
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 598910, 28 pages
doi:10.1155/2010/598910

Research Article
Computing the Discrete Compactness
of Orthogonal Pseudo-Polytopes via Their
nD-EVM Representation

Ricardo Pérez-Aguila

Computer Engineering Institute, The Technological University of the Mixteca (UTM),
Carretera Huajuapan-Acatlima Km. 2.5, Huajuapan de León, 69000 Oaxaca, Mexico

Correspondence should be addressed to Ricardo Pérez-Aguila, ricardo.perez.aguila@gmail.com

Received 17 February 2010; Accepted 1 July 2010

Academic Editor: Mohammad Younis

Copyright q 2010 Ricardo Pérez-Aguila. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

This work is devoted to present a methodology for the computation of Discrete Compactness
in n-dimensional orthogonal pseudo-polytopes. The proposed procedures take in account
compactness’ definitions originally presented for the 2D and 3D cases and extend them directly
for considering the nD case. There are introduced efficient algorithms for computing discrete
compactness which are based on an orthogonal polytopes representation scheme known as the
Extreme Vertices Model in the n-Dimensional Space (nD-EVM). It will be shown the potential of
the application of Discrete Compactness in higher-dimensional contexts by applying it, through
EVM-based algorithms, in the classification of video sequences, associated to the monitoring
of a volcano’s activity, which are expressed as 4D orthogonal polytopes in the space-color-time
geometry.

1. Introduction

In areas such as image processing, pattern recognition, and computer vision, there is required
to characterize for a given object its topological and geometrical factors. They have a
paramount role in more elaborated tasks such as those related to classification, indexing,
or comparison. Some of these factors describe the shape of an object. One of them, and one
of the most used, is the shape compactness [1]. The shape compactness of an object refers
to a measure between the object and an ideal object [2]. In the 2D euclidean space, shape
compactness is usually computed via the well-known ratio

C =
P 2

4πA
, (1.1)

2 Mathematical Problems in Engineering

X2

X1

(a) Perimeter: 32 u, Area: 64 u2

X2

X1

(b) Perimeter: 58 u, Area: 64 u2

Figure 1: Polygons defined by the union of 64 unitary boxes.

where P is the perimeter of an object and A its area. Such ratio has its origins in the
isoperimetric inequality:

P 2 ≥ 4πA. (1.2)

It is actually the solution to the isoperimetric problem which states the question related to
find the simple closed curve that maximizes the area of its enclosed region [3]. The equality is
obtained when the considered curve is a circle. Hence, as pointed out in [1], the ratio for shape
compactness is in effect comparing an object with a circle. In the 3D space the isoperimetric
inequality is given by

A3 ≥ 36πV 2, (1.3)

where A is the area of the boundary of a 3D object while V is its volume. Hence, the ratio

C =
A3

36πV 2
(1.4)

denotes shape compactness of a 3D object, and it effectively is comparing such object with a
sphere.

As [1, 4] point out, these classical ratios are very sensitive to variations in the shape of
an object. Moreover, they point out, when the above definitions are applied to objects defined
via pixelizations (in the 2D case) or voxelizations (3D case), that small changes in the final
object’s boundary produce more important variations in the computed values. Consider, for
example, the sets of boxes presented in Figure 1. The square described by the union of the
boxes shown in Figure 1(a) has a perimeter of 32 u while its area is 64u2. Figure 1(b) shows
a polygon that can be seen as a modified version (because of noise, artifacts, digitalization
scheme, etc.) of the previous one. Its perimeter is given by 58 u. Both polygons have the same
area, but their shapes have some slight differences. Shape compactness for the first polygon
is given by 1.2732 while for the second is 4.1827. These values are significantly distinct, and

Mathematical Problems in Engineering 3

by considering shape compactness as a rule for classification, this could imply that they are
very different objects.

In order to provide a solution to the above problem, Bribiesca, in [1, 5], defined the
Discrete Compactness. It has its foundation on the notion of counting the number of edges (in
the 2D case) and faces (in the 3D case) which are shared between pixels or voxels, according
to the case, that define an object. Discrete Compactness is given by the following expression
[1, 5]:

CD

(
p
)
=
LC
(
p
) − LCmin

LCmax − LCmin

, (1.5)

where

(i) LC(p) is the number of shared edges (faces) within an object p of m pixels (voxels)

(ii) LCmax is the the maximum number of shared edges (faces) achieved with an object
consisting of m pixels (voxels)

(iii) LCmin is the minimum number of shared edges (faces) achieved with an object
consisting of m pixels (voxels)

(iv) CD(p) ∈ [0, 1].

In [1] there are used, for the 2D case, LCmax = 2(m − √
m) and LCmin = m − 1, which,

respectively, describe the maximum and minimum number of internal contacts (shared
edges) between the m pixels forming a squared object. It is clear, in this case, when CD(p) = 1
the object p corresponds to a square of sides

√
m, and when CD(p) = 0 it corresponds to a

rectangle with base of length 1 and height m. For example, considering again the polygons
presented in Figure 1, we have LC = 112 for that shown in Figure 1(a), while LC = 99
for the polygon in Figure 1(b). In both cases m = 64, hence, LCmax = 112 and LCmin = 63.
Then, discrete compactness for the polygon in Figure 1(a) is given by CD = 1 while the
other has CD = 0.7346. In [4] it is established that LCmin = 0. Hence, if CD(p) = 0, then the
object corresponds to a chain of pixels such that no edges, and only vertices, are shared. By
considering LCmin = 0 then discrete compactness for the polygons in Figures 1(a) and 1(b)
are 1 and 0.8839, respectively. It both cases, it is clear that discrete compactness provides us a
more robust criterion for objects’ comparison/classification/description of shapes under the
advantage it is much less sensitive to variations in their shape. For the 3D case, in [1] it is
used LCmax = 3(m − m2/3). If m is a power of 3, then the given LCmax provides the number of
shared faces in an array of voxels that correspond to a cube of edges of length 3

√
m. By using

LCmin = m − 1 then it is defined a stack of m voxels [1].

2. Problem Statement

An n-dimensional Euclidean polytope Πn is defined as a finite region of n-dimensional
Euclidean space enclosed by a finite number of (n − 1)-dimensional hyperplanes [6]. The
finiteness of the region implies that the number Nn−1 of bounding hyperplanes satisfies the
inequality Nn−1 > n. The part of the polytope that lies on one of these hyperplanes is called
a cell. Each cell of a Πn is an (n − 1)-Dimensional polytope, Πn−1. The cells of a Πn−1 are
Πn−2’s, and so on; thus it is obtained a descending sequence of elements Πn−3, Πn−4,. . ., Π3 (a
volume), Π2 (a polygon), Π1 (an edge), Π0 (a vertex).

4 Mathematical Problems in Engineering

The representation of a polytope through a scheme of hyperspatial occupancy
enumeration is essentially a list of identical hyperspatial cells occupied by the polytope.
Specific types of cells, called hypervoxels [7], are hyper-boxes (hypercubes, for example) of a
fixed size that lie in a fixed grid in the n-dimensional Space. By instantiation, it is well known
that a 2D hypervoxel is a pixel while a 3D hypervoxel is a voxel; the term rexel is suggested
for referencing a 4D hypervoxel [7]. The collection of hyperboxes can be codified as an n-
Dimensional array Cx1,x2,...,xn . The array will represent the coloration of each hypervoxel. If
Cx1,x2,...,xn = 0, the white hypervoxel Cx1,x2,...,xn represents an unoccupied region from the n-
Dimensional space. If Cx1,x2,...,xn = 1, then the black hypervoxel Cx1,x2,...,xn represents a used
region from the n-Dimensional space. Hence, the set of black cells defines a polytope whose
vertices coincide with some of the occupied cells’ vertices.

It is clear that Bribiesca’s definition of Discrete Compactness can be extended for
considering n-Dimensional polytopes, and in the particular dominion of this work, n-
Dimensional Orthogonal Pseudo-Polytopes (nD-OPPs). We will consider those nD-OPPs that
can be seen as the result of a hypervoxelization such that hypervoxels are unit nD hypercubes
with integer coordinates. It is well known that an nD hypercube has 2n boundary (n − 1)D
cells [8]: 2 vertices in a segment, 4 edges in a square, 6 faces in a cube, 8 volumes in a 4D
hypercube, and so on. Hence, LC(p) denotes the number of shared (n − 1)D cells within
polytope p consisting of m hypervoxels while LCmax and LCmin correspond, respectively, to the
maximum and minimum number of shared (n−1)D cells achieved with objects composed by
m hypervoxels.

