other DMUs in the sample. Given this information, it is meaningful to emphasize that
these seven utilities can be considered influential observations.

In addition, to be useful for regulatory policy purposes and in line with the literature
(see, e.g., Førsund et al. [42], Pitt and Lee [43], Coelli and Battese [44]), it is interesting to
realize an investigation of the sources of inefficiency.

Zhu [15, pages 258–259] suggests a procedure for identifying critical output measures
through the following super-efficiency model, where the dth output is given as the pre-
emptive priority to change

Max

⎧
⎪⎪⎨

⎪⎪⎩
σd |

n∑

j=1
j /= 0

λjydj ≥ σdyd0,
n∑

j=1
j /= 0

λjyrj ≥ yr0 (r /=d),
n∑

j=1
j /= 0

λjxij ≤ xi0,
n∑

j=1
j /= 0

λj = 1

⎫
⎪⎪⎬

⎪⎪⎭
(3.1)

where r = 1, . . . , s.
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Table 2: Efficiency scores (θj).

DMU name Input oriented NIRS
efficiencies (M1)

Bayesian efficiencies
(M2)

S.D 2,5% Median 97,5%

AES-SUL 1,000 0,934 0,061 0,773 0,951 0,998

CEAL 0,603 0,788 0,137 0,504 0,801 0,990

CEEE 0,273 0,526 0,175 0,275 0,491 0,939

CELPA 0,362 0,584 0,174 0,317 0,554 0,957

CELTINS 0,377 0,628 0,171 0,349 0,608 0,968

CEPISA 0,657 0,761 0,146 0,472 0,771 0,988

CERON 0,431 0,720 0,157 0,427 0,719 0,984

COSERN 0,832 0,888 0,091 0,662 0,910 0,996

ENERGIPE 0,698 0,873 0,100 0,634 0,895 0,996

ESCELSA 0,680 0,893 0,088 0,675 0,914 0,997

MANAUS 0,381 0,723 0,160 0,419 0,725 0,985

PIRATININGA 1,000 0,913 0,075 0,722 0,934 0,997

RGE 0,997 0,927 0,065 0,758 0,945 0,998

SAELPA 0,881 0,850 0,111 0,593 0,872 0,995

BANDEIRANTES 1,000 0,851 0,113 0,587 0,875 0,995

CEB 0,287 0,573 0,176 0,305 0,542 0,957

CELESC 0,576 0,784 0,139 0,496 0,798 0,990

CELG 0,532 0,703 0,162 0,406 0,700 0,982

CELPE 1,000 0,889 0,091 0,666 0,910 0,996

CEMAR 0,675 0,753 0,149 0,462 0,761 0,988

CEMAT 0,458 0,708 0,161 0,413 0,706 0,983

CEMIG 1,000 0,847 0,114 0,581 0,870 0,994

CERJ 0,744 0,834 0,120 0,566 0,856 0,994

COELBA 0,757 0,805 0,132 0,522 0,824 0,992

COELCE 0,795 0,845 0,114 0,581 0,867 0,994

COPEL 1,000 0,892 0,089 0,670 0,914 0,997

CPFL 1,000 0,892 0,088 0,673 0,914 0,997

ELEKTRO 0,968 0,907 0,079 0,709 0,928 0,997

ELETROPAULO 1,000 0,781 0,146 0,476 0,799 0,991

ENERSUL 1,000 0,866 0,104 0,618 0,888 0,995

LIGHT 0,856 0,816 0,131 0,525 0,837 0,993

BOA VISTA 0,190 0,466 0,169 0,240 0,425 0,901

BRAGANTINA 0,433 0,834 0,118 0,569 0,854 0,993

CAUIÁ 0,449 0,772 0,142 0,487 0,783 0,989

CAT-LEO 0,611 0,832 0,120 0,563 0,852 0,993

CEA 0,315 0,638 0,171 0,355 0,619 0,970

CELB 0,706 0,879 0,096 0,646 0,902 0,996

CENF 0,505 0,794 0,135 0,510 0,810 0,991

CFLO 0,521 0,856 0,109 0,599 0,878 0,995

CHESP 0,807 0,871 0,102 0,624 0,894 0,996

COCEL 0,508 0,881 0,095 0,652 0,903 0,996
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Table 2: Continued.

