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An array of nonidentical and locally connected chaotic biological neurons is modelled by a single
representative chaotic neuron model based on an extension of the Hindmarsh-Rose neuron. This
model is then employed in conjunction with the unscented Kalman filter to study the associated
state estimation problem. The archetypal system, which was deliberately chosen to be chaotic,
was corrupted with noise. The influence of noise seemed to annihilate the chaotic behaviour.
Consequently it was observed that the filter performs quite well in reconstructing the states of
the system although the introduction of relatively low noise had a profound effect on the system.
Neither the noise-corrupted process model nor the filter gave any indications of chaos. We believe
that this behaviour can be generalised and expect that unscented Kalman filtering of the states of a
biological neuron is completely feasible even when the uncorrupted process model exhibits chaos.
Finally the methodology of the unscented Kalman filter is applied to filter a typical simulated ECG
signal using a synthetic model-based approach.

1. Introduction

Oscillatory signals in the cardiovascular region either originate directly from the sinoatrial
node or one of the neurons as an action potential traverses to the ventricle myocytes.
Alternatively they are functions or weighted sums of action potentials arising at spatially
distributed points. To consider a range of oscillatory measurements in the cardiovascular
region, it is important to consider the output of typical neuronal cell.

Neural information is mainly encoded in various firing patterns of a neuron, such as
periodic spiking (or bursting) and chaotic spiking (or bursting), travelling among coupled
neurons within a physiological domain of neurons such as the heart. The “action potential”
is a spontaneously and rhythmically produced electrical impulse in a membrane of neuron
cell that occurs during the firing of the neuron due to an exchange of charged ions inside
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and outside a neural cell. Although not a definition, a dynamic system may be considered
chaotic if it exhibits (i) sensitive dependence on the initial conditions and (ii) a number of
dense orbits with a multiplicity of periods for a range of parameters. Two nonlinear dynamic
systems with chaotic responses can sometimes exhibit the phenomenon of synchronization
when the responses of the two lock in and seem to drive each other with a common feature
such as the phase, phase-lag, amplitude, and envelope or even some generalised property
that can be described in terms of a functional of the features of the response. Physiological
observations have confirmed the existence of synchronous motion of neurons in different
areas of the heart (Elson et al. [1], Pinto et al. [2], and Szucs et al. [3]). Synchronization of
neurons is possible when a single neuron faithfully encodes the timing of successive peaks,
burst, or spikes and a group of neurons can respond collectively to a common synaptic
current. Moreover, a group of interacting coupled neurons can display various synchronous
cardio-vascular rhythms. Several types of synchronization of coupled neurons have been
studied under the influence of parameter changes and it is observed that when the coupling
strength is above a critical value, certain synchronization mechanisms between neurons can
be achieved. This applies both to bursting neurons as well as to neurons exhibiting periodic
spikes. The presence of noise can have a profound effect and can enhance synchronization
between neurons under certain conditions. Thus it was felt that one could employ a nonlinear
filter such as the unscented Kalman filter (UKF) to estimate the states and parameters of an
archetypal neuron.

