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Given a family of linear systems depending on a parameter varying in a differentiablemanifold, we
obtain sufficient conditions for the existence of a (global or local) differentiable family of controllers
solving the output regulation problem for the given family. Moreover, we construct it when these
conditions hold.

1. Introduction

The output regulation problem arose as one of the main research topics in linear control
theory in the 1970s. This problem considers controlling a given plant such that its output
tracks a reference signal or rejects a disturbance. The reference and disturbance signals are
typically generated by an external system called exosystem. The output regulation problem
for linear time-invariant systems has been well studied by many authors like, for example,
[1–8]. Usually, these LTI systems are obtained by linearizing around an operating point or by
using system identification techniques. However, in some cases this approach is restrictive,
and it would be better to allow the system to depend differentiably on a specific parameter.
We think that this situation is interesting to consider and, in this case, the controller must
be able to maintain the properties of closed-loop stability and output regulation when it is
modelled as a global or a local differentiable family. We notice that recently a regulator design
approach based on the parameterization of a set of controllers that can achieve regulation for
switched bimodal linear systems has been presented in [9].

Thus, we lead to the quite general question of whether pointwise solvability implies
the existence of a nicely parameterized solution [10]. There is an abundance of literature
concerning global parameterized families of linear systems, and in particular the key point of
global pole assignment, mainly when pointwise controllability holds.
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For a general introduction to families of linear systems, see, for example, [11]. Some
problems that justify the study of families of systems are presented there, and one tackles
the classification of families (fine moduli spaces), the existence of global canonical forms,
and some others. In fact, [11] deals with a more general class of families of linear systems in
terms of bundles over the space of parameters, which includes the parameterized ones. An
alternative generalization is the consideration of systems over rings, that is to say, pairs of
matrices with entries on a commutative ring. The particular case of parameterized families
arise, when rings of functions defined in the space of parameters are considered. See [12] for
a general introduction and [10] for a survey and many references mainly centered on control
and stabilization problems.

In particular, the global pole assignment of parameterized families has been widely
studied (see, e.g., [10]), always under the hypothesis of pointwise controllability. The
problem is solved in [13, 14] by means of algebrogeometric and algebraic techniques,
respectively, if provided constant controllability indices. Other conditions are considered,
for example, in [15] (constant rank of B, ring controllability) or in [16] (one-dimensional
manifold of parameters).

The general case of nonnecessarily pointwise controllable families is solved in [17]. In
fact, it provides a general machinery for extending the local case to the global parametrical
one if one has a geometrical description of the construction in the constant case. Notice that
this method does not need further references to algebrogeometric or algebraic techniques,
so that it seems more accessible to engineers. Here, we show that this machinery is also
applicable to more sophisticated problems, such as the construction of global families of
suitable controllers.

Secondly, we tackle the same problem for local differentiable perturbations of the
systems, that is to say, for parameterized families defined not globally on a (contractible)
manifold but locally in some neighborhood of the original point. The pointwise construction
is easily extended for the controllable case, but up to our knowledge no technique exists
for the general case (beyond the trivial approach as the restriction of a global family). In
this sense, a significative contribution is [18], where one proves that local differentiable pole
assignment exists (even for the noncontrollable case) without any pointwise hypothesis on
the local family of perturbations, in contrast with the global case above. The proof is based in
the use of Arnold’s techniques, reducing the problem to a suitable versal deformation of the
central system. Here we show that this quite surprising result can be used in more complex
processes, such as the output regulation.

In summary, this work deals with the existence of differentiable families of controllers
following the pattern in [4], both for global and local families of systems. In particular, we
assume that the hypotheses there hold. We will denote them by (F1)–(F7) (see Theorem 2.1),
and we add (’) for the natural generalization to parameterized families (see Theorems 3.3 and
4.2). We remark (see [4]) that (F1)–(F6) either involve no loss of generality or are necessary
for the existence of the controller.

As we have pointed out, the assumptions concerning controllability or detectability
of a system are easily transferred from the pointwise case to parameterized families.
Obstructions arise when subsystems are considered and in general for geometrical
conditions. The key tools are the techniques in [17] for the global case and the results in
[18] for the local one.

The paper is organized as follows. First we present, as a reminder, the main result
in [4], emphasizing the pointwise hypotheses that will be considered later. In the following
sections we deal with the global and the local cases.
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Notations R and C denote the fields of real and complex numbers, respectively. C+ is
the closed right-half complex plane and C

− is the open left-half one. If v1, . . . , vs are vectors
of R

n, then [v1, . . . , vs] denotes the subspace spanned by them. We write Mn,m(R) for the
vector space of matrices with n rows andm columns with entries in R. We identifyMn,n+m(R)
with the pairs of matrices Mn,n(R) × Mn,m(R). If A is a matrix, At is its transpose matrix. I
denotes the identity matrix and Ik the identity k-matrix. σ(·) denotes the spectrum of the
corresponding matrix or pairs of matrices, each eigenvalue being repeated as many times as
its multiplicity. For linear spaces R and S, R ∼= S means that R and S are isomorphic and
Hom(R,S) is the linear space of all linear maps R → S.