DMU name Input oriented NIRS
efficiencies (M1)

Bayesian efficiencies
(M2)

S.D 2,5% Median 97,5%

CPEE 0,516 0,876 0,098 0,638 0,898 0,996
CSPE 0,621 0,900 0,083 0,692 0,920 0,997
DEMEI 0,621 0,857 0,109 0,600 0,879 0,995
ELETROACRE 0,570 0,799 0,133 0,518 0,815 0,991
ELETROCAR 0,479 0,855 0,110 0,598 0,877 0,995
JAGUARI 0,594 0,868 0,103 0,624 0,890 0,995
JOÃO CESA 0,493 0,882 0,097 0,643 0,905 0,996
MOCOCA 0,501 0,856 0,109 0,601 0,878 0,995
MUXFELDT 0,760 0,913 0,076 0,718 0,934 0,997
NACIONAL 0,588 0,849 0,113 0,588 0,872 0,994
NOVA PALMA 0,721 0,913 0,076 0,720 0,934 0,998
PANAMBI 0,375 0,791 0,137 0,505 0,807 0,990
POÇOS DE CALDAS 0,662 0,851 0,111 0,592 0,872 0,994
SANTA CRUZ 0,483 0,826 0,122 0,558 0,846 0,993
SANTA MARIA 0,573 0,849 0,112 0,590 0,871 0,995
SULGIPE 0,812 0,869 0,102 0,625 0,892 0,996
URUSSANGA 0,268 0,665 0,170 0,369 0,654 0,976
V. PARANAPANEMA 0,398 0,746 0,149 0,458 0,752 0,987
XANXERÊ 0,315 0,761 0,146 0,468 0,770 0,988

Four possible cases are associated with (3.1): (i) σ∗
d > 1, (ii) σ∗

d = 1, (iii) σ∗
d < 1, and

(iv) model defined in (3.1) is infeasible. In sum, the critical output is identified as the output
associated with max{σ∗

d
} for efficient DMUs and min{σ∗

d
} for inefficient DMUs.

In conformity with what has been already exposed, Table 3 indicates to each DMU0,
which is the most critical output measure that contributes to its inefficiency.

With respect to CEMIG and COPEL, these utilities do not present critical output
measures because no feasible solution is found by solving (3.1). In short, such analysis can
offer a first and reliable tool for tracing bad outputs.

Now, from a econometric standpoint, it is important to attribute a specification for the
cost frontier. To this end, a Cobb-Douglas functional form was adopted, which is defined by

ln OPEXj = β0 + β1 ln MWhj + β2 ln NCj + β3 ln KMj + vj + uj. (3.2)

By the way, initially the CED Bayesian model is carried out using the free software
WinBUGS (Bayesian inference Using Gibbs Sampling for Windows) that can be downloaded
at http://www.mrc-bsu.cam.ac.uk/bugs/Welcome.htm.

As mentioned in Section 2.4.1, it is useful that the expert incorporates information on
companies to the model. Accordingly, by inspection of M1 in Table 2, it is possible to obtain
the following: prior median efficiency, that is, r∗ = 0, 620.

In this context, a simple summary (see Table 2) can be generated showing posterior
mean, median, and standard deviation with a 95% posterior credible interval. Concerning
the results summarized in M2 of Table 2, these reveal that the most efficiency scores are
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Table 3: Critical output measures.

OUTPUTS
MWh NC KM

DMU name

AES-SUL ELETROPAULO PIRATININGA
BANDEIRANTES CEAL CELPE

CPFL CEEE ENERSUL
ESCELSA CELPA CELTINS
MANAUS CEPISA CELG

RGE CERON CEMAT
CELESC COSERN CAT-LEO

ELEKTRO ENERGIPE CHESP
LIGHT SAELPA COCEL

BOA VISTA CEB CPEE
BRAGANTINA CEMAR CSPE

CFLO CERJ ELETROCAR
JAGUARI COELBA NOVA PALMA

JOÃO CESA COELCE POÇOS DE CALDAS
URUSSANGA CAUIÁ SANTA CRUZ

CEA SANTA MARIA
CELB SULGIPE
CENF XANXERÊ

DEMEI
ELETROACRE

MOCOCA
MUXFELDT
NACIONAL
PANAMBI

V. PARANAPANEMA

considerably higher than for the M1. This is due to the fact that the Exponential distribution is
a bit inflexible in that it is a single-parameter distribution and it has a mode at zero. As such,
it is also convenient to develop an alternative specification of the stochastic frontier model
(e.g., see two parameter Gamma distribution, Greene [32]), but that is beyond the scope of
this paper.