When using hypervoxelizations for representing and manipulating nD polytopes
some compromises should be taken in account. In particular is the one related to
the representation’s spatial complexity. It is well known that spatial complexity of a
hypervoxelization is at least

n∏

i=1

mi, (2.1)

where mi, 1 ≤ i ≤ n, is the length of the grid along Xi-axis. For example, a 4D grid with
m1 = m2 = m3 = m4 = 1,000 is required to store 1 trillion (1 × 1012) hypervoxels. For that
reason, in this work we will concentrate on expressing nD-OPPs via a polytopes’ concise
representation scheme known as the Extreme Vertices Model in the n-Dimensional Space
(nD-EVM). The EVM is a model originally established by Aguilera and Ayala in [9, 10] for
representing 1D, 2D, and 3D-OPPs. In [11], EVM’s properties in the n-Dimensional Euclidean
Space were formally proved, leading to characterize it as a complete representation scheme
for nD-OPPs. In [10, 11] there are described efficient algorithms for performing some of
the most used operations in solid and polytopes modeling such as regularized boolean
operations, set membership classification, and measure queries. The conciseness of the EVM
lies in the fact it only stores some specific vertices of a polytope: the Extreme Vertices.
Via such subset of the polytope’s vertices, it is possible to obtain much geometrical and
topological information about the polytope and to perform operations as the ones previously
mentioned. Now, returning to the question related to hypervoxelizations’ complexity, we
commented before that in a hypervoxelization the set of black hypervoxels defines a polytope,
actually an nD-OPP. The hypervoxels in such set can be seen as a set of quasidisjoint nD-
OPPs. Based on this observation, we will describe a straight methodology for converting a

Mathematical Problems in Engineering 5

hypervoxelization to a concise EVM representation. In Section 3 we will describe formally
to nD-OPPs (Section 3.1), and we will present a summary of the foundations behind the nD-
EVM (Section 3.2). Section 3.3 presents basic algorithms under the nD-EVM while Section 3.4
deals with two algorithms for interrogating and manipulating nD-OPPs represented via the
nD-EVM: the first one computes the nD content of an OPP while the second corresponds to
computation of regularized boolean operations between OPPs. Finally, Section 3.5 presents
the procedure for hypervoxelizations to nD-EVM conversion.

The main contribution of this work is the specification of efficient procedures that
provide us a way to infer the number of hypervoxels that originally composed an nD-OPP. In
this sense, we assume that such OPP fits exactly in a hypervoxelization, where hypervoxels
are unit nD hypercubes whose vertices have integer coordinates. More specifically, given
an EVM we will determine the number of internals contacts, that is, the number of shared
(n − 1)D cells, that took place between the hypervoxels that originally defined the polytope.
By this way, we will present in Section 4 an EVM-based algorithm for determining LC(p) for
a given nD-OPP p. Such algorithm will lead to the specification of a procedure for computing
the Discrete Compactness of an nD-OPP. After that, in Section 5, it will be described a
methodology, originally presented in [11, 12], for representing and manipulating color
2D animations via EVM-modeled polytopes embedded in 4D space-color-time geometry.
Then, in Section 6, we will describe an application of our proposed EVM-based algorithms
for computing Discrete Compactness. Specifically, we present an application oriented to
classification of image sequences which correspond to a volcano’s activity. It will be seen
how the obtained results provide experimental evidence about the applicability of Discrete
Compactness in higher dimensional contexts.

3. The Extreme Vertices Model in the n-Dimensional Space (nD-EVM)

This section is a summary of results originally presented in [10, 11]. For the sake of brevity,
some propositions are only enunciated. Their corresponding proofs can be found in the two
aforementioned references.

3.1. The n-Dimensional Orthogonal Pseudo-Polytopes (nD-OPPs)

Definition 3.1 (see [13]). A Singular n-dimensional hyper-box in R
n is given by the continuous

function

In : [0, 1]n −→ [0, 1]n,

x ∼ In(x) = x.
(3.1)

A general singular k-dimensional hyper-box in the closed set A ⊂ R
n is the continuous function

c : [0, 1]k −→ A. (3.2)

Definition 3.2 (see [13]). For all i, 1≤ i ≤n, the two singular (n − 1)D hyper-boxes In(i,0) and

In(i,1) are defined as follows. If x ∈ [0, 1]n−1, then In(i,0)(x) = (x1, . . . , xi−1, 0, xi, . . . , xn−1) and
In(i,1)(x) = (x1, . . . , xi−1, 1, xi, . . . , xn−1).

6 Mathematical Problems in Engineering

Definition 3.3 (see [13]). The orientation of an (n− 1)D cell c ◦ In(i,α) is given by (−1)α+i. It is said

cell c ◦ In(i,α) is oriented when it is expressed by the scalar-function product (−1)i+α · c ◦ In(i,α).

Definition 3.4 (see [13]). A formal linear combination of general singular kD hyper-boxes,
1 ≤ k ≤ n, for a closed set A is called ak-chain.

Definition 3.5 (see [13]). The boundary of an n-chain
∑
cj , where each cj is a general singular

nD hyper-box, is given by

∂
(∑

cj
)
=
∑

∂
(
cj
)
=
∑
(

n∑

i=1

(
∑

α=0,1

(−1)i+α · cj ◦ In(i,α)
))

. (3.3)

Definition 3.6. A collection c1, c2, . . . , ck, 1 ≤ k ≤ 2n, of general singular nD hyper-boxes is a
combination of nD hyper-boxes if and only if

⎡

⎣
k⋂

α=1

cα
(
[0, 1]n

)
=

⎛

⎝0, . . . , 0
︸ ︷︷ ︸

n

⎞

⎠

⎤

⎦ ∧ [(∀i, j, i /= j, 1 ≤ i, j ≤ k)(ci
(
[0, 1]n

)
/= cj
(
[0, 1]n

))]
. (3.4)

In the above definition the first part of the conjunction establishes that the intersection
between all the nD general singular hyper-boxes is the origin, while the second part
establishes that there are not overlapping nD hyper-boxes.

Definition 3.7. An n-dimensional orthogonal pseudo-polytope p, or just an nD-OPPp, is an n-chain
composed by nD hyper-boxes arranged in such way that by selecting a vertex, in any of these
hyper-boxes, it describes a combination of nD hyper-boxes (Definition 3.6) composed up to
2n hyper-boxes.

3.2. nD-EVM’s Fundamentals

Definition 3.8. Let c be a combination of hyper-boxes in the n-Dimensional space. An Odd
Adjacency Edge of c, or just an Odd Edge, is an edge with an odd number of incident hyper-
boxes of c. Conversely, if an edge has an even number of incident hyper-boxes of c, it is called
Even Adjacency Edge, or just Even Edge.

Definition 3.9. A brink or extended edge is the maximal uninterrupted segment, built out of a
sequence of collinear and contiguous odd edges of an nD-OPP.

From the above definition, every even edge of an nD-OPP does not belong to brinks.
On the other hand, every brink consists of m odd edges, m ≥ 1, and contains m + 1 vertices.
Two of these vertices are at either extreme of the brink and the remaining m − 1 are interior
vertices.

Definition 3.10. The ending vertices of all the brinks in p will be called Extreme Vertices of an
nD-OPP p. EV(p) will denote to the set of Extreme Vertices of p.

Property 3.11. Any extreme vertex of an n D-OPP, n ≥ 1, when is locally described by a set of
surrounding n D hyper-boxes, has exactly n incident linearly independent odd edges.

Mathematical Problems in Engineering 7

X2

X3

X1

V1

V2

Figure 2: Example of a 3D-OPP and its set of Extreme Vertices (Continuous lines indicate odd edges, dotted
lines indicate even edges, black points correspond to extreme vertices, and white points correspond to non
extreme vertices).

X2

X3

X1

(a)

X2

X3

X1

(b)

X2

X3

X1

(c)

X2

X3

X1

(d)

X2

X3

X1

(e)

X2

X3

X1

(f)

Figure 3: Illustrating some EVM concepts over a 3D-OPP (See text for details).

Figure 2 shows an example of a 3D-OPP p. Vertices v1 and v2 are nonextreme vertices
because, in the case of v1, it has six incident odd edges, while vertex v2 has four incident
coplanar odd edges (see Property 3.11). In the figure can be also appreciated that exactly three
linearly independent odd edges are incident to the remaining vertices, actually, the Extreme
Vertices of p.

The brinks in an nD-OPP p can be classified according to the main axis to which they
are parallel. Since the extreme vertices mark the end of brinks in the n orthogonal directions,
is that any of the n possible sets of brinks parallel to Xi-axis, 1 ≤i ≤n, produce to the same set
EV(p). See in Figure 3(a) the brinks parallel to X2-axis for the 3D-OPP originally presented in
Figure 2.