2. Preliminaries: The Nonparameterized Case

In this section, we summarize the problem and the results stated in [4], which have been the
basis of our work. This reference deals with the regulation of the linear system represented
by

ẋ1 = A1x1 +A3x2 + B1u,

ẋ2 = A2x2,

y = C1x1 + C2x2,

z = D1x1 +D2x2,

(2.1)

where x1 is the plant state vector, u the control input, x2 the vector of exogenous signals, y the
vector of measurements available for control, and z the output to be regulated. These vectors
belong to fixed finite-dimensional real linear spaces X1, U, X2, Y, and Z, of dimensions n1,
m, n2, ny, and nz, respectively; the linear maps or real matrices A1,A2, A3, B1, C1, C2,D1, and
D2 are time-invariant.

The objective is to construct a controller modelled by the equations

ẋc = Acxc + Bcy,

u = Fcxc +Gcy,
(2.2)

where xc is the compensator state vector, which belongs to a finite-dimensional real linear
spaceXc, and the linear mapsAc, Bc, Fc, andGc are time-invariant. This systemmust achieve
two properties: closed-loop stability and output regulation of the associated closed loop
defined as

ẋL = ALxL + BLx2,

z = DLxL +D2x2,
(2.3)
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where

xL =

(
x1

xc

)
, XL = X1 ⊕ Xc,

AL =

(
A1 + B1GcC1 B1Fc

BcC1 Ac

)
, BL =

(
A3 + B1GcC2

BcC2

)
, DL =

(
D1 0

)
.

(2.4)

Closed-loop stability means that AL is stable, that is, σ(AL) ⊂ C
−, and output regulation means

that z(t) → 0 as t → ∞ for all xL(0) and x2(0).
We next introduce the mathematical setting used in [4]. For any linear space R, bring

in the linear space R = Hom(X2,R). Given maps A : X → X and C : X → Y, define,
respectively, the linear maps A : X → X and C : X → Y by

AX = AX −XA2, CX = CX, X ∈ X. (2.5)

Analogous notation will be used for the subsystems involved in the construction.
Now we state the main result obtained in [4].

Theorem 2.1 (see [4]). Assume that

(F1) σ(A2) ⊂ C+,

(F2) ImC1 + ImC2 = Y,
(F3) ImD1 = Z,

(F4) (A1, B1) is stabilizable,

(F5) (C1, A1) is detectable,

(F6) (C,A) is detectable, where A =
(

A1 A3
0 A2

)
and C = ( C1 C2 ).

Then, a controller exists if and only if

(F7)
(

A3
D2

)
∈ Im

(
A1 B1
D1 0

)
.

Following [4] again, an algorithm to compute a controller can be organized into the
following four steps.

Step 1. Select Bc so that A − BcC is stable.

Step 2. Select F1 so that A1 + B1F1 is stable.

Step 3. Select F2 so that

(
A3 + B1F2

D2

)
∈ Im

(
A1 + B1F1

D1

)
. (2.6)

Step 4. Set Fc = (F1 F2), Ac = A − BcC + BFc, and Gc = 0.
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3. The Globally Parameterized Case

Our aim is to generalize the above results when the involvedmatrices depend on a parameter
varying in a differentiable manifold. That is to say, we consider a family of linear systems
depending differentiably on a parameter, and we study sufficient conditions to ensure the
existence of a differentiable solution of the output regulation problem for the given family.

Thus, we consider a differentiable family of linear systems modelled by the equations

ẋ1 = A1(τ)x1 +A3(τ)x2 + B1(τ)u,

ẋ2 = A2(τ)x2,

y = C1(τ)x1 + C2(τ)x2,

z = D1(τ)x1 +D2(τ)x2,

(3.1)

or, equivalently, it will be represented by a differentiable family of matrices
(A1(τ), A2(τ), A3(τ), B1(τ), C1(τ), C2(τ), D1(τ), D2(τ)).

To this end, basic tools are introduced in [19]. More specifically, we will need the
following result.

Lemma 3.1. LetM be a contractible manifold. If A(τ), τ ∈ M, is a differentiable family of q × p real
matrices having constant rank and v(τ), τ ∈ M, a differentiable family of vectors in ImA(τ) ⊂ R

q,
then there exists a differentiable family of vectors u(τ) ∈ R

p such that

A(τ)u(τ) = v(τ) (3.2)

for any τ ∈ M.