It is now the case of examining how much the outlier DMUs affect the efficiency
measured for remaining DMUs. Thus, two NIRS DEA models are applied to each one of
the groups of observations consisting of outliers (12 utilities) and not outliers (48 utilities). Of
course, this consideration must be attributed to the Bayesian model through dummy variable.
As previously seen in Section 2.4.1, this characterization refers to the VED Bayesian model.
Accordingly, all the results obtained are showed in Table 4.

The comparison of the two DEA methods that have been studied so far allows the
following two remarks:

(i) if the efficient reference set is changed, the spanned frontier changes and,
consequently, the efficiency scores;

(ii) M3 has performed better than M1, since this model appraises much more efficient
DMUs.
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Table 4: Adjusted efficiencies (θ•j ).

DMU name Adjusted input oriented
NIRS efficiencies (M3)

Bayesian efficiencies
(M4)

S.D 2,5% Median 97,5%

AES-SUL 1,000 0,977 0,031 0,888 0,988 1,000

CEAL 0,605 0,787 0,134 0,510 0,800 0,990

CEEE 0,295 0,515 0,156 0,288 0,487 0,910

CELPA 0,362 0,573 0,160 0,325 0,548 0,941

CELTINS 0,457 0,610 0,160 0,349 0,589 0,956

CEPISA 0,678 0,757 0,142 0,476 0,764 0,987

CERON 0,503 0,714 0,151 0,432 0,711 0,980

COSERN 0,835 0,890 0,089 0,670 0,912 0,996

ENERGIPE 0,698 0,874 0,099 0,638 0,895 0,996

ESCELSA 0,682 0,897 0,086 0,684 0,918 0,997

MANAUS 0,381 0,719 0,153 0,429 0,718 0,983

PIRATININGA 1,000 0,973 0,367 0,867 0,987 0,998

RGE 1,000 0,976 0,033 0,881 0,988 1,000

SAELPA 0,889 0,851 0,110 0,595 0,873 0,995

BANDEIRANTES 1,000 0,964 0,052 0,812 0,984 1,000

CEB 0,287 0,558 0,160 0,313 0,531 0,939

CELESC 0,595 0,794 0,132 0,517 0,808 0,990

CELG 0,533 0,708 0,153 0,426 0,705 0,979

CELPE 1,000 0,969 0,043 0,843 0,986 1,000

CEMAR 0,688 0,755 0,143 0,470 0,760 0,986

CEMAT 0,485 0,706 0,153 0,423 0,709 0,979

CEMIG 1,000 0,964 0,051 0,814 0,984 1,000

CERJ 0,744 0,841 0,114 0,582 0,861 0,994

COELBA 0,758 0,813 0,126 0,539 0,830 0,992

COELCE 1,000 0,963 0,053 0,806 0,984 1,000

COPEL 1,000 0,970 0,041 0,852 0,986 1,000

CPFL 1,000 0,970 0,041 0,852 0,986 1,000

ELEKTRO 1,000 0,972 0,038 0,864 0,987 1,000

ELETROPAULO 1,000 0,954 0,069 0,742 0,982 1,000

ENERSUL 1,000 0,966 0,049 0,824 0,985 1,000

LIGHT 0,856 0,826 0,123 0,551 0,846 0,993

BOA VISTA 0,190 0,431 0,148 0,235 0,399 0,840

BRAGANTINA 0,433 0,829 0,119 0,567 0,848 0,993

CAUIÁ 0,449 0,764 0,140 0,482 0,770 0,987

CAT-LEO 0,841 0,831 0,119 0,566 0,851 0,994

CEA 0,315 0,614 0,161 0,350 0,594 0,957

CELB 0,706 0,876 0,097 0,642 0,899 0,996

CENF 0,505 0,780 0,137 0,499 0,792 0,989

CFLO 0,521 0,848 0,112 0,589 0,869 0,994

CHESP 1,000 0,965 0,049 0,819 0,985 1,000

COCEL 0,509 0,874 0,098 0,640 0,896 0,996
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Table 4: Continued.