8 Mathematical Problems in Engineering

Definition 3.12. Let p be an nD-OPP. A kD extended hypervolume of p, 1 < k < n, denoted by
φ(p), is the maximal set of kD cells of p that lies in a kD space, such that a kD cell e0 belongs
to a kD extended hypervolume if and only if e0 belongs to an (n − 1)D cell present in ∂(p)
(see Definition 3.5), that is,

(
e0 ∈ φ(p))⇐⇒ (∃c, c belongs to ∂

(
p
))(

e0

(
[0, 1]k

)
⊆ c
(
[0, 1]n−1

))
. (3.5)

Definition 3.13. Let p be an nD-OPP. The Extreme Vertices Model of p, denoted by EVMn(p), is
defined as the model as only stores to all the extreme vertices of p.

Let Q be a finite set of points in R
3. In [10] was defined the ABC-sorted set of Q as

the set resulting from sorting Q according to coordinate A, then to coordinate B, and then to
coordinate C. For instance, a set Q can be ABC-sorted in six different ways. Now, let p be a
3D-OPP. According to [10] the Extreme Vertices Model of p, EVM3(p), denotes the ABC sorted
set of the extreme vertices of p. Then EVM3(p) = EV(p) except by the fact that coordinates of
points in EV(p) are not necessarily sorted. In general, it is always assumed that coordinates
of extreme vertices in the Extreme Vertices Model of an nD-OPP p, EVMn(p), have a fixed
coordinates ordering. Moreover, when an operation requires manipulating two EVMs, it is
assumed that both sets have the same coordinates ordering.

Definition 3.14. The Projection Operator for (n − 1)D cells, points, and set of points is,
respectively, defined as follows.

(i) Let c(In(i,α)(x)) = (x1, . . . , xn) be an (n − 1)D cell embedded in the nD space. Let
πj(c(In(i,α)(x))) denote the projection of the cell c(In(i,α)(x)) onto an (n − 1)D space
embedded in nD space whose supporting hyperplane is perpendicular to Xj -axis

πj
(
c
(
In(i,α)(x)

))
=
(
x1, . . . , x̂j , . . . , xn

)
. (3.6)

(ii) Let v = (x1, . . . , xn) a point in R
n. The projection of that point in the (n − 1)D space,

denoted by πj(v), is given by:

πj(v) =
(
x1, . . . , x̂j , . . . , xn

)
. (3.7)

(iii) Let Q be a set of points in R
n. The projection of the points in Q, denoted by πj(Q),

is defined as the set of points in R
n−1 such that

πj(Q) =
{
p ∈ R

n−1 : p = πj(x), x ∈ Q ⊂ R
n
}
, (3.8)

In all the cases x̂j is the coordinate corresponding to Xj-axis to be suppressed.

Definition 3.15. Consider an nD-OPP p as follows.

(i) Let npi be the number of distinct coordinates present in the vertices of p along Xi-
axis, 1 ≤ i ≤ n.

(ii) Let Φi
k(p) be the kth (n − 1)D extended hypervolume, or just a (n − 1)D couplet, of

p which is perpendicular to Xi-axis, 1 ≤ k ≤ npi.

Mathematical Problems in Engineering 9

See in Figure 3(b) the set of 2D-couplets perpendicular to X2-axis for the 3D-OPP
presented in Figure 2.

Definition 3.16. A slice is the region contained in an nD-OPP p between two consecutive
couplets of p. Sliceik(p) will denote to the kth slice of p which is bounded by Φi

k(p) and
Φi
k+1(p), 1 ≤ k < npi.

Definition 3.17. A section is the (n − 1)D-OPP, n > 1, resulting from the intersection between
an nD-OPP p and an (n − 1)D hyperplane perpendicular to the coordinate axis Xi, n ≥ i ≥ 1,
which does not coincide with any (n − 1)D-couplet of p. A section will be called external or
internal section of p if it is empty or not, respectively. Si

k
(p) will refer to the kth section of p

between Φi
k(p) and Φi

k+1(p), 1 ≤ k < npi. Moreover, Si0(p) and Sinpi(p) will refer to the empty
sections of p before Φi

1(p) and after of Φi
npi(p), respectively.

Property 3.18. Let p be an n D-OPP. All the (n− 1)D hyperplanes perpendicular to Xi-axis, 1 ≤i ≤n,
which intersect to Slicei

k
(p) give the same section Si

k
(p).

The Figures 3(c), 3(d), and 3(e) show the slices for a 3D-OPP (originally presented
in Figure 2) according to the supporting planes of its 2D-couplets perpendicular to X2-axis.
Figure 3(f) presents its corresponding set of internal sections perpendicular to X2-axis.

3.2.1. A Note about Regularized Boolean Operations

Independently of the scheme we consider for the representation of nD polytopes, it should
be feasible to combine them in order to compose new objects [14]. One of the most common
methods to combine polytopes is the set theoretical Boolean operations, as the Union,
Difference, Intersection, and Exclusive OR. However, the application of an ordinary set
theoretical Boolean operation on two polytopes does not necessarily produce a polytope.
For example, the ordinary intersection between two cubes with only a common vertex is
a point. Instead of using ordinary set theoretical Boolean operators, the Regularized Boolean
Operators [15, 16] will be used. The practical purpose of regularization of polytope models
is to make them dimensionally homogeneous [17]. The regularization operation can be
defined as Regularized(S) = Closure(Interior(S)) which results in a closed regular set. Each
regularized Boolean operator is defined in function of an ordinary operator in the following
way:

A op∗ B = Closure
(
Interior

(
A op B

))
. (3.9)

These operators are defined as the closure of the interior of the corresponding set theoretical
Boolean operation [16, 18]. In this way, the regularized operations between polytopes always
will generate polytopes or a null object (the empty set) [17].

3.2.2. Computing Couplets from Sections

Theorem 3.19. The projection of the set of (n − 1)D couplets, πi(Φi
k(p)), 1 ≤i ≤ n, of an nD-OPP

p, can be obtained by computing the regularized XOR (⊗∗) between the projections of its previous

10 Mathematical Problems in Engineering

πi(Sik−1(p)) and next πi(Sik(p)) sections, that is, πi(Φi
k(p)) = πi(Sik−1(p)) ⊗ ∗πi(Sik(p)), for all

k ∈ [1, npi].

3.2.3. Computing Sections from Couplets

Theorem 3.20. The projection of any section, πi(Sik(p)), of an nD-OPP p, can be obtained by
computing the regularized XOR between the projection of its previous section, πi(Sik−1(p)), and the
projection of its previous couplet πi(Φi

k
(p)):

Si0
(
p
)
= ∅,

πi
(
Sik
(
p
))

= πi
(
Sik−1

(
p
)) ⊗ ∗πi

(
Φi
k

(
p
))
, ∀k ∈ [1, npi

]
.

(3.10)

3.2.4. The Regularized XOR Operation on the nD-EVM

Theorem 3.21. Let p and q be two nD-OPPs having EVMn(p) and EVMn(q) as their respective
Extreme Vertices Models in nD space, then EVMn(p ⊗ ∗q) = EVMn(p) ⊗ EVMn(q).

This result allows expressing formulae for computing nD-OPPs sections from couplets
and viceversa by means of their corresponding Extreme Vertices Models. They are obtained
by combining Theorem 3.21 with Theorem 3.19 and Theorem 3.21 with Theorem 3.20,
respectively.

Corollary 3.22. One has that EVMn−1(πi(Φi
k
(p))) = EVMn−1(πi(Sik−1(p)))⊗EVMn−1(πi(Sik(p))).

Corollary 3.23. One has that EVMn−1(πi(Sik(p))) = EVMn−1(πi(Sik−1(p)))⊗EVMn−1(πi(Φi
k(p))).

3.2.5. The Regularized Boolean Operations on the nD-EVM

Corollary 3.24. Let p and q be two nD-OPPs and r = p op∗ q, where op∗ is in {∪∗,∩∗, -∗,⊗∗}. Then
πi(Sik(r)) = πi(S

i
k(p))op

∗πi(Sik(q)). Moreover, if all these sections lie in the same (n−1)D hyperplane
then Si

k
(r) = Si

k
(p)op∗Si

k
(q).

Now we present the following.

Theorem 3.25. A regularized Boolean operation, op∗, where op∗ ∈ {∪∗,∩∗, -∗,⊗∗}, over two nD-
OPPs p and q, both expressed in the nD-EVM, can be carried out by means of the same op∗ applied
over their own sections, expressed through their Extreme Vertices Models, which are (n-1)D-OPPs.

