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In order to design the automotive components considering probabilistic uncertainties in the
decision variables, it is desired to perform a robust design process. The peak crushing force of the
energy absorber components is one of the important objectives of the design of such components.
In this paper, at first, the peak crushing force of the S-shaped box beams, as a highly simplified
model of front member of a vehicle body, is extracted mathematically. Using such obtained
mathematical model and Monte Carlo simulation, genetic algorithm is then used for the robust
design of the S-shaped box beams having probabilistic uncertainties in material and geometrical
parameters. In this way the variance-per-mean ratio of the peak crushing force (Pmax) is considered
as the objective function. It is shown that some interesting relationships as useful robust design
principles involved in the performance of the S-shaped box beams can be discovered by the robust
design of the obtained mathematical model.

1. Introduction

Higher-speed transportation increases the probability of traffic accidents which in turn cause
serious damages to passengers. Design of auxiliary metal structure or structural components
capable of sustaining prescribed loads and absorbing crushing energies during plastic
deformation has become a special task in design to ensure the occupant safety. Therefore
the crash characteristic of energy absorbing component has received considerable attention
over the past decades [1–7]. As a highly simplified model of the front-side member of a
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vehicle body, which plays an important role in absorbing energy during collision, various
investigators in previous works [8–14] have studied the crushing behavior of the S-shaped
structures.

In real engineering practices, there exist various sources of uncertainty which have
to be compensated through optimal robust design approach [15–17]. Those uncertainties
include model parameter variations due to environmental conditions, incomplete knowledge
of parameters including material and geometry variables, age, and so forth [18–20]. In
conventional optimum system design, uncertainties are not addressed and the optimization
process is accomplished deterministically. In fact, it has been shown that optimization
without considering uncertainty generally leads to nonoptimal and potentially high-
risk solution [15, 21–25]. Therefore, it is very desirable to find a robust design whose
performance variation in the presence of uncertainties is not high. Generally, there
exist two approaches addressing the stochastic robustness issue, namely, robust design
optimization (RDO) and reliability-based design optimization (RBDO) [26]. Both approaches
represent nondeterministic optimization formulations in which the probabilistic uncertainty
is incorporated into the robust optimal design process. Therefore, the propagation of a
prior knowledge regarding the uncertain parameters through the system provides some
probabilistic metrics such as random variable and random process [21]. In RDO approach,
the robust performance is required to be less sensitive to the random variation induced by
uncertain parameters so that the performance degradation from ideal deterministic behavior
is minimized. In RBDO approach, some evaluated reliability metrics subjected to probabilistic
constraints are satisfied so that the violation of design requirement is minimized. Regardless
of the choice of any of these two approaches, the objective function (e.g., peak crushing
force) and the constraints of the optimal design should be evaluated reflecting the effect
of probabilistic nature of uncertain parameters in the performance of the system. With the
aid of ever-increasing computational power, there have been a great amount of research
activities in the field of robust analysis and design devoted to the use of Monte Carlo
simulation [21, 22]. In fact, MCS has also been used to verify the results of other methods
in RDO or RBDO problems when sufficient number of sampling is adopted. In the Monte
Carlo simulation (MCS) method, random samples are generated assuming pre-defined
probabilistic distributions for uncertain parameters.

Basically, the optimization process is defined as finding a set of values for a vector
of design variables so that it leads to an optimum value of an objective or cost function.
In such single-objective optimization problems, there may or may not exist some constraint
functions on the design variables and they are, respectively, referred to as constrained or
unconstrained optimization problems. There are many calculus-based methods including
gradient approaches to search for mostly local optimum solutions and these are well
documented [27, 28]. However, some basic difficulties in the gradient methods such as
their strong dependence on the initial guess can cause them to find a local optimum
rather than a global one. This has led to other heuristic optimization methods, particularly
Genetic Algorithms (GAs) that are being used extensively during the last decade [29, 30].
Such nature-inspired evolutionary algorithms differ from other traditional calculus-based
techniques [31, 32]. The main difference is that GAs work with a population of candidate
solutions and not with a single solution in the search space. This helps significantly to avoid
being trapped in local optima [33] as long as the diversity of the population is well preserved.