DMU name Adjusted input oriented
NIRS efficiencies (M3)

Bayesian efficiencies
(M4)

S.D 2,5% Median 97,5%

CPEE 0,536 0,871 0,099 0,635 0,892 0,996
CSPE 0,645 0,897 0,086 0,685 0,919 0,997
DEMEI 0,621 0,843 0,115 0,575 0,865 0,994
ELETROACRE 0,570 0,789 0,133 0,510 0,801 0,990
ELETROCAR 0,526 0,845 0,133 0,587 0,866 0,994
JAGUARI 0,594 0,861 0,106 0,613 0,883 0,996
JOÃO CESA 0,493 0,866 0,106 0,610 0,890 0,995
MOCOCA 0,501 0,847 0,112 0,589 0,868 0,994
MUXFELDT 0,760 0,906 0,080 0,703 0,927 0,997
NACIONAL 0,588 0,842 0,115 0,580 0,863 0,994
NOVA PALMA 0,830 0,909 0,078 0,711 0,929 0,997
PANAMBI 0,375 0,767 0,142 0,479 0,776 0,988
POÇOS DE CALDAS 1,000 0,963 0,054 0,802 0,984 1,000
SANTA CRUZ 0,511 0,822 0,122 0,556 0,840 0,993
SANTA MARIA 0,719 0,843 0,114 0,585 0,863 0,994
SULGIPE 0,915 0,863 0,105 0,614 0,886 0,995
URUSSANGA 0,268 0,624 0,166 0,348 0,606 0,965
V. PARANAPANEMA 0,407 0,734 0,147 0,455 0,736 0,984
XANXERÊ 0,325 0,740 0,147 0,456 0,742 0,984

Similarly, checking on both M2 and M4, it is remarkable that the parametric nature
of BSFA is found to be substantially less sensitive to outliers due to stochastic errors to be
considered in this analysis.

Once the models are assessed, it is instructive to compute the Pearson correlation
coefficients as well as the Spearman rank-order correlation coefficients among them. These
results, statistically significant at the 5% level, are plotted in Figure 2.

Before concluding this section, it is easy to see that the histogram density in Figure 3
shows that the DEA distributions are approximately symmetrically distributed while the
BSFA are distributions positively skewed. Again by looking in Figure 3, it is noticeable that
big changes have occurred in the order of the distributions (DEA and BSFA). This situation
is due to the assessment of outliers (e.g., inclusion of dummy variable on the BSFA model).
Another interesting question concerns with the relationship between DEA and BSFA that is
considerably somewhat nonlinear.

A final observation that has not been made here is that in all two Bayesian models, the
chain was run with a burn-in of 20.000 iterations with 50.000 retained draws and a thinning
to every 7th draw. The estimated coefficients (see Table 5) are significant and the analysis of
convergence of parameters was accomplished through serial autocorrelation graphs.

4. Conclusions

The measurement of efficiency obtained by the DEA and Bayesian SFA model should express
the reduction in operational costs. In accordance with that has been already exposed, the
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Figure 2: Pearson and Spearman rank correlations for estimates of 4 models.
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Figure 3: Scatterplot of inefficiencies from 4 models.

potential reduction of the operational costs for the jth utility, that is, the operational cost
recognized by the regulator, is equal to OPEXj × (1 − θj).

Accordingly, it is interesting that the analyst investigates the presence of outliers and
influential points because they can affect the DEA scores. In the current paper, this issue has
been dealt with, besides identifying critical output measures for each utility. In addition, it
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Table 5: Estimated BSFA (Credible interval in parentheses).

Parameter M2 M4

β0 −1, 869 (−2, 569; 1,162) −2,050 (−2,691; 1,394)

β1 0,079 (0,002; 0,256) 0,085 (0,002; 0,265)

β2 0,202 (0,087; 0,314) 0,203 (0,101; 0,304)

β3 0,582 (0,548; 0,616) 0,592 (0,561; 0,623)

λ 4,514 (2,478; 8,790) —

σ2 16,29 (7,62; 33,15) 16,72 (8,525; 28,450)

φ1 — 0,282 (0,129; 0,449)

φ2 — 0,143 (0,003; 0,5178)

can be ascertained that the conjoint analysis of DEA and Stochastic Frontier in the Bayesian
approach is fundamental. Indeed, this is demonstrated through easy incorporation of prior
ideas and formal treatment of parameter and model uncertainty. An important aspect of BSFA
is the calculation of the credible interval for the points estimated of technical efficiency.

Finally, further studies include using cluster analysis to find groups of similarity
among the Brazilian electricity distribution utilities, so that the definition of frontier efficiency
respects the heterogeneity of electricity sector in Brazil. Also, it is convenient to apply
nonradial DEA techniques, different functional forms of the cost function, as well as other
distributions to capture the effect of the technical inefficiency.

As a result, it is possible to draw conclusions of major significance for regulatory policy
purposes.
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da análise envoltória de dados com restrições aos pesos,” in Proceedings of the 36th Simpósio Brasileiro
de Pesquisa Operacional (SOBRAPO ’04), São João Del Rei, Brazil, 2004.
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