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A dynamic machining model to optimize the control of material removal rate (MRR) for a cutting
tool undergoing the considerations of fixed tool life and maximum machining rate is established
in this paper. This study not only applies material removal rate mathematically into the objective
function, but also implements Calculus of Variations to comprehensively optimize the control of
material removal rate. In addition, the optimal solution for the dynamic machining model to gain
the maximum profit is provided, and the decision criteria for selecting the optimal solution of
the dynamic machining model are then recommended. Moreover, the computerized analyses to
simulate both the dynamic and traditional machining models for a numerical example are also
promoted. This study definitely contributes an applicable approach to the dynamic function of
material removal rate and provides the efficient tool to concretely optimize the profit of a cutting
tool for operation planning and control in modern machining industry with profound insight.

1. Introduction

The cutting conditions of a cutting tool have been the most critical variables in the machining
process. Cutting speed, feed rate, and depth of cut were considered as three factors of input
cutting parameters. Liew and Ding [1] have expressed several methods to be used under
stepwise constant variation in feed, speed, or depth of cut, but none is practically applicable
when two or more cutting conditions are changed. Hence, the research of controlling cutting
conditions with fixed material removal rate has been introduced [2, 3]. For most studies with
this viewpoint, the material removal rate is fixed because of the expensive observation of
control. However, through the computer-integrated interface to program the feed rate on
modern computer numerical controlled (CNC) machines [2] with fixed cutting speed and
depth of cut, the material removal rate is capable of being dynamically controlled.
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In addition, Cámara et al. [3] described that tool life is also a critical parameter of the
cutting process. Iqbal et al. [4] proposed a suitable implementation to predict tool life. Ferrer
et al. [5] proposed a method of optimal control to ensure maximum tool life. Kim et al. [6] also
provided a modified Taylor tool life equation to minimize tool cost. However, the maximum
tool life or the minimum tool cost will not guarantee the maximum profit of a cutting tool.
Besides, the various tool inspecting periods for a tool change from different machine tool
operators will decrease the productivity and increase the cost during machining significantly.
In order to well manage the productivity and the consumption of cutting tools, a fixed tool
life is practically considered into the cutting process.

Moreover, the cost to machine each part is a function of the machining time, and the
marginal cost of production is a linear function of production rate. Therefore, the marginal
cost of operation for the machining process is also proposed to be a linear function of the
material removal rate in this study. This explicates that more machining rate causes more
operational cost such as machine maintenance, loading-unloading, and machine depreciation
costs.

According to Zong et al. [7], the dependency of a reliability model on the cutting
conditions is the aim to optimize the manufacturing system [8]. Although several time series
modeling on the control of machining process are mentioned for decision making [9], none is
capable to achieve the maximum profit. They are all emphasizing on the maximum tool usage
or minimum tool cost. Practically, the profit and the productivity of machining operation are
the mostly concerned problems confronting the manufacturing industry. Besides, the need of
operating CNC machines efficiently to obtain the required payback is even greater in the
case of rough machining, since a greater amount of material is removed thus increasing
possible savings [10]. With the reasons above, there is an economic demand to control the
material removal rate of rough machining operation on CNC machines. Thus, the essentiality
of finding the optimal solution to achieve the maximum profit of a cutting tool with fixed tool
life is absolutely arising.

2. Assumptions and Notations

Before formulating the problem, several assumptions and notations are to be constructed.
They are described as follows.

2.1. Assumptions

(1) The cutting process is a continuous rough turning operation with one type of tool.

(2) Each tool performs the same fixed length of cutting time (tool life).

(3) The upper limit of material removal rate is generated from the maximum cutting
conditions suggested in the handbook, and the fixed tool life is derived from the
Taylor’s tool life equation [11] with these maximal conditions. Thus, no tool will
break before this fixed tool life even with the upper limit of material removal rate.

(4) The marginal cost of operation is a linear function of the material removal rate [12].