Proof. In [19, (IV-1-6)], it is proved that ImA(τ) and KerA(τ) are differentiable families of
subspaces of R

q and R
p, respectively. Then, from [19, (IV-2-3)], we can choose differentiable

families u1(τ), . . . , us(τ) of linearly independent vectors such that

R
p = KerA(τ) ⊕ [u1(τ), . . . , us(τ)] (3.3)

for every τ ∈ M. Clearly A(τ)u1(τ), . . . , A(τ)us(τ) is a differentiable basis of ImA(τ). So, the
coordinates of v(τ) in this basis vary differentiably, that is, there exist differentiable families
a1(τ), . . . , as(τ) of real numbers such that

v(τ) = a1(τ)A(τ)u1(τ) + · · · + as(τ)A(τ)us(τ). (3.4)

Finally, it suffices to take

u(τ) = a1(τ)u1(τ) + · · · + as(τ)us(τ). (3.5)
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In addition, we will use the following result from [17], where these tools are applied
to prove the existence of a global parameterized pole assignment. Recall that if M is a
contractible manifold and (A(τ), B(τ)), τ ∈ M, is a differentiable family of pairs of matrices
ofMn,n+m(R), the family (A(τ), B(τ)) has constant Brunovsky type if

(i) the controllability indices are constant,

(ii) the Jordan invariants have constant type, that is to say, the number of distinct
eigenvalues and the list of sizes of the Jordan blocks corresponding to different
eigenvalues are independent of τ .

Theorem 3.2 (see [17]). Let M be a contractible manifold, (A(τ), B(τ)), τ ∈ M, a differentiable
family of pairs of matrices of Mn,n+m(R) having constant Brunovsky type, λ1(τ), . . . , λq(τ) ∈
C giving the distinct eigenvalues of (A(τ), B(τ)), and m1, . . . , mq their respective algebraic
multiplicities. If μi(τ) ∈ C, 1 ≤ i ≤ s, is a set of maps closed under conjugation, then there exists
a differentiable family of matrices F(τ) ∈ Mm,n(R) such that the eigenvalues ofA(τ) + B(τ)F(τ) are
μ1(τ), . . . , μs(τ), λ1(τ), . . . , λq(τ), with the latter having multiplicitiesm1, . . . , mq.

These results allow us to study the existence of a global differentiable family of
controllers. In the next section we address the local case.

Theorem 3.3. Let M be a contractible manifold and (A1(τ), A2(τ), A3(τ), B1(τ), C1(τ), C2(τ),
D1(τ), D2(τ)), τ ∈ M, a differentiable family of linear systems verifying that for any τ ∈ M

(F1’) σ(A2(τ)) ⊂ C+,

(F2’) ImC1(τ) + ImC2(τ) = Y,
(F3’) ImD1(τ) = Z,

(F4’) (A1(τ), B1(τ)) is stabilizable,

(F5’) (C1(τ), A1(τ)) is detectable,

(F6’) (C(τ), A(τ)) is detectable,

(F7’)
(

A3(τ)
D2(τ)

)
∈ Im

(
A1(τ) B1(τ)
D1(τ) 0

)
.

Then, there exists a global differentiable family of controllers (Ac(τ), Bc(τ), Fc(τ), Gc(τ)) if,
when τ varies inM, one has:

(i) (C(τ), A(τ)) has constant Brunovsky type,

(ii) (A1(τ), B1(τ)) has constant Brunovsky type,

(iii) rank
(

In2⊗A1(τ)−A2(τ)
t⊗In1 In2⊗B1(τ)

In2⊗D1(τ) 0

)
is constant.

Proof. Let us see that conditions (i), (ii), and (iii) allow us to transfer the pointwise algorithm
in [4] summarized in the above section to the parameterized case.

Step 1. If condition (i) holds, we can select a differentiable family Bc(τ) such that A(τ) −
Bc(τ)C(τ) is stable, for any τ ∈ M, by means of Theorem 3.2: λ1(τ), . . . , λq(τ) ∈ C

− because of
(F6’), so that it suffices to take μ1(τ), . . . , μs(τ) ∈ C

−.

Step 2. Analogously, if condition (ii) holds, we can select a differentiable family F1(τ) such
that A1(τ) + B1(τ)F1(τ) is stable, for any τ ∈ M.
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Step 3. By hypothesis (F7’),

(
A3(τ)
D2(τ)

)
∈ Im

(
A1(τ) B1(τ)
D1(τ) 0

)
, (3.6)

and with rank
(

A1(τ) B1(τ)
D1(τ) 0

)
being constant (because of condition (iii)) it is guaranteed that

the dimension of this subspace is constant in M. Using the Kronecker product and the vec-
function, this condition can be reformulated as condition (iii) in terms of thematrices defining
the system.