In this paper, peak crushing force of the S-shaped box beams is mathematically
modeled. The obtained model is then used in a combined robust and reliability-based design
approach to find a reliable and robust design. In this way, to minimize the variation of
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Figure 1: The geometric parameters of S-shaped box beams.

the peak crushing force (Pmax) subjected to probabilistic constraint, genetic algorithm is
used. In this single-objective GA optimization problem, variance-per-mean ratio of Pmax is
considered as objective function and for each generation the value of mean and variance
of objective function and the value of probability of failure are calculated using the Monte
Carlo simulation (MSC) method. The value of energy absorption of each obtained design
point under specific load and boundary conditions is then carried out using finite-element
commercial software ABAQUS/Explicit. Results are informative and maybe effectively used
for the design of S-shaped square tubes.

2. Extraction of Peak Crushing Force

The front- and rear-side members of vehicle, which play an important role in absorbing
energy during collision, usually have a curved shape to avoid interference with other
components like engine, driving system and fuel tank, and so forth. The S-shaped box beam
which is an idealized model of front-side member of a vehicle body is depicted in Figure 1.
Any variation of geometric parameters which are denoted as curve radius (R), curve angle
(θ), web width (C), wall thickness (t), and offset of two-end part (D) will lead to new
design and new behavior. In this study, the total length of the structure L is fixed equal to
1 m. It should be noted that both the straight lengths (lab and lef) and oblique length (lcd)
are derived variables, depending on the values of the curve angle and curve radius. The
mechanical properties of employed material can be specified with independent parameters,
namely, elastic modulus (E), Poisson’s ratio (υ), yielding stress (σ0), and density (ρ).

Due to geometrical restriction, the upper bound of curve radius depends on the offset
of the two-end part (D) and the curve angle (θ) and is given by

Rmax =
D

2(1 − cos θ)
. (2.1)

Loading conditions considered in the mathematical model are depicted in Figure 2. The front
end of the beam is considered free just in the direction of the external load, and the rear
end has been fully clamped. Free-body diagram of the S-beam under the applied load P is
depicted in Figure 3; Qa, Pf , and Qf are the reaction forces, and Ma and Mf are the reaction
moments.
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Figure 3: Free-body diagram of the S-beam under the applied load.

The equilibrium equations for the S-beam are expressed as follows:

Pf = P,

Qa = Qf = Q,
(2.2)

Mf = −Ma − PD +QL. (2.3)

For determining unknown reactions, two additional equations are needed. Equations for the
deflection along direction y and the slope of beam at the point a can be used to solve this
indeterminate system. Using Castigliano’s theorem, these equations can be written as follows:

ya =
∂U

∂Qa
= 0, (2.4)

θa =
∂U

∂Ma
= 0, (2.5)

where U is the strain energy of the beam under the applied load P. For simplicity, in this
study, only the strain energy due to bending has been considered and formulated as follows:

U =
∫
Ms

2

2EI
ds, (2.6)
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where, Ms is the cross-sectional bending moment along the beam. To determine Ms, the five
different sections depicted in Figure 3 along the beam have been considered. The equation of
the equilibrium of moment for these sections is expressed as follows For Section 1.