In this paper the state and parameter estimation of an array of nonidentical, locally
connected chaotic biological neuronal models is considered. It is known that, under certain
conditions, even a single biological neuron can exhibit chaotic behaviour. Chaos may be
achieved by introducing the nonlinear effects of the chemical and electrical synapses.
Alternately, the chaotic behaviour of the single biological neuron is achieved by driving it
with periodic excitations. The global behaviour of an array of biological neurons may then be
investigated by considering a spatial distribution of identical neurons, where spatiotemporal
chaos emerges, as well as in presence of spatial diversity, generated by a distribution law
which could be stochastic or chaotic. In the latter case, it has been observed that the
introduction of spatial disorder enhances the self-organization or synchronisation capability.
In particular, in agreement with the results presented in the works of Elson et al. [1],
Pinto et al. [2], and Szucs et al. [3], the introduction of spatial diversity generated by
such a distribution leads to an improvement in synchronization. While the phenomenon
of synchronization in dynamics has been observed over a long time, two or more chaotic
systems can be synchronized by linking them with mutual coupling or with a common signal
or signals. Ideal synchronisation could be induced by mutually coupling a pair of identical
chaotic systems when all trajectories converge to the same value and remain in step with
each other during further evolution. Linking chaotic systems given by identical differential-
dynamic models but with different system parameters can lead to practical synchronization
involving phase synchronization. Initially unexcited biological neural models, subsequently
externally excited by periodic oscillators, can synchronize both in chaotic and periodic
regimes. Provided the amplitudes and frequencies of certain modes are within certain
limits, it has been observed that a number of independent neurons can exhibit periodic
or chaotic behaviour and achieve a regime of complete synchronization including phase
synchronization.

In this paper, we consider a typical extended four-state Hindmarsh-Rose (HR) model
(Hindmarsh and Rose, [4]) as a representation of an ensemble of biological neurons. This is
preferred over the two-dimensional map model of Rulkov [5] and Shilnikov and Rulkov
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[6] although the map may be easier to implement in a filter. The neuron model was
subjected to the same type of periodic forcing as the biological neurons. The autonomous
periodic bursting pattern of the four-dimensional neuron model was observed to be similar
to a biological neuron. The fact that HR model represents an ensemble of biological
models is accounted for by introducing low-level process noise. Thus both the process and
measurement were assumed to be corrupted by the introduction of very low levels of white
noise. The noise had a profound effect on the response of the model as it seemed to annihilate
the chaos. The unscented Kalman filtering method was applied to estimate the states of the
model. It was observed that the filter performs quite well in reconstructing the states the
system, which was deliberately chosen to be chaotic. Neither the filter nor the noise corrupted
process model gave any indications of chaos.

Finally the methodology is applied to the Electro-cardiogram (ECG) measurements
which are modelled as oscillatory signals using a synthetic model first proposed by McSharry
et al. [7]. Like the Hindmarsh-Rose model, it exhibits limit cycle oscillations and chaos and
can represent the primary characteristic (P, Q, R, S, T) points in an ECG. The methodology
of the UKF is used to filter and reconstruct a measured ECG signal and validated by
simulation.

2. Chaotic Model of a Neuron

The analysis of biological neurons had that shown they could be modelled with only three or
four states, we chose initially to use a familiar simplified model put forward by Hindmarsh
and Rose [4]. The general form of this model contains three terms:
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It is hard to establish a one-to-one correspondence between the states of the HR neuron and
the states of a biological neuron. Yet the HR neuron model seems to reproduce the overall
behaviour of the action potential fairly accurately. After appropriate scaling, the output of the
HR neuron model can be made to lie within the same nominal limits as a biological neuron,
−65 mV < V < 20 mV. Furthermore the other principal states of the HR neuron show the
same behaviour as the principal compartmental currents and gating variables that can be
established by considering the diffusion of ionic charge carriers from one compartment to the
other. The net result of this type of diffusion is the generation of a potential difference, across
the two compartments which can be described by the Nernst equation. For this reason the HR
neuron may be employed as a representative model for constructing reduced order observers
of the neuron dynamics. The three equations in (2.1) represent the original HR model where
x(t) corresponds to membrane voltage, y(t) represents a “fast” current and by making μ� 1,
z(t) a “slow” current. These three equations (the 3-state model) can produce several modes
of spiking-bursting activity including a regime of chaos that appears similar to that seen in
biological neurons. However, the parameter space for the chaotic behaviour is much more
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restricted than that we observe in real neurons. Following Szucs et al. [3], the chaotic regime
is greatly expanded by incorporation of the fourth term into the model:
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where, Isin(t) = A sin(2ft) and ν = 0.0004.
Adding the term w(t) to introduce an even slower process (ν < μ � 1) is