Right multiplying by matrix
(

I 0
F1(τ) I

)
, this dimension does not change and hypothesis

(F7’) turns to

(
A3(τ)

D2(τ)

)
∈ Im

(
A1(τ) + B1(τ)F1(τ) B1(τ)

D1(τ) 0

)
. (3.7)

Then, from Lemma 3.1 there exist differentiable families X(τ), Y (τ) such that

(
A3(τ)

D2(τ)

)
=

(
A1(τ) + B1(τ)F1(τ) B1(τ)

D1(τ) 0

)(
X(τ)

Y (τ)

)
(3.8)

or, equivalently,

A3(τ) − B1(τ)Y (τ) =
(
A1(τ) + B1(τ)F1(τ)

)
X(τ),

D2(τ) = D1(τ)X(τ).
(3.9)

Therefore, taking F2(τ) = −Y (τ), we have

(
A3(τ) + B1(τ)F2(τ)

D2(τ)

)
∈ Im

(
A1(τ) + B1(τ)F1(τ)

D1(τ)

)
(3.10)

for any τ ∈ M.

Step 4. Set Fc(τ) = (F1(τ) F2(τ)), Ac(τ) = A(τ) − Bc(τ)C(τ) + B(τ)Fc(τ), Gc(τ) = 0.
Clearly, they are differentiable families in M, and, from Theorem 2.1, they define a

controller for any τ ∈ M.

4. The Locally Parameterized Case

In this section, we tackle the local case, that is, we deal with local differentiable families. This
means that the parameter varies only in an open neighborhood of the origin of R

k.
Similarly to the global case, we will use the existence of a local differentiable family of

pole assignments for a local differentiable family of stabilizable pairs. As above, a pointwise
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construction does not guarantee the differentiability of the family of feedbacks. It is so by
means of the following result, based on the Arnold’s techniques about versal deformations.

Theorem 4.1 (see [18]). Let (A,B) ∈ Mn,n+m(R) be a stabilizable pair and (A(τ), B(τ)), τ ∈ V ,
a local differentiable family of pairs with (A(0), B(0)) = (A,B). Then there is a local differentiable
family of feedbacks F(τ) ∈ Mm,n(R), defined in some open neighborhood of the origin W ⊂ V , such
that σ(A(τ) + B(τ)F(τ)) ⊂ C

−.

Finally, we apply this result to our output regulation problem.

Theorem 4.2. Let (A1(τ), A2(τ), A3(τ), B1(τ), C1(τ), C2(τ), D1(τ), D2(τ)) be a differentiable
family of linear systems defined in some open neighborhood of the origin V ⊂ R

k. Assume that, for any
τ ∈ V ,

(F1’) σ(A2(τ)) ⊂ C+,

(F2) ImC1 + ImC2 = Y,
(F3) ImD1 = Z,

(F4) (A1, B1) is stabilizable,

(F5) (C1, A1) is detectable,

(F6) (C,A) is detectable,

(F7’)
(

A3(τ)
D2(τ)

)
∈ Im

(
A1(τ) B1(τ)
D1(τ) 0

)
.

Then, there exists a local differentiable family of controllers (Ac(τ), Bc(τ), Fc(τ), Gc(τ)) in
some open neighborhood of the originW ⊂ V if, when τ varies in V , one has:

(iii) rank
(

In2⊗A1(τ)−A2(τ)
t⊗In1 In2⊗B1(τ)

In2⊗D1(τ) 0

)
is constant.

Proof. It is easy to adapt the proof of Theorem 3.3 bearing in mind the following remarks.
Notice that hypotheses (F2) and (F3) mean, respectively, that matrices (C1 C2) and

D1 have maximal rank. Hence, matrices (C1(τ) C2(τ)) and D1(τ) have maximal rank for
any τ small enough or, equivalently,

ImC1(τ) + ImC2(τ) = Y, ImD1(τ) = Z. (4.1)

In a similar way, since the set of detectable pairs is open, hypothesis (F5) guarantees
that pairs (C1(τ), A1(τ)) are detectable for τ small enough.

Moreover, hypotheses (F4) and (F6) allow us to apply Theorem 4.1 in the first two
steps of the synthesis algorithm. Notice that, thanks to Theorem 4.1, hypotheses (i) and (ii)
can be avoided. Finally, for Step 3 we use (F7’) and (iii) as in the proof of Theorem 3.3.
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