(5) There is no chattering or scrapping of parts occuring during the machining process.

(6) All chips from cutting and finished parts are held in the machine until a tool change.

(7) All machined parts are paid at a given price immediately at the tool change.
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2.2. Notations

One has the following:

a: average volume of material machined per unit part,

B: upper limit of material removal rate,

c: overall holding cost for unit chip per unit time in the machine, where c = h1 +
(h2/a),

bM′(t): marginal operation cost at the material removal rate M′(t); where b is a
constant,

bM
′2(t): operational cost at time t,

h1: chip holding cost for unit chip per unit time,

h2: part holding cost for unit finished part per unit time,

P : contribution per unit part machined,

[0, T]: controlling time interval of the tool life.

2.3. Decision Functions

One has the following

M(t): cumulated volume of material machined during time interval [0, t],

M′(t): material removal rate at time t.

3. Model Formulation

When considering the machining profit of an individual cutting tool under fixed tool life,
the mathematical model representing the machining profit under dynamic MRR control is
formulated. In the mathematical model; P represents the revenue of each machined product,
T is the selected fixed tool life of a cutting tool, M(t) describes the cumulated amount
of material machined during [0, t], M′(t) illustrates the MRR at time t, M(T) denotes the
cumulated volume of material machined before the fixed tool life T , and a indicates the
average volume of material to be machined per unit part. Therefore, P(M(T)/a) explains
the contribution of an individual cutting tool under the machining operation with a fixed
life T.

Since the marginal operation cost of production is a linear increasing function of
production rate [12], the marginal operation cost of a machine is proposed in direct
proportion to the MRR that is described as bM′(t), where b is the operational constant that
is obtained through the equipment management strategy of the CNC machine. It can often
be evaluated by dividing the initial purchasing cost of the CNC machine from the value
of multiplying the expected life of the machine with the suggested average MRR from the
equipment manufacturer.

Whilst the marginal operation cost of production is a linear increasing function
of production rate and the operational cost is directly proportional to the square of the
production rate [12], the operational cost of a machine is also proposed in direct proportion
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to the square of the material removal rate in this study. Thus,
∫T

0 bM
′2(t)dt signifies the

operational cost during time interval [0, T].
As all chips from cutting and finished products are usually held and stored at

the machine until a tool replacement,
∫T

0 h1M(t)dt denotes the chip holding cost during
time interval [0, T], where h1 is the chip holding cost per unit chip per unit time. And,
∫T

0 h2(M(t)/a)dt denotes the finished part holding cost during time interval [0, T], where h2

is the finished part holding cost per unit finished part per unit time. Therefore, the objective
function and its constraints are listed as shown below:

Max

{

P
M(T)
a

−
∫T

0

[
bM

′2(t) + h1M(t) + h2
M(t)
a

]
dt

}

. (3.1)

Let c = h1 + (h2/a) be the overall holding cost for unit chip per unit time. Thus, the
dynamic machining model is then developed as shown below:

Max

{

P
M(T)
a

−
∫T

0

[
bM

′2(t) + cM(t)
]
dt

}

,

s.t.

M(0) = 0,

M(T) is free,

0 ≤M′(t) ≤ B,

∀t ∈ [0, T].

(3.2)

4. Optimal Solution

Let M∗′(t) and M∗(t) be the optimal solution of the dynamic machining model, and assume
that time interval (0, t̃) is the maximal subinterval of [0,T] satisfying the Euler Equation [12,
13] FM(t,M∗(t),M∗′(t)) = dFM′(t,M∗(t),M∗′(t))/dt.

There are two probable situations to be discussed in this study.

4.1. Situation 1

M∗′(t) will not touch B before T.
The optimal solution for Situation 1 is shown as follows:

M∗′(t) =
c

2b
t +

1
2b

(
P

a
− cT

)
,

M∗(t) =
c

4b
t2 +

1
2b

(
P

a
− cT

)
t.