M1 =Ma −Qax1, (2.7)

where x1 is the distance from a along the first straight part ab.
For Section 2,

M2 =Ma + PR(1 − cos θ1) −Qa(lab + R sin θ1), (2.8)

where θ1 denotes meridian coordinate system along the first curve part bc.
For Section 3,

M3 =Ma + P(R(1 − cos θ) + x2 sin θ) −Qa((lab + R sin θ) + x2 cos θ), (2.9)

where x2 is the distance from c along the oblique part cd.
For Section 4,

M4 =Ma + P[R(1 − cos θ) + lcd sin θ + R(cos(θ − θ2) − cos θ))

−Qa[(lab + R sin θ) + lcd cos θ + R(sin θ − sin(θ − θ2))],
(2.10)

where θ2 denotes the meridian coordinate system along the second curve part de.
For Section 5,

M5 = −Mf +Qfx3, (2.11)

where x3 is the distance from f along the second straight part ef. Substituting (2.6)–(2.11) and
(2.3) in (2.4),

ya =
∂U

∂Qa
=

5∑
i=1

∫
Mi

EI

∂Mi

∂Qa
ds

= − 1
EI

(∫ lab
0
M1x1dx1 +

∫θ
0
M2(lab + R sin θ1)Rdθ1

+
∫ lcd

0
M3((lab + R sin θ) + x2 cos θ)dx2

+
∫θ

0
M4(lab + 2R sin θ + lcd cos θ − R sin(θ − θ2))Rdθ2

+
∫ lef

0
(M + PD −Q(L − x3))(L − x3)dx3

)
,

(2.12)
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which can be evaluated as

fMa − gQa + hP = 0, (2.13)

where

f =
lab

2

2
+ R(labθ + R(1 − cos θ)) +

(
(lab + R sin θ)lcd +

lab
2

2
cos θ

)

+ R((lab + 2R sin θ + lcd cos θ)θ − R(1 − cos θ)) + Llef
3 −

lef
2

2
,

g =
lab

3

3
+ R

(
lab

2θ +
R2

2
(1 − cos 2θ) + 2labR(1 − cos θ)

)

+

(
(lab + R sin θ)2lcd +

lef
3

3
cos θ + 2(lab + R sin θ) cos θ

lcd
2

2

)

+ R

(
(lab+2R sin θ+lcd cos θ)2θ+

R2

2
(1 − cos 2θ)−2(lab+2R sin θ+lcd cos θ)R(1 − cos θ)

)

+ Llcd
3 − lcd

2

2
,

h = R2(lab(θ − sin θ) + R(1 − cos θ)) + R(1 − cos θ)(lab + R sin θ)lcd +
lcd

3

6
sin 2θ

+
lcd

2

2
((sin θ(lab + R sin θ)) + R cos θ(1 − cos θ))

+ (R(1 − 2 cos θ) + lcd sin θ)((lab + 2R sin θ) + lcd cos θ)Rθ − R
3

4
(1 − cos 2θ)

+ R2(lab + 2R sin θ + lcd cos θ) sin θ − R2(R(1 − 2 cos θ) + lcd sin θ)(1 − cos θ) +D
lef

2

2
.

(2.14)

Similarly, substituting (2.6)–(2.11) and (2.3) in (2.5) gives

θa =
∂U

∂Ma
=

5∑
i=1

∫
Mi

EI

∂Mi

∂Ma
ds

= − 1
EI

(∫ lab
0
M1dx1 +

∫θ
0
M2Rdθ1 +

∫ lcd
0
M3dx2

+
∫θ

0
M4Rdθ2 +

∫ lef
0
(Ma + PD −Q(L − x))dx3

)
,

(2.15)
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which can be evaluated as

f ′Ma − g ′Qa + h′P = 0, (2.16)

where

f ′ = lab + 2Rθ + lcd + lef ,

g ′ =
lab

2

2
+ R(labθ + R(1 − cos θ)) +

(
(lab + sin θ)lcd +

lcd
2

2
sin θ

)

+ ((lab + 2R sin θ + lcd cos θ)θ − (1 − cos θ)) +
lef

2

2
,

h′ = R2(θ − sin θ) + R(1 − cos θ)lcd +
lcd

2

2
cos θ + (R(1 − 2 cos θ) + lcd sin θ)θ + R sin θ +Dlef .