intended to represent the dynamics of intracellular Calcium2+ (Ca2+) ions. To couple the
additional equation to the original three-state HR model, a −g∗w(t) term is included in the
second equation. When this term is taken into account, the model produces simulations of
intracellular activity that are even more similar to the biological observations. However it is
not known yet if the w(t) term actually represents Ca2+ ion kinetics in sinoatrial node (SAN)
and ventricular neurons and numerical simulations are currently under way to compare Ca2+

transients in HR neurons using realistic biological models. Because of its relative simplicity,
the extended HR model was extremely useful in constructing a simulation model that could
perform the computations necessary to emulate SAN neurons in real-time. A similar model
has been employed by Mayer et al. [8] to model thalamocortical circuits. Although this
simplified model is difficult to compare with biological neurons which are made up of a
multitude of individual conductance and compartments, we expect the model to provide us
with the experience in estimating the states of a real biological model. Since the estimation
of these states and parameters is crucial in establishing physiological mechanisms, we also
developed several multicompartmental type models that provide a more biologically realistic
representation of the nonlinear voltage-current relations than that of Hindmarsh and Rose.
Röbenack and Goel [9], and Goel and Röbenack [10] demonstrated that it was possible to
reconstruct the currents and gate dynamics from measurements of the action potential by
using a “reduced order observer.” An observer is an electronic circuit that is expected to
reconstruct the internal dynamics of a system, whatever the nature of the dynamics may
be, solely from the measurements, in such way that the error between the actual signal
and its reconstruction is asymptotically stable. Goel and Röbenack employed a four- and
a six-state model to construct their observer. While in this work the HR neuron model has
been employed to demonstrate the viability of successfully observing the state of a neuron,
the application of the methodology to a multicompartmental biologically inspired model
will presumably facilitate the reconstruction of the internal dynamics within the cell using
measurements of the action potential. We accordingly employed a modified Hodgkin and
Huxley type (Hodgkin and Huxley, [11]) seven-state model to reconstruct all the states of
the system. When this model, as well as several other biologically inspired models, was
used to construct UKF-based state estimators from a biological neural measurement in
our first attempt, all of these models exhibited filter instability. Further analysis indicated
that this could be due to one of three reasons: (i) the chaotic nature of the dynamics (ii)
unobservability due to inadequate measurements, and (iii) the nonlinear functions arising
from the Nernst equations for the compartmental currents due to the ionic concentrations
and the sigmoid-like functions associated with the gate time constants and final values,
which must lie within the prescribed final values. The question of unobservability was
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dealt with by including a range of simulated measurements. It was essential to identify
which of the remaining reasons was the predominant cause for the filter instability. So it
was decided to first eliminate the possibility of the chaotic dynamics being the primary
factor in causing the filter instability. For this reason before employing these models it
was decided to apply the UKF to the simplified extended HR model. In this context we
note that observers and the extended Kalman filtering have been applied in the past to
construct neural estimators by Cruz and Nijmeijer [12]. The reconstruction of the neural
dynamics has been considered by Steur et al. [13] and Tyukin et al. [14] have considered
the application of adaptive observers to neural systems. However, our objective is to
reconstruct the action potential and its features such as the duration, particularly of a group
of spatially distributed neurons, over an extended time frame, and to ultimately extend
the application to complex multicompartmental models of biological neurons. An adaptive
nonlinear observer wherein the gain of the observer is continually modified in accordance
with the magnitude of the measurements and noise statistics by an appropriate adaption
law would be more suitable in this case than a conventional nonlinear observer like the
UKF.

The neuron model described by (2.2), which represents a typical nonlinear oscillator,
is described in the parameter plane with the coordinates as the amplitude and frequency of
the forcing (Glass and Mackey [15]). A study of the response characteristics of this model
reveals subharmonic and superharmonic synchronization or chaotic behaviour, depending