(4.1)

The detail is developed in Appendix A.



Mathematical Problems in Engineering 5

From (4.1), it is found that the optimal material removal rate, M∗′(t), is a strictly
increasing linear function of t. In addition, by considering the constraint M′(t) ≥ 0 into (4.1)
at t = 0, it is obtained that

cT ≤ P
a
. (4.2)

This denotes that the overall holding cost of unit chip for the period T is smaller than
the contribution per unit material machined. Otherwise, the optimal material removal rate
will touch zero.

Applying the constraint M′(t) ≤ B into (4.1) at t = T , we have

P

a
≤ 2bB. (4.3)

This represents that twice of the marginal cost at upper limit B must be larger than the
contribution per unit material machined. Otherwise, the optimal material removal rate will
touch the upper limit B.

Before solving the optimal solution for Situation 2, one Property is proposed and
illustrated as follows.

Property 1. If the line y = M∗′(t) touches the line y = B, these two lines should overlap to be
y = B from the touch point t̃ to the end point T .

The proof of the Property is illustrated in Appendix B.

4.2. Situation 2

M∗′(t) will touch B at time t̃: t̃ ∈ [0, T).
The optimal solution for Situation 2 is shown as follows:

t̃ = T − 1
c

(
P

a
− 2bB

)
,

M∗′(t) =

⎧
⎪⎨

⎪⎩

c

2b
t +

1
2b

(
P

a
− cT

)
, if t ∈

[
0, t̃
]
,

B, if t ∈
(
t̃, T
]
,

(4.4)

M∗(t) =

⎧
⎪⎨

⎪⎩

c

4b
t2 +

1
2b

(
P

a
− cT

)
t, if t ∈

[
0, t̃
]
,

M
(
t̃
)
+ B
(
t − t̃

)
, if t ∈

(
t̃, T
]
.

(4.5)

The detail is developed in Appendix C.
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4.3. Decision Criteria

From (4.4) and (4.5), the maximum value of M∗(t) is found at t̃ = 0 when t = T . Therefore,
the following criteria are then made.

When P/a ≤ 2bB, it means that t̃ ≥ T . This denies the assumption of Situation 2. It is
that the optimal material removal rate will not reach the upper limit B within the tool life.
The optimal solution is Situation 1.

When P/a > 2bB, it means that t̃ < T . This is that the optimal material removal rate
will reach the upper limit B within the tool life. Therefore, the optimal solution is Situation 2.

5. Computerized Analyses

For a specific turning operation, there are bounds for cutting conditions suggested in the
machining handbook. Therefore, there must exist a maximum material removal rate U and
a minimum material removal rate L derived from the maximum and the minimum cutting
conditions, respectively. Each material removal rate between U and L can feasibly be selected
as the upper limit B for the dynamic machining model. From the well-known Taylor’s
expression of the tool life [8], it is then modified as B × Tn = k, when the cutting speed
and depth of cut are selected fixed. Therefore, with this reconstructed equation, each fixed
tool life T is then obtained with respect to every feasible upper limit B selected. Thus, for
each feasible upper limit, there exist an optimal profit for the dynamic machining model. In
addition, the traditional machining model with a fixed MRR between U and L is also potential
to be optimal. To locate the maximum profit solution among all these possibilities, a computer
program written in MATLAB to analyze the problem is then constructed. The concept of the
flow chart is shown as follows: P, a, b, c, U, L, n, k should be given before the following
algorithm. Initialize B = L.

Step 1. Compute T for both models, then compute the profit

Ob = P(BT/a) −
(
bB2T + (cB/2)T2

)
(5.1)

and the production quantity Q = BT/a for the traditional model.
Go to Step 2.

Step 2. Plot C(B,Ob) and F(B,Q), then go to Step 3.

Step 3. If P/a > 2bB, go to Step 5.
Otherwise, go to Step 4.