(2.17)

From (2.13) and (2.16), Qa and Ma can be obtained from

Qa = Ja × P, (2.18)

Ma = Ka × P, (2.19)

where

Ka =
gh′ − g ′h
g ′f − gf ′ , Ja =

fh′ − f ′h
g ′f − gf ′ . (2.20)

Substituting values of Ma and Qa obtained from (2.18) and (2.19) in the (2.7)–(2.11), bending
moment will be determined for any section along the beam. Similarly, the equilibrium
equation of the axial force for sections shown in Figure 3 can be written as follows:

N1 = P, (2.21)

N2 = P cos θ1 +Qa sin θ1, (2.22)

N3 = P cos θ0 +Qa sin θ0, (2.23)

N4 = P cos θ2 +Qa sin θ2, (2.24)
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Figure 4: Cross sectional bending moment diagram for the S-shaped box beams with three different curve
radii.
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Figure 5: Cross sectional axial force diagram for the S-shaped box beams with three different curve radii.

N5 = P, (2.25)

where N1 to N5 are the cross-sectional axial forces of Sections 1 to 5. Figures 4 and 5 show the
diagram of cross sectional bending moment and cross sectional axial force for the S-shaped
box beams with geometrical parameters: D = 150 mm, θ = 30◦, and curve radii R = 200, 350,
and 500 mm, where P = 1 N.

The stress at the extreme fibers of all beam sections can be determined simply from,

σ =
2MC

I
+
N

A
, (2.26)

where I, A, and C are the inertia moment, area, and width of cross-section, respectively.
Distribution of the stress σ along the beam is depicted in Figure 6. It is evident from this
figure that the maximum stress locates on four places: two points at the curve parts and two
points at the front- and rear-end of the beam. These locations are depicted with the points



Mathematical Problems in Engineering 9

10.80.60.40.20
Horizontal distance from front end of beam (mm)

R = 200 mm
R = 350 mm

R = 500 mm
S-beam layout

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

C
ro

ss
se

ct
io

na
lm

ax
im

um
st

re
ss

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

V
er

ti
ca

ld
es

ig
n

fr
om

O
(m

m
)

Figure 6: Distribution of the maximum stress σ along the beam.
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Figure 7: The location of points a, g, h, and f.

a, g, h, and f in Figure 7, schematically. Substituting (2.18) and (2.19) in (2.8) and (2.23), the
axial force and bending moment at the point g can be obtained from

Ng = LgP,

Mg = KgP,
(2.27)

where

Lg = cos θg + Ja × sin θg,

Kg = Ka + R
(
1 − cos θg

)
− Ja
(
lab + R sin θg

)
.

(2.28)

When the external load P is applied, the S-beam deforms elastically until yield is reached in
the extreme fibers on the most stressed sections. Assuming that the beam is made of elastic-
perfectly plastic material, increasing the external load, the plastic region in the cross section
will be increased. In the limit, the whole section becomes plastic and then P = Pmax; Pmax

which is the collapse load is also called peak crushing load.
The stress distribution across the section of a fully plastic cross section is depicted

in Figure 8. Based on this figure, where c denotes the deviation of the neutral axis of the
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Figure 8: The stress distribution across the section of a fully plastic cross section.

longitudinal stress from the central axis of the beam, the bending moment and axial force are
related to c by

M =
∫
A

σxdA = YtC2 + 2Yt

((
C

2

)2

− c
)
,

N =
∫
A

σdA = 4Ytc,

(2.29)

where Y is the yielding stress of the material. Eliminating c from the two expressions of (2.29)
leads to

M

M0
+

4
3

(
N

N0

)2

= 1, (2.30)

where N0 and M0 are the fully plastic bending moment and fully plastic axial force,
respectively, and can be obtained from

M0 = 1, 5YtC2,

N0 = 4YtC.
(2.31)
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Considering sections a and f depicted in Figure 7 as the most stressed sections and
substituting (2.18) in (2.30), Pmax can be obtained from

Pmax,1 =
4/3

(Ka/M0) + (4La/3N0)
. (2.32)

Otherwise, considering sections g and h as the most stressed sections and substituting (2.18)
in (2.30), Pmax can be obtained from

Pmax,2 =
4/3(

KgM0
)
+
(
4Lg/3N0

) . (2.33)

Therefore, the peak crushing force of S-shaped box beams can be obtained from

Pmax = min{Pmax,1, Pmax,2}. (2.34)

3. Stochastic Robust Analysis

In the robust design approach, it is desired to minimize the variability of a random process
due to the uncertain probabilistic parameters about a deterministic behavior. Therefore, the
conventional robust optimization problem can be formulated as follows:

Minimize
{
μ
[
f(x,d,p)

]
, υ
[
f(x,d,p)

]}
,

x(L) ≤ x ≤ x(U),

d(L) ≤ d ≤ d(U),

(3.1)

where f(x,d,p) is the performance or the cost function, μ is the mean value, and υ is one of
the dispersion measure operators such as variance (σ2), standard deviation (σ), or coefficient
of variation (Cv = σ/ μ). In this study, x is the vector of design variables which are uncertain,
d is the vector of deterministic design variables, and p is the vector of uncertain parameters
which are not design variables.

In the reliability-based design approach, it is required to define some reliability
metrics via some inequality constraints. Let us consider a deterministic constraint of the
form gi(x,d,p)≤ ĝi, where ĝi is the limiting value of the ith constraint. This constraint can
be transformed into a probabilistic constraint using the definition of a random process

Gi(x,d,p) ≡ ĝi − gi(x,d,p). (3.2)

The typical probability constraint is then represented as

Pif = P[Gi(x,d,p) ≤ 0] ≤ εi (i = 1, 2, 3, . . . , m), (3.3)
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where Pif denotes the probability of failure of the ith reliability measure and m is the number
of inequality constraints (i.e., limit-state functions) and εi is the highest value of the desired
admissible probability of failure. It is clear that the ideal value of each Pif is zero.

In the reliability-based robust design process presented in this paper, an approach that
simultaneously considers reliability and robustness is proposed. This methodology can be
formulated as follows:

minimize
{
μ
[
fi(x,d,p)

]
, υ
[
fi(x,d,p)

]}
(i = 1, 2, 3, . . . , k),

subject to
{
P
[
Gj(x,d,p) ≤ εj

]} (
j = 1, 2, 3, . . . , m

)
,

x(L) ≤ x ≤ x(U),

d(L) ≤ d ≤ d(U).

(3.4)

Taking into consideration the stochastic distribution of uncertain parameters, the probability
of failure, P[G(x,d,p) ≤ 0], can now be evaluated for each probability function as

Pif =
∫
Gi(x, d,p)≤0

fX(X)dX, (3.5)

where fX is the probability density function of X = (x, p). This integral is, in fact, very
complicated particularly for systems with complex Gi (x, d, p) [34], and Monte Carlo
simulation is alternatively used to approximate (3.5). In this case, a binary indicator function
is defined such that it has the value of 1 in the case of failure (Gi(X,d) ≤ 0) and the value of
zero, otherwise:

IGi(X,d) =

⎧⎨
⎩

0, Gi(X, d) > 0,

1, Gi(X, d) ≤ 0.
(3.6)

Consequently, the integral of (3.5) can be rewritten as

Pif =
∫
Gi(X, d)≤0

fX(X)dX =
∫∞
−∞

IGi(X,d)fX(X)dX. (3.7)

Based on Monte Carlo simulation [35, 36], the probability using sampling technique can be
estimated using

Pif =
∫
Gi(X, d)≤0

fX(X)dX =
1
N

N∑
i=1

IGi(X,d). (3.8)

In other words, the probability of failure is equal to the number of samples in the failure
region divided by the total number of samples. Evidently, such estimation of Pf approaches
the actual value in the limit as N → ∞ [34]. However, there have been many research
activities on sampling techniques to reduce the number of samples keeping a high level
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of accuracy. A newer method that has become more widely used is Hammersley Sequence
Sampling (HSS). HSS is considered a quasi-MC sampling method because deterministic
points are used instead of random points. Hammersley points are used to divide a unit
hypercube, providing uniform sample points across the sample space. Since the points are
chosen on a unit hypercube, they are transformed to the given parameter distributions
providing sample points for simulation. This method produces good coverage of the
distribution with a greatly reduced set of sample points [37–39].

4. Robust Design of the S-Shaped Box Beam

The mathematical model of peak crushing force (Pmax) obtained in previous section is now
employed as model in the reliability-based robust design process. The desired value of Pmax

is considered less than 70 KN due to occupant safety and more than 35 KN due to vehicle
safety. Therefore, optimization of the mean value of peak crushing force is not the aim of
this paper. The goal of the robust design approach presented in this study is to minimize the
variation of Pmax subjected to probabilistic constraint considering uncertain design variables.
This reliability-based robust design process can be formulated as:

minimize f = variance-per-mean ratio

(
σ2

μ

)
of Peak Crushing Force,

subject to the reliability-based inequality constraint :

probability of failure of Pmax : PrP max ≤ 0.1,

where PrP max = P [ 35 KN ≤ Pmax ≤ 70 KN],

and the deterministic inequality constraints :

R ≤ D

2(1 − cos θ)
,

35◦ ≤ θ ≤ 60◦, 150 mm ≤ R ≤ 829 mm, 50 mm ≤ C ≤ 70 mm,

1.5 mm ≤ t ≤ 3 mm, 150 mm ≤ D ≤ 300 mm.

(4.1)

In the case of robust design, parameters like density and yield stress vary according to a priori
known probabilistic distribution functions around a nominal set of parameters. In this study,
the uncertain design parameters, namely, σ0 and t are varied with the Gaussian distributions.
The standard deviations of the Gaussian distributions are considered equal to 5.5 and 0.05 for
σ0 and t, respectively.

The evolutionary process of multiobjective optimization is accomplished by 1000
Monte Carlo evaluations using HSS (Hammersley Sequence Sampling) distribution. In the
optimization process, the population size, the crossover probability Pc, and the mutation
probability Pm are considered equal to 100, 0.7, and 0.07, respectively.

Results have been produced for the S-beams with various values of the offset of two-
end parts (D = 150, 200, 250, 300) and various values of the web width (C = 50, 55, 60, 65,
70). In this way, for each specific value of D and C, genetic algorithm is used to find optimal
values of other design parameters: R, θ, and t.
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Figure 9: The impact model of the S-shaped box beam with loading and boundary conditions.
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Figure 10: Diagram of the energy absorption during the crushing time for the design point C1.

The variance-per-mean ratios of all optimum design points are shown in Table 1. For
choosing an optimum design point, additional competing criteria functions such as weight
and energy absorption capacity of S-beams are considered as objective functions. In this way,
13 various finite-element analyses have been performed due to those different design points
(Table 1) under the same load and boundary conditions. 4-node doubly curved thin-shell
elements (S4R) with reduced integration were employed for the finite-element analysis. The
material of S-shaped energy absorbers has been considered as elastic-plastic steel with linear
strain hardening. The mechanical properties are assumed as follows: Young’s modulus E =
206 GPa, Poisson’s ratio υ = 0.3, plastic modulus ET = 1.4 GPa, yielding stress σ0 = 162 MPa,
and density ρ = 7800 kg/m3. In order to simulate the dynamic crushing condition, a 500 kg
lumped mass with an initial velocity of V0 = 10 m/s is attached to the end of the beam, as
shown in Figure 9. The rear end of the beam is considered free just in the direction of impact
whilst the front end has been fully clamped.