This result leads into a recursive process for computing the Regularized Boolean
operations using the nD-EVM, which descends on the number of dimensions [10]. The
base or trivial case of the recursion corresponds to the 1D-Boolean operations which can
be performed using direct methods. In Section 3.4.2 will be described an algorithm for
performing Regularized Boolean operations under the nD-EVM which implements the above
results.

Mathematical Problems in Engineering 11

3.3. Basic Algorithms for the nD-EVM

Now, we introduce some primitive operations which are in fact based on those originally
presented in [10]. When an operation requires manipulating two EVMs, it is assumed that
both sets have the same coordinates ordering. In the following, XA-axis refers to the nD
space’s coordinate axis associated to the first coordinate present in the vertices of EVMn(p).
For example, given coordinates ordering X1X2X3, for a 3D-OPP, then XA = X1.

(i) InitEVM(): returns the empty set.

(ii) PutHvl(EVM hvl, EVM p): appends and (n−1)D couplet hvl, embedded in nD space
and perpendicular to XA-axis, to the nD-EVM p.

(iii) ReadHvl(EVM p): extracts and returns the next (n − 1)D couplet perpendicular to
XA-axis from p.

(iv) EndEVM(EVM p): returns true if the end of p along XA-axis has been reached,
otherwise, returns false.

(v) SetCoord(EVM hvl, CoordType coord): sets the XA-coordinate to coord on every
vertex of the (n − 1)D couplet hvl. For coord = 0, it performs the projection
πA(p).CoordType is the chosen type for the vertex coordinates.

(vi) GetCoord(EVM hvl): returns the common XA-coordinate of the (n−1)D couplet hvl.

(vii) GetCoordNextHvl(EVM p): returns the common XA-coordinate of the next available
(n − 1)D couplet, perpendicular to XA-axis, from p.

(viii) MergeXor(EVM p, EVM q): applies the Exclusive OR operation to the vertices of p
and q and returns the resulting EVM.

Since the EVM is a sorted model, MergeXor function consists in a simple merging-
like algorithm, and therefore, it runs on linear time [10]. Its complexity is given by
O(Card(EVMn(p)) + Card(EVMn(q))) because each vertex from EVMn(p) and EVMn(q)
needs to be processed just once. Moreover, according to Theorem 3.21, the resulting set
corresponds to the regularized XOR operation between p and q.

From the above primitive operations, and specifically MergeXor, the following pair of
algorithms can be easily derived ([10, 11]).

(i) GetHvl(EVM Si, EVM Sj): implements Corollary 3.22, and returns the projection of
the couplet between consecutive sections Si and Sj .

(ii) GetSection(EVM S, EVM hvl): implements Corollary 3.23, and returns the projec-
tion of the next section of an nD-OPP whose previous section is S.

the Algorithm 1 computes the sequence of sections of an nD-OPP p from its nD-EVM
using the previous functions [10, 11]. It sequentially reads the projections of the (n − 1)D
couplets hvl of the polytope p. Then it computes the sequence of sections using function
GetSection. Each pair of sections Si and Sj (the previous and next sections about the current
hvl) is processed by a generic processing procedure (called Process), which performs the
desired actions upon Si and Sj (note that some processes may only need one of such sections).

12 Mathematical Problems in Engineering

Input: An nD-EVM p.
Procedure EVM to SectionSequence(EVM p)

EVM hvl // Current couplet.
EVM Si, Sj// Previous and next sections about hvl.
hvl = InitEVM()
Si = InitEVM()
Sj = InitEVM()
hvl = ReadHvl(p)
while(Not(EndEVM(p)))

Sj = GetSection(Si, hvl)
Process(Si, Sj)
Si = Sj
hvl = ReadHvl(p) // Read next couplet.

end-of-while
end-of-procedure

Algorithm 1: Computing the sequence of sections from an nD-OPP p.

3.4. Interrogating and Manipulating nD-OPPs Represented via the nD-EVM

3.4.1. Computing the Content of an nD-OPP

An nD hyperprism can be generated by the parallel motion of an (n − 1)D polytope; it is
bounded by the (n − 1)D polytope in its initial and final positions and by several (n − 1)D
hyperprisms [19]. Consider an nD hyperprism Pn whose base is an (n − 1)D polytope Pn−1 of
content Cn−1. If hn is the distance between its bases, that is, the height of the hyperprism, then
its content is given by [19]

Content(Pn) = Content(Pn − 1) · hn = Cn−1 · hn. (3.11)

If it is the case where Pn−1 is an (n − 1)D hyperprism with height hn−1 generated by
the parallel motion of an (n − 2)D polytope Pn−2, then Cn−1 is given by the expression Cn−1 =
Cn−2·hn−1, where Cn−2 is the content of Pn−2. This last expression yields to rewrite the above
equation as

Content(Pn) = (Content(Pn−2) · hn−1) · hn = (Cn−2 · hn−1) · hn. (3.12)

By considering that each (n-k)D hyperprism Pn−k is generated by the parallel motion
of an (n-k-1)D hyperprism Pn−k−1, where k = 0, 1, 2, . . ., n − 1, then we have that the content
of Pn can be computed according to the formula

Content(Pn) =

⎧
⎨

⎩

h1, n = 1,

Content(Pn−1) · hn, n > 1,
(3.13)

where hn is the height of hyperprism Pn. In the base case, where n = 1, the content of a segment
is given directly by its “height”, that is, the distance between its two boundary points.

Mathematical Problems in Engineering 13

X2

X1

Φ1
1(q) S

1
1(q) S1

2(q) Φ1
3(q)

Φ1
2(q)

S1
3(q)

Φ1
4(q) S

1
4(q) Φ1

5(q)

dist
(
Φ1

1(q),Φ
1
2(q)
)

dist
(
Φ1

2(q),Φ
1
3(q)
)

dist
(
Φ1

3(q),Φ
1
4(q)
)

dist
(
Φ1

4(q),Φ
1
5(q)
)

Figure 4: A 2D-OPP q whose area is being computed (see text for details).

The previous idea is extended in order to compute the content of nD space enclosed by
an nD-OPP. In this case we will consider the partition induced by its slices (Definition 3.16).
A slice can be seen as a set of one or more disjoint nD hyperprisms whose (n − 1)D base is
the slice’s section. As pointed out in [10] the volume of a 3D-OPP p can be computed as the
sum of the volumes of its 3D slices, where the volume of a Slicei

k
(p), is given by the product

between the area of its respective section Si
k
(p) (the 2D base of Slicei

k
(p)) and the distance

between Φi
k(p) and Φi

k+1(p) (the height of the 3D prism Sliceik(p)). Now let q = Sik(p). The
area of the 2D-OPP q (see Figure 4 for an example) can be computed as the sum of the areas
of its 2D slices, where the area of a Slicei

k
(q), is given by the product between the length of

its respective section Sik(q) (the 1D base of Sliceik(q)) and the distance between Φi
k(q) and

Φi
k+1(q) (the height of the “2D prism” Sliceik(p)). Finally let r = Sik(q). In the basic case the

length of the 1D-OPP r is computed as the sum of the lengths of its brinks.
Let p be an nD-OPP. The nD space enclosed by p, denoted by Content(n)(p), can be

computed as the sum of the contents of its nD slices [11]

Content(n)
(
p
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Length
(
p
)

n = 1,

npi−1∑

k=1

Content (n−1)

(
Si
k

(
p
)) · dist

(
Φi
k

(
p
)
,Φi

k+1

(
p
))

n > 1.
(3.14)

Algorithm 2 implements the above equation in order to compute the content of nD space
enclosed by an nD-OPP p expressed through the nD-EVM [10, 11].

14 Mathematical Problems in Engineering

Input: An nD-EVM p.
The number n of dimensions.

Output: The content of nD space enclosed by p.
Procedure Content(EVM p, int n)

real cont = 0.0// The content of nD space enclosed by p.
EVM hvl1, hvl2// Consecutive couplets perpendicular to XA-axis.
EVM s// Current section of p.
if(n = 1) then return Length(p) // Base case: p is a 1D-OPP.
else

s = InitEVM()
hvl1 = ReadHvl(p)
while(Not(EndEVM(p)))

hvl2 = ReadHvl(p)
s = GetSection(s, hvl1)
cont = cont + Content(s, n-1) ∗ dist(hvl1, hvl2)
hvl1 = hvl2

end-of-while
return cont

end-of-else
end-of-procedure

Algorithm 2: Computing the content of nD space enclosed by an OPP.

3.4.2. The Boolean Operations Algorithm for the nD-EVM

Let p and q be two nD-OPPs represented through the nD-EVM, and let op∗ be a regularized
Boolean operator in {∪∗,∩∗, -∗,

⊗∗}. The algorithm, originally presented in [10] and based on
Theorem 3.25, computes the resulting nD-OPP r = p op∗ q. Note that r = p ⊗∗ q can also be
trivially performed using Theorem 3.21 [10]. The idea behind the algorithm is the following.

(i) The sequence of sections from p and q, perpendicular to XA-axis, is obtained first,
based on Theorem 3.20.

(ii) Then, according to Corollary 3.24, every section of r can recursively be computed
as

SAk (r) = S
A
k

(
p
)
op∗SAk

(
q
)
. (3.15)

(iii) Finally, r can be obtained from its sequence of sections, perpendicular to XA-axis,
according to Theorem 3.19.

Nevertheless, Algorithm 3 does not work in this sequential form. It actually works in
a wholly merged form in which it only needs to store one section for each of the operands p
and q and two consecutive sections for the result r.

The following are some functions present in Algorithm 3 but not defined previously.

(i) Function BooleanOperation1D performs 1D Boolean operations between p and q that
are two 1D-OPPs.

(ii) Procedure NextObject considers both input objects p and q and returns the common
coord value of the next hvl to process, using function GetCoord. It also returns two

Mathematical Problems in Engineering 15

flags, fromP and fromQ, which signal from which of the operands (both inclusive)
is the next hvl to come.

(iii) The main loop of procedure BooleanOperation gets couplets from p and/or q, using
function GetSection. These sections are recursively processed to compute, according
to Corollary 3.24, the corresponding section of r, sRcurr. Since two consecutive
sections, sRprev and sRcurr, are kept, then the projection of the resulting hvl, is
obtained by means of function GetHvl, and then, it is correctly positioned by
procedure SetCoord.

When the end of one of the polytopes p or q is reached then the main iteration finishes, and the
remaining couplets of the other polytope are either appended or not to the resulting polytope
depending on the Boolean operation considered. Procedure PutBool performs this appending
process.

3.5. Hypervoxelizations to nD-EVM Conversion

First, consider the following.

Corollary 3.26 (see [10, 11]). Let p and q be two disjoint or quasi disjoint nD-OPPs having EVMn

(p) and EVMn (q) as their respective Extreme Vertices Models, then EVMn(p ∪ q) = EVMn(p) ⊗
EVMn(q).

As previously commented in the introduction of this paper, a hypervoxelization is a set
of quasi-disjoint black and white hypervoxels each one being a convex orthogonal polytope.
Since the set of black hypervoxels represents an nD-OPP p we have [10]

p =
⋃

λ

BlackHypervoxelλ. (3.16)

For each black hypervoxel it should be possible to generate a list of its 2n vertices. Because all
of these 2n vertices are Extreme Vertices, and by considering Corollary 3.26, all we have to do
is [10]

EVMn

(
p
)
= EVMn

(
⋃

λ

BlackHypervoxelλ

)

= ⊗
λ

EVMn

(
BlackHypervoxelλ

)
. (3.17)

This provides a straight and simple method for converting a hypervoxelization to the nD-
EVM.

4. Computing Discrete Compactness for an nD-OPP
Expressed in the nD-EVM

In the following it is assumed an nD-OPP fits exactly in a hypervoxelization, where
hypervoxels are unit nD hypercubes whose vertices have integer coordinates. Given a
polytope p expressed in the nD-EVM, and in order to compute LC(p), that is, the number
of shared (n − 1)D cells between the m hypervoxels that originally described p, we start by

16 Mathematical Problems in Engineering

Input: The nD-OPPs p and q expressed in the nD-EVM.
The number n of dimensions and regularized Boolean operation op.

Output: The output nD-OPP r, such that r = p op∗ q, codified as an nD-EVM.
Procedure BooleanOperation(EVM p, EVM q, BooleanOperator op, int n)

EVM sP, sQ // Current sections of p and q respectively.
EVM hvl // I/O couplet.
boolean fromP, fromQ // flags for the source of the couplet hvl.
CoordType coord // the common coordinate of couplets.
EVM r, sRprev, sRcurr // nD-OPP r and two of its sections.
if(n = 1) then// Base case

return BooleanOperation1D(p, q, op)
else

n = n − 1
sP = InitEVM()
sQ = InitEVM()
sRcurr = InitEVM()
NextObject(p, q, coord, fromP, fromQ)
while(Not(EndEVM(p)) and Not(EndEVM(q)))

if(fromP = true) then
hvl = ReadHvl(p)
sP = GetSection(sP, hvl)

end-of-if
if(fromQ = true) then

hvl = ReadHvl(q)
sQ = GetSection(sQ, hvl)

end-of-if
sRprev = sRcurr
sRcurr = BooleanOperation(sP,sQ,op,n) // Recursive call
hvl = GetHvl(sRprev, sRcurr)
SetCoord(hvl, coord)
PutHvl(hvl, r)
NextObject(p, q, coord, fromP, fromQ)

end-of-while
while(Not(EndEVM(p)))

hvl = ReadHvl(p)
PutBool(hvl, r, op)

end-of-while
while(Not(EndEVM(q)))

hvl = ReadHvl(q)
PutBool(hvl, r, op)

end-of-while
return r

end-of-if
end-of-procedure

Algorithm 3: Computing regularized Boolean operations on the EVM.

processing its (n − 1)D sections perpendicular to XA-axis. By considering a section, it can
be determined the number of hypervoxels that originally described its corresponding slice.
Furthermore, it is possible to obtain information about internal contacts, perpendicular to XA-
axis, between the hypervoxels that described such nD slice. Let Sj be the section associated
to SliceAj (p). Then, the following steps are performed.

Mathematical Problems in Engineering 17

Input: An nD-EVM p and the number n of dimensions.
Output: The number of internal contacts, perpendicular to the XA-axis, between

the hypervoxels that originally composed p.
Procedure InternalContacts(EVM p, int n)

EVM hvl// Current couplet of p.
EVM Si, Sj// Previous and next sections about hvl.
EVM Sint// The result of intersecting the projections of Si and Sj.
int c1// Common XA-coordinate of couplet hvl.
int c2// Common XA-coordinate of couplet next to hvl.
int nCoords// Number of integer coordinates between c1 and c2.
int L = 0// Number of internal contacts ((n-1)D adjacencies).
Si = InitEVM()
c1 = GetCoordNextHvl(p)
hvl = ReadHvl(p)
while(Not(EndEVM(p)))

Sj = GetSection(Si, hvl)
c2 = GetCoordNextHvl(p)
nCoords = c2 − c1 − 1
L = L + nCoords ∗ Content(Sj, n − 1)
Sint = BooleanOperation(Si, Sj, Intersection, n − 1)
L = L + Content(Sint, n − 1)
Si = Sj
c1 = c2
hvl = ReadHvl(p)// Read next couplet.
end-of-while
return L

end-of-procedure

Algorithm 4: Computing the number of (n − 1)D adjacencies between the hypervoxels that originally
defined an nD-OPP p.

(i) Let c1 and c2 be the common XA coordinates of previous and next couplets,
perpendicular to XA-axis, about section Sj . Let nCoords = c2 – c1 – 1 be the number
of integer coordinates between c1 and c2. In fact, nCoords = Card({c1 + 1, c1 + 2,. . .,
c2 – 1}).

(ii) Because of p’s assumed original representation, it is clear by computing the nD
content of SliceAj (p) that it is obtained the number of black nD hypervoxels that
originally defined it. Now, let H be an (n − 1)D hyperplane perpendicular to XA-
axis such that it intersects SliceAj (p) and does not coincide with the supporting
hyperplanes of the previous and next couplets about section Sj . Assuming the
common XA-coordinate of the points in H is in {c1 + 1, c1 + 2,. . ., c2 – 1}, and by
computing the (n − 1)D content of the projection of section Sj , there is obtained the
number of those hypervoxels which have an (n − 1)D boundary cell embedded in
hyperplane H.

(iii) Finally, the number of internal contacts, perpendicular to XA-axis, between the
hypervoxels that originally defined SliceAj (p), is given by the product of nCoords
(the number of integer coordinates between the previous and next couplets about
Sj) and the (n − 1)D content of Sj .

18 Mathematical Problems in Engineering

The above procedure determines the number of internal contacts, perpendicular to
XA-axis, between the hypervoxels that originally composed to SliceAj (p). Now, we must
determine the number of internal contacts ((n − 1)D adjacencies) between those hypervoxels
that belong to SliceAj (p) with hypervoxels in the next slice, that is, SliceAj+1(p). Those shared
cells are embedded in the supporting (n − 1)D hyperplane of the couplet between sections Sj
and Sj+1.

(i) The projections of consecutive sections Sj and Sj+1 are intersected in such way that
it is obtained an (n − 1)D-OPP Sint.

(ii) The number of those (n− 1)D boundary cells, embedded in the supporting (n− 1)D
hyperplane of the couplet between Sj and Sj+1, is given by computing the (n − 1)D
content of Sint. If Sint is empty then it implies that (1) one of the sections, Sj or Sj+1,
is empty or (2) projections of Sj and Sj+1 are disjoint or quasi-disjoint. In both cases
no (n − 1)D contact occurs between SliceAj (p) and SliceAj+1(p).

Algorithm 4 implements the above procedures.
We will clarify the way Algorithm 4 works with the following example. Consider

the object defined by the 3D boxes presented in Figure 5(a). The 3D grid where the object
is embedded has dimensions 8 × 8 × 8. The coordinates of all the boxes’ vertices are in
the set {0, 1, . . . , 8}3. When the boxes are united, according to the procedure described in
Section 3.5, it is obtained the 3D-OPP p shown, as a wireframe model, in Figure 5(b). Its 3D-
EVM is composed by 14 extreme vertices. Figure 5(c) shows p’s three couplets perpendicular
to X1-axis, while Figure 5(d) presents its pair of internal sections, S1

1(p) and S1
2(p), also

perpendicular to X1-axis. 2D section S1
1(p) is associated to Slice1

1(p) (see Figure 5(e)), while
S1

2(p) is associated to Slice1
2(p) (Figure 5(f)). Suppose that 2D couplets Φ1

1(p), Φ
1
2(p), and

Φ1
3(p) have common X1 coordinates given by 0, 4, and 8, respectively. Hence, the number of

integer coordinates, along X1-axis, between couplets Φ1
1(p) and Φ1

2(p) is 3. Such coordinates
are 1, 2, and 3. Now, consider the projection of section S1

1(p) (Figure 5(g)). Because the boxes
in the original voxelization were unitary, then the area of S1

1(p), 64 u2, corresponds to the
number of faces embedded in a plane intersecting Slice1

1(p) which does not coincide with
Φ1

1(p) nor Φ1
2(p), and whose common X1 coordinate is in {1, 2, 3}. Therefore, the number of

internal contacts (face adjacencies), between the boxes that originally composed to Slice1
1(p)

is given by the product 3 · 64 = 192.
Now, we proceed to determine the number of internal contacts in Slice1

2(p). The
number of integer coordinates, along X1-axis, between couplets Φ1

2(p) and Φ1
3(p) is 3. Such

coordinates are 5, 6, and 7. Consider the projection of section S1
2(p) (Figure 5(h)). The area

of S1
2(p) is 48 u2. It corresponds to the number of faces embedded in a plane intersecting

Slice1
2(p) which does not coincide with Φ1

2(p) nor Φ1
3(p), and whose common X1 coordinate

is in {5, 6, 7}. The number of internal contacts (face adjacencies), between the boxes that
originally composed to Slice1

2(p) is given by the product 3 · 48 = 144. Finally, we compute
the regularized intersection between projections of sections S1

1(p) and S1
2(p), that is, Sint =

π1(S1
1(p)) ∩ ∗π1(S1

2(p)). See Figure 5(i). The area of 2D-OPP Sint is 48 u2. This number
corresponds to the number of faces, in the original voxelization, embedded in the supporting
plane of couplet Φ1

2(p). Each one of these faces implies a face adjacency between a voxel
that belongs to Slice1

1(p) and a voxel in Slice1
2(p). Finally, the number of face adjacencies,

perpendicular to X1-axis, between the boxes in p’s original voxelization, is 384. Because of
p’s symmetry, it can be easily verified that the number of face adjacencies perpendicular to
X2-axis and X3-axis is also 384. Therefore, LC(p) = 384 + 384 + 384 = 1, 152.

Mathematical Problems in Engineering 19

X3

X1

X2

(a)

X3

X1

X2

(b)

X3

X1

X2

Φ1
1(p)

Φ1
2(p)

Φ1
3(p)

(c)

X3

X1

X2

S1
1(p)

S1
2(p)

(d)

X3

X1

X2

Slice1
1(p)

S1
1(p)

(e)

X3

X1

X2

Slice1
2(p)

S1
2(p)

(f)

X3

X2

(g) π1(S1
1(p)), Area: 64 u2

X3

X2

(h) π1(S1
2(p)), Area: 48 u2

X3

X2

(i) Sint = π1(S1
1(p)) ∩∗π1(S1

2(p)) Area:
48 u2

Figure 5: Computing the number of face adjacencies, perpendicular to X1-axis, between the voxels that
originally defined a 3D-OPP now expressed with a 3D-EVM (see text for details).

20 Mathematical Problems in Engineering

Input: An nD-EVM p and the number n of dimensions.
Output: The number of internal contacts, perpendicular to Xi-axis,

i=1,2,. . .,n, between the hypervoxels that originally composed p.
Procedure TotalInternalContacts(EVM p, int n)

int Lc = 0
for each sorting in {X1X2. . .Xn−1Xn,X2X3. . .XnX1,X3X4. . .X1X2,. . .,XnX1. . .Xn−2Xn−1} do

SortEVM(p, n, sorting)
Lc = Lc + InternalContacts(p, n) // Call to Algorithm 4.

end-of-for
return Lc

end-of-procedure

Algorithm 5: Computing LC (p) for an nD-OPP expressed in the EVM.

f1

(a)

f2

(b)

f3

(c)

f4

(d)

Figure 6: Example of a simple color 2D-animation.

As seen, Algorithm 4 extracts those sections of nD-OPP p which are perpendicular
to XA-axis which implies that it only counts internal contacts perpendicular to this same
coordinate axis. Suppose that the coordinates ordering in EVMn(p) is given by X1X2

. . . Xn−1Xn. Each one of the coordinates orderings in the set {X1X2 . . . Xn−1Xn,
X2X3 . . . XnX1, X3X4 . . . X1X2, . . . , XnX1 . . . Xn−2Xn−1} is now used for sorting EVMn(p). Such
sorting is performed by calling a procedure SortEVM. Given a permutation Xα1 Xα2 · · ·Xαn , the
function sorts the extreme vertices of p first according to coordinate Xα1 , after according to
coordinate Xα2 , and so on until p is sorted according to coordinate Xαn . Next, it is performed
a calling to Algorithm 4. By this way, it is computed the number of contacts perpendicular to
each one of the axes in nD space. The sum of all contacts perpendicular to all coordinate axes
leads to determine LC(p). Algorithm 5 implements this procedure.

5. Representing Color 2D-Animations through 4D-OPPs and the EVM

The procedure described in [10] for processing black and white 2D animations can be directly
extended to control colored frames through a 4D-OPP represented through the EVM. This
methodology was originally presented in [11, 12]. In Figure 6 an example of a simple color 2D
animation composed by four frames whose resolution is 9 × 9 pixels is shown. In each frame
can be identified white, red, blue, gray, and cyan regions. We will use this simple animation
to exemplify our procedure. We will label each colored frame in the animation as fk and m
will be the number of such frames.

Mathematical Problems in Engineering 21

X3 = color

X2 X1

Figure 7: The 3D space defined for the extrusion of color 2D-pixels.

X2

X3

X1

xf1

(a)

X2

X3

X1

xf2

(b)

X2

X3

X1

xf3

(c)

X2

X3

X1

xf4

(d)

Figure 8: The sets of prisms resulting of the extrusion of the frames of an animation (presented in Figure 6).

A color animation can be handled as a 4D-OPP in the following way [11, 12].
(a) The Red-Green-Blue (RGB) components of each pixel will be integrated into a

single value. Such value represents the RGB components as an integer with 32 bits. Bits 0–7
correspond to the blue value, bits 8-15 correspond to the green value, bits 16–23 correspond
to the red value, and bits 24–31 to the alpha (transparency) value. Each pixel will now be
extruded towards the third dimension, where the value integrating its RGB components will
now be considered as its X3 coordinate (coordinates X1 and X2 correspond to the original
pixels’ coordinates). See Figure 7.

Let us call xfk to the set composed by the rectangular prisms (the extruded pixels)
of each extruded frame fk. It is very important to avoid the zero value in the X3 coordinate
because a pixel could not be extruded, and therefore its associated prism (a 3D-OPP) will not
be obtained. See Figure 8.

(b) Let prismi be a prism in xfk and npr the number of prisms in that set. Due to all
the prisms in xfk are quasi disjoint 3D-OPPs, we can easily obtain the final 3D-OPP and its
respective 3D-EVM of the whole 3D frame via Corollary 3.26 (all the vertices in a prismi are
extreme vertices)

EVM3(Fk) =
npr
⊗
i=1

EVM3
(
prismi ∈ xfk

)
, (5.1)

where Fk is the 3D frame (a 3D-OPP) that represents the union of all the prisms in xfk. See
Figure 9.

22 Mathematical Problems in Engineering

X2

X3

X1

F1

(a)

X2

X3

X1

F2

(b)

X2

X3

X1

F3

(c)

X2

X3

X1

F4

(d)

Figure 9: The 3D frames that represent a 2D colored animation (presented in Figure 6; Some of their
extreme vertices are shown).

X3 = colorX4 = time

X1

X2

Figure 10: The process of extrusion of a 3D frame in order to obtain a hyperprism (some of its extreme
vertices are shown).

(c) Let us extrude Fk into the fourth dimension and thus obtain a 4D hyperprismk

whose bases are Fk and its length is proportional to the time fk is to be displayed. The new
fourth dimension will measure and represent the time. See Figure 10.

(d) Let p be the 4D-OPP that represents the given color 2D-animation. Polytope p is
defined by

p =
m⋃

k=1

hyperprismk. (5.2)

Due to all the m hyperprisms are quasi disjoint 4D-OPPs, then the 4D-EVM for p can
be obtained by

EVM4
(
p
)
=

m⊗
k=1

EVM4
(
hyperprismk

)
. (5.3)

Mathematical Problems in Engineering 23

By representing a given color 2D-animation using a 4D-OPP p and its 4D-EVM, we
have the following characteristics [11, 12].

(i) The sequence of the projections of sections in p corresponds to the sequence of 3D
frames, that is, π4(S4

k
(p)) = Fk.

(ii) Computation of 3D frames: by Corollary 3.23 the 3D-EVM of the frame Fk is
computed by EVM3(Fk) = EVM3(Fk−1) ⊗ EVM3(π4(Φ4

k
(p))).

(iii) Displaying the 2D colored animation: each couplet perpendicular to the X3 axis in
each 3D frame Fk contains the polygons to display. The colors to apply to those
polygons are referred through the X3 coordinate that contains the integrated RGB
components.

6. Discrete Compactness of 4D-OPPs: An Application

In this section there will be described our first steps towards an application of Discrete
Compactness in a higher dimensional context, via the algorithms presented in Section 4, in
the classification and indexing of video sequences. In the previous section, it was presented
a methodology for representing color 2D animations through 4D-OPPs and the EVM. In the
case to be boarded now, we will consider image sequences associated to the Popocatépetl
volcano which is located in the Mexican State of Puebla. The images were obtained from the
CENAPRED web site [20]. The CENAPRED is a Mexican research center which has as one of
its functions monitoring the volcano’s activity.

Each sequence presents the volcano’s activity along four consecutive days. The
sequences are then composed by 4 images, or frames, each one taken each day. All the images
were captured in the time range comprehended from 10 AM to 2 PM We have a set of 521
images which correspond to dates between January 1, 2007 and June 4, 2008. They have
resolution 640 × 480 under the color model RGB. In a preprocessing phase, images were scaled
to the new resolution 320 × 240, and the color model was changed to grayscale. Moreover, a
multilevel threshold was applied in order to eliminate noise (specifically we applied some
procedures defined in [21]). There were generated 520 sequences to which was applied the
procedure described in previous section in such way that for each one was generated its
corresponding 4D polytope: two geometrical dimensions (X1 and X2), one color dimension
(X3), and one dimension associated to time (X4). Consequently, the obtained 4D polytopes
were expressed in the EVM.

For each 4D polytope it was computed its Discrete Compactness. It is clear each
generated polytope is embedded in a hyper-box with main diagonal defined by the pair of
points (0,0,0,0) and (321,241,256,4). Such hyper-box will be called Hmax, and it corresponds
to a sequence composed by 4 white frames. On the other hand, let Hmin be the hyper-box
described by the main diagonal with start and end points given, respectively, by (0,0,0,0) and
(321,241,1,4). It corresponds to a sequence where all the frames are black. The required values
LCmax and LCmin are computed through Algorithm 5 by using as input the EVMs associated to
hyper-boxes Hmax and Hmin, respectively. That is, LCmax = LC(Hmax) and LCmin = LC(Hmin).

The 520 sequences were sorted according to the discrete compactness of their corre-
sponding 4D polytope. Compactness’ maximum obtained value was 0.8367 while the mini-
mum was given by 0.7236. Sequences were grouped in 12 classes (see Tables 1 and 2). Each
class contains sequences whose discrete compactness is inside an arbitrarily defined range.
The classes 1 to 4 group sequences with compactness major or equal to 0.72 and more minor

24 Mathematical Problems in Engineering

Table 1: Using discrete compactness for classifying 4D-OPPs associated to images sequences (Part 1).

Class
Discrete

compactness
range

Representative sequence (arbitrarily choosed)

1 [0.72, 0.73)
Members

1
Average

card EVM4 p
382, 148

Average processing time
milliseconds

91, 167

2 [0.73, 0.74)
Members

3
Average

card EVM4 p
360, 241.33

Average processing time
milliseconds

85, 238.67

3 [0.74, 0.75)

Members
1

Average
card EVM4 p

388, 512

Average processing time
milliseconds

93, 616

4 [0.75, 0.76)
Members

16
Average

card EVM4 p
375, 392.13

Average processing time
milliseconds

91, 033.27

5 [0.76, 0.77)
Members

31
Average

card EVM4 p
370, 449.46

Average processing time
milliseconds

91, 159.7

6 [0.77, 0.78)

Members
70

Average
card EVM4 p

365, 405.73

Average processing time
milliseconds

90, 480.33

Mathematical Problems in Engineering 25

than 0.76. These classes have 1, 3, 1, and 16 members respectively and they have as an inter-
esting characteristic the fact that some of their members are sequences that describe intense
volcanic activity. See for example the representative sequences for classes 1, 2, and 3 (Table 1).
They describe the same event: an eruption which took place in December 1, 2007 [20].

Classes 5 to 8 group sequences with discrete compactness inside the range [0.76, 0.80).
The majority of these sequences describe volcanic activity that goes from null to moderate.
The classes 9 to 12 (Table 2) have as members sequences whose 4D polytopes have Discrete
Compactness in the range [0.80, 0.84). In this case, a great part of these sequences have
the property that they correspond to days where the visibility towards the volcano was
minimized by clouds or even was null. All the sequences in classes 9, 10, and 11 have cloudy
days with low visibility. Moreover, there are also sequences in which the number of days with
null visibility oscillated between 1 and 3. Class 12 is the only one where there are sequences
such that all four days had null visibility.

The above results are promising in the sense that discrete compactness could be
applied as a mechanism for indexing/classification/comparison of n-Dimensional Polytopes.
In our example, we have obtained preliminary results that allow classifying 4D objects
which in time describe image sequences. We implemented the algorithms and procedures
described in this paper in the Java Language (Java Development Kit version 1.6). They were
executed in a computer with an Intel Processor Core 2 Duo, 2.40 GHz, and 2 Gigabytes in
RAM. In Tables 1 and 2 can be appreciated, for each class, the average processing time
required for computing discrete compactness for our 4D polytopes. These time measures
provide experimental evidence of efficiency in Discrete Compactness’ computation via the
EVM. Another provided data are the referent to the average number of extreme vertices
required for representing sequences. A 4D polytope that corresponds to the representation of
a sequence of images could be also represented and manipulated via a 4D hypervoxelization.
As described previously, all our polytopes are embedded in a 4D hyper-box with main
diagonals defined by points (0,0,0,0) and (321,241,256,4). In fact, the required 4D grid for
representing our polytopes through a hypervoxelization should be at least of size 320 × 240
× 256 × 4. This implies to store 78,643,200 4D hypervoxels. The average number of extreme
vertices, required for representing the sequences contained in class 3, is 388,512. In fact, this
is the maximum average from the 12 proposed classes. The ratio

78, 643, 200
388, 512

= 202.4215 (6.1)

clearly shows how the EVM is effectively a suitable representation for these sequences
because its memory requirements are much less when compared with a hypervoxelization
scheme.

7. Concluding Remarks

Nowadays it is common to find applications where the search of results and properties
is more suitable to be performed in hyperspaces. On one side, this implies that the
representations to use must be powerful enough in the sense that conciseness, efficiency,
and robustness are mandatory characteristics to be taken in account. On the other side,
we consider that the notion of Discrete Compactness in higher dimensional contexts plays
a fundamental role in tasks related to classification, description, and indexing of nD

26 Mathematical Problems in Engineering

Table 2: Using Discrete Compactness for classifying 4D-OPPs associated to images sequences (Part 2).

Class
Discrete

compactness
range

Representative sequence (arbitrarily choosed)

7 [0.78, 0.79)

Members
112

Average
card EVM4 p

314, 840.79

Average processing time
milliseconds

74, 513.05

8 [0.79, 0.8)
Members

121
Average

card EVM4 p
292, 567.66

Average processing time
milliseconds

68, 287.25

9 [0.8, 0.81)

Members
95

Average
card EVM4 p

273, 454.38

Average processing time
milliseconds

62, 492.4

10 [0.81, 0.82)
Members

54
Average

card EVM4 p
237, 095.92

Average processing time
milliseconds

52, 931.11

11 [0.82, 0.83)
Members

15
Average

card EVM4 p
186, 286.28

Average processing time
milliseconds

40, 392.71

12 [0.83, 0.84)
Members

8
Average

card EVM4 p
69, 550.57

Average processing time
milliseconds

13, 005.71

Mathematical Problems in Engineering 27

polytopes. In such sense, this paper has been devoted to present a set of methodologies
that allow the efficient computation of Discrete Compactness of those nD-OPPs whose
original representation was based on a hypervoxelization. In Section 3 we described the
Extreme Vertices Model in the n-Dimensional space which represents concisely nD-OPPs.
It was described a straight method for conversion of hypervoxelizations to the nD-EVM.
By expressing a polytope via the EVM, we have, on one hand, the important advantage
related to the fact that EVM’s storing requirements are much less than those required by a
hypervoxelization model. On the other hand, it is available a set of EVM-based algorithms
that allow the manipulation and querying of polytopes represented under our model. As
commented in the previous sections, the EVM of a polytope is in fact a subset of its
vertices. However, the algorithms presented in Section 3 obtain, from such subset of vertices,
useful topological and geometrical information. Supported in those algorithms, we have
proposed, specifically in Section 4, methodologies for performing the computation of Discrete
Compactness. We have extended, in direct way, concepts presented by Bribiesca in [1, 5], in
order to apply them on nD-OPPs expressed under the EVM.

In Section 6 we presented how by using our EVM-based implementation of Discrete
Compactness it was possible to classify in efficient way images sequences associated to
Popocatépetl volcano. They were grouped according to the value of their corresponding
compactness. Informally, we saw how sequences with visual common properties have
near compactness values. On the other hand, currently we are working in procedures
for extracting the number of kD elements on the boundary, k = 0, 1, 2, . . . , n − 1, of
an nD-OPP expressed in the EVM. Such counts by themselves are geometrical factors
describing the polytope, but they can also be useful for determining, for example, topological
factors such as the well-known Euler characteristic. The first steps presented in this paper,
the obtained results and observations, and the new methodologies we are defining for
extracting another geometrical and topological factors, encourage us to concentrate our
efforts towards the following main idea. we want to determine how factors, such as Discrete
Compactness, Euler characteristic, boundary elements counts, and so forth, that describe a
higher dimensional polytope representing a sequence, can be used for a specification for
indexing and classification of video sequences. Moreover, we will investigate if such factors,
that provide us descriptive information about a higher dimensional object, can be used to
infer properties and relations about the events taking place in the video sequences under
consideration. The nD-EVM will play a paramount role because it is expected to take full
advantage of its storage requirements and its algorithms’ efficiency.

Finally, we conclude by commenting the nD-EVM is a model that has been successfully
applied in tasks such as (1) image comparison by enhanced image-based reasoning, (2)
collision detection of 2D and 3D objects whose trajectories are, respectively, modeled as
3D and 4D-OPPs, (3) concise representation and efficient querying of volume datasets,
(4) morphological operations on binary images, and (5) connected components labeling.
Applications 1, 2, and 3 are appropriately developed in [11] while applications 4 and 5 are
presented in [22, 23]. In [9–11, 23] there are described algorithms based on the nD-EVM,
besides the ones described in this paper, which are useful and efficient for performing other
interrogations and manipulations on nD-OPPs.

References

[1] R. S. Montero and E. Bribiesca, “State of the art of compactness and circularity measures,” International
Mathematical Forum, vol. 4, no. 25–28, pp. 1305–1335, 2009.

28 Mathematical Problems in Engineering

[2] S. Marchand-Maillet and Y. M. Sharaiha, Binary Digital Image Processing: A Discrete Approach,
Academic Press, San Diego, Calif, USA, 2000.

[3] R. Osserman, “The isoperimetric inequality,” Bulletin of the American Mathematical Society, vol. 84, no.
6, pp. 1182–1238, 1978.

[4] J. Einenkel, U.-D. Braumann, L.-C. Horn et al., “Evaluation of the invasion front pattern of squamous
cell cervical carcinoma by measuring classical and discrete compactness,” Computerized Medical
Imaging and Graphics, vol. 31, no. 6, pp. 428–435, 2007.

[5] E. Bribiesca, “Measuring 2-D shape compactness using the contact perimeter,” Computers &
Mathematics with Applications, vol. 33, no. 11, pp. 1–9, 1997.

[6] H. S. M. Coxeter, Regular Polytopes, The Macmillan, New York, NY, USA, 2nd edition, 1963.
[7] A. Jonas and N. Kiryati, “Digital representation schemes for 3-D curves,” Tech. Rep. CC PUB #114,

The Technion—Israel Institute of Technology, Haifa, Israel, 1995.
[8] T. Banchoff and J. Wermer, Linear Algebra through Geometry, Springer, New York, NY, USA, 2nd edition,

1992.
[9] A. Aguilera and D. Ayala, “Orthogonal polyhedra as geometric bounds in constructive solid

geometry,” in Proceedings of the 4th Symposium on Solid Modeling and Applications (SM ’97), pp. 56–67,
May 1997.

[10] A. Aguilera, Orthogonal polyhedra: study and application, Ph.D. thesis, Universitat Politècnica de
Catalunya, 1998.

[11] R. Pérez-Aguila, Orthogonal polytopes: study and application, Ph.D. thesis, Universidad de
las Américas—Puebla (UDLAP), 2006, http://catarina.udlap.mx/u dl a/tales/documentos/dsc/
perez a r/.

[12] R. Pérez-Aguila, “Representing and visualizing vectorized videos through the extreme vertices model
in the n-dimensional space (nD-EVM),” Journal Research in Computer Science, vol. 29, pp. 65–80, 2007,
Special issue: Advances in Computer Science and Engineering.

[13] M. Spivak, Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus, W. A.
Benjamin, Amsterdam, The Netherlands, 1965.

[14] J. D. Foley, A. van Dam, S. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice in C,
Addison-Wesley Professional, 2nd edition, 1995.

[15] L. K. Putnam and P. A. Subrahmanyan, “Boolean operations on n-dimensional objects,” IEEE
Computer Graphics and Applications, vol. 6, no. 6, pp. 43–51, 1986.

[16] A. A. G. Requicha, “Mathematical models for rigid solids,” Tech. Memo. 28, Production Automation
Project, University of Rochester, Rochester, NY, USA, 1977.

[17] T. A. Takala, “Taxonomy on geometric and topological models,” in Computer Graphics andMathematics,
pp. 146–171, Springer, Berlin, Germany, 1992.

[18] M. Mäntylä, “Boolean operations on 2-manifolds through vertex neighborhood classification,” ACM
Transactions on Graphics, vol. 5, no. 1, pp. 1–29, 1986.

[19] D. M. Y. Sommerville, An Introduction to the Geometry of N Dimensions, Dover, New York, NY, USA,
1958.

[20] CENAPRED (Centro Nacional de Prevención de Desastres), Mexico, February 2010,
http://www.cenapred.unam.mx/es/.

[21] E. Kurmyshev and R. Sánchez-Yáñez, “Particiones difusas para la umbralización multinivel de
Imágenes,” in Proceedings of the 12th International Conference on Electronics, Communications and
Computers (CONIELECOMP ’02), pp. 224–227, Acapulco, Mexico, February 2002.

[22] J. Rodriguez and D. Ayala, “Erosion and dilation on 2D and 3D digital images: a new size-
independent approach,” in Proceedings of the 6th International Workshop on Vision Modeling and
Visualization, pp. 143–150, Stuttgart, Germany, November 2001.

[23] J. Rodrı́guez and D. Ayala, “Fast neighborhood operations for images and volume data sets,”
Computers & Graphics, vol. 27, no. 6, pp. 931–942, 2003.