Step 4. Compute the profit

Ob = (PM(T)/a) −
∫T

0

[
bM

′2(t) + cM(t)
]
dt (5.2)

and the production quantity Q =M(T)/a for Situation 1 of the dynamic model.
Go to Step 6.
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Step 5. Compute t̃, the profit

Ob = (PM(T)/a) −
∫ t̃

0

[
bM

′2(t) + cM(t)
]
dt −

∫T

t̃

[

bB2 + c

(

M
(
t̃
)
+
∫ t

t̃

Bdt

)]

dt (5.3)

and the production quantity Q =M(T)/a for Situation 2 of the dynamic model.
Go to Step 6.

Step 6. Plot C(B,Ob) and F(B,Q), then go to Step 7.

Step 7. If B ≥ U, stop the program.
Otherwise, set B = B + 0.05 as initialize, and return to Step 1.

6. Simulated Results

With a machining project from AirTAC Corporation in Taipei, Taiwan, the numerical example
referenced to a rough turning operation of specific cylindrical parts with step diameters is
studied. The machining operation is assigned to a CNC lathe with FANUC controller. All
data collected are transformed and listed as follows:

P = 13.00 dollars (US), a = 1.00 in3, b = 1.05
dollars (US) −min

in3
,

c = 0.03
dollars (US)

in3
, U = 12.00

in3

min
, L = 10.00

in3

min
,

n = 0.2, k = 16.0.

(6.1)

The simulated results of the MATLAB program are presented as the profit analysis
and production quantity analysis in Figures 2 and 3, respectively. From Figure 2, it is noticed
that the dynamic model is superior to the traditional model on the aspect of profit, when
the selected upper limit B exceeds approximately 10.45 (in3/min). In addition, the profit of
dynamic model is much more steady within the whole range of allowable machining rate,
since the profit of traditional model is greatly decreasing as the MRR increases. Therefore,
it is educed that the dynamic machining model is much more profitable than the traditional
machining model for the higher range of machining rate, which is usually used in the real-
world machining industry for higher productivity.

From Figure 3, it is also observed that the production quantity of a cutting tool
under dynamic function is always less than what is under traditional control. However, as
the machining rate increases, the difference of production quantity between two models is
discovered to be decreasing. Thus, it is derived that the dynamic function will turn more
competitive to the traditional control on the aspect of production quantity and productivity
for the higher range of machining rate.

With the analyses of the dynamic model above, when there is a need for the cutting
tool to acquire other productivity than the maximum profit solution, it is always feasible to
slightly compromise on the profit for the required productivity. This will fractionally change
the profit, but satisfactorily increases the productivity for the dynamic machining model.
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y = B

y =M∗′ (t)

t (time)

t̃ T

Cannot
happen

Figure 1: Possible condition of lines y = B and y =M∗′ (t).
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Figure 2: Profit analysis of a cutting tool with different models.

7. Conclusions

The tool life, operational cost, holding costs, contribution per unit part machined, average
volume of material machined per unit part, and upper speed limit are considered
simultaneously to dynamically optimize the control of material removal rate. It is an
extremely hard-solving and complicated issue. However, through the dynamic machining
model, the problem becomes concrete and solvable.

In addition, four characteristics of the dynamic machining model are illustrated as
follows. First, the optimal material removal rate M∗′(t) is a strictly increasing linear function
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Figure 3: Production quantity analysis of a cutting tool with different models.

of t before reaching the upper limit B. Second, by PROPERTY, if the optimal material removal
rate M∗′(t) touches the upper limit B, it will stay to be B for the rest of tool life T. Third, by
(4.2), the overall holding cost of unit chip for the tool life period T must be smaller than the
contribution per unit material machined. Otherwise, the optimal material removal rate will
touch zero. Fourth, with (4.3), two times of the marginal cost at upper limit B must be larger
than the contribution per unit material machined. Otherwise, the optimal material removal
rate will touch the upper limit B.

Moreover, from the computerized analyses and numerical simulation with the
MATLAB program, the four remarks are then provided. First, the dynamic model receives
much more balanced profit than the traditional model within the whole range of allowable
machining rate. Second, the dynamic machining model is much more profitable than the
traditional machining model for the higher range of machining rate. Third, when the
machining rate increases, the difference of production quantity between two models will
decrease. Fourth, when there is a need to obtain higher productivity than the optimal
solution, it is always feasible for the dynamic machining model to slightly compromise on the
profit in achieving the productivity. With these remarks above, the applicability and flexibility
of the dynamic machining model are significantly expended.

The material removal rate is an important control factor of machining operation, and
the control of machining rate is also critical for production planning. This study not only
delivers the idea of controlling the material removal rate to the machining technology, but
also leads a cutting tool towards to achieve maximum profit. This study focuses on the
modeling and optimization of the MRR in CNC turning. Future researches with the cutting
experiments to prove the proposed model as well as the modeling of dynamic optimization
on multitool machining process and machining project control are absolutely encouraged. In
summary, this study surely generates a reliable and applicable concept of machining control
to the techniques, and also provides a better and practical solution to this field.
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Appendices

A. Appendix A

The optimal solution for Situation 1.
Suppose that the material removal rate M∗′(t) will not reach the upper limit B before

tool life T.
From the Euler Equation [12, 13], FM(t,M∗(t),M∗′(t)) = dFM′(t,M∗(t),M∗′(t))/dt, it

is derived that

c =
d

dt

(
2bM∗′(t)

)
. (A.1)

There is a constant k1 satisfying

M∗′(t) =
c

2b
t + k1, ∀t ∈

[
0, t̃
)
. (A.2)

With the transversality condition of salvage value for free end value M(T) [12, 13], it
is obtained that

M∗′(T) =
P

2ab
(A.3)

Integrating (A.2) with t, then

M∗(t) =
c

4b
t2 + k1t + k2 (A.4)

Using the boundary condition M(0) = 0 and (A.4), we have

k2 = 0 (A.5)

Comparing (A.3) and (A.2) at t = T , hence

k 1 =
1

2b

(
P

a
− cT

)
(A.6)

Substituting (A.5) and (A.6) into (A.2) and (A.4), the optimal solution for Situation 1
is then derived.

B. Appendix B

The proof of Property.

Proof. From (4.1), the optimal material removal rate M∗′(t) is a strictly increasing linear
function of t. It holds for any subinterval of [0, T] subject to 0 ≤ M∗′(t) ≤ B. Therefore, the
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straight line in the time interval [t̃, T] (shown in Figure 1) cannot exist, because it contradicts
the Euler Equation [12, 13] to be a decreasing linear function of t, the PROPERTY is then
verified.

C. Appendix C

The optimal solution for Situation 2.
It is assumed that the material removal rate M∗′(t) will touch the upper limit B before

tool life T. Before reaching the upper limit, the optimal solution for Situation 1 is satisfied for
this situation either.

The objective function of the dynamic machining model is then modified as

Max

{
PM(T)

a
−
∫ t̃

0

[
bM′2(t) + cM(t)

]
dt −

∫T

t̃

[

bB2 + c

(

M
(
t̃
)
+
∫ t

t̃

B dt

)]

dt

}

= −Min

{∫ t̃

0

[
bM

′2(t) + cM(t)
]
dt + bB2

(
T − t̃

)
+ cM

(
t̃
)(
T − t̃

)
+
cB

2

(
T2 − t̃2

)

−cBt̃
(
T − t̃

)
− P
a
M
(
t̃
)
− P
a
B
(
T − t̃

)}

.

(C.1)

With the transversality condition of salvage value for free end point t̃ [12, 13] and
Property; the time t̃ to reach the upper limit is derived.

Thus, with t̃ and the Property; the optimal solution for Situation 2 is then obtained.
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