The computed values of the absorbed energy and the weight of the structure are
depicted in Table 1. The results clearly reveal that the designs B1 and C1 have maximum
absorbed energy and minimum weight, respectively. It is now desired to find a tradeoff
optimum design point compromising both objective functions (Absorbed energy & Weight).
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Table 1: The values of objective functions and their associated design variables of the obtained design
points.

Design D C R θ t
Variance-
per-mean

ratio of
E(J) W

Point (mm) (mm) (mm) (deg) (mm) Pmax
(absorbed

energy) (Kg)

A1 150 40 435.11 33.33 3 32.854 4825.93 3.59
A2 150 50 150 60 2.7 35.207 5162.74 4.23
A3 150 60 150 60 2 45.724 4026.45 3.84
A4 150 70 150 60 2 58.996 4507.12 4.5
B1 200 40 571.63 20 3 32.991 5655.6 3.6
B2 200 60 200 60 2.2 41.546 4862.82 4.28
B3 200 70 200 60 2 53.606 4548.25 4.58
C1 250 40 1003.1 22.67 2.9 34.155 5636.96 3.51
C2 250 60 250 60 2.4 39.683 3270.22 4.73
C3 250 70 250 60 2 50.629 2682.26 4.66
D1 300 50 300 22.67 2.3 42.389 5555.49 3.64
D2 300 60 300 60 2.5 37.696 3688.8 5
D3 300 70 300 60 2 48.03 2787.27 4.73

Table 2: The mapped values of objective functions and sum of them for each design point.

Design point

Mapped value
of the variance-
per-mean ratio

of Pmax

Mapped value
of the (1/E(J))

Mapped value
of the W (Kg)

Sum of the
mapped values

A1 0 0.155088883 0.053691 0.20878
A2 0.090008 0.086119127 0.483221 0.659349
A3 0.492311 0.365001847 0.221477 1.07879
A4 1 0.22986911 0.66443 1.894299
B1 0.005241 0 0.060403 0.065643

B2 0.332492 0.147068882 0.516779 0.996339
B3 0.793818 0.21963264 0.718121 1.731572
C1 0.049767 0.002983027 0 0.05275

C2 0.261227 0.658016681 0.818792 1.738036
C3 0.67994 1 0.771812 2.451752
D1 0.364739 0.016255914 0.087248 0.468243
D2 0.185219 0.480984842 1 1.666204
D3 0.580522 0.928338527 0.818792 2.327652

This can be achieved by the method employed in this paper, namely, the mapping method. In
the mapping method, the values of objective functions of all design points are mapped into
intervals 0 and 1. Mapped values of each objective function and sum of them are shown in
Table 2. Using the sum of the mapped values for each design point, the tradeoff point simply
is the one having the minimum sum of those values. Consequently, optimum design point,
C1, is the tradeoff point which has been obtained from the mapping method. Figure 10 shows
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Displacement = 0 mm

(a)

Displacement = 150 mm

(b)

Displacement = 250 mm

(c)

Displacement = 400 mm

(d)

Figure 11: Deformation of optimum design point C1.

the diagram of energy absorption during the crushing time for the design point C1. The shape
of deformation of this design point is shown in Figure 11. These shapes of deformation are at
the time when the end displacement reached the values of 150, 250, and 400 mm.

5. Conclusion

An analytical model based on energy method has been employed for the peak crushing force
of the S-shaped box beams. Using obtained analytical model and Monte Carlo simulation,
genetic algorithm has been used for the robust design of the S-shaped box beams having
probabilistic uncertainties in material and geometrical parameters. In this way, 13 design
points with minimum variance-per-mean ratio of peak crushing force have been obtained.
In order to choose the tradeoff optimum design point, finite-element study using the S4R
element using the commercial software ABAQUS has been performed and energy absorption
capacity of all 13 design points has been computed. The mapping method has been proposed
and used in this paper to find the tradeoff optimum design point and one of 13 design points
has been chosen using this method. The very good behavior of chosen design point indicates
the worthiness of the approach of this paper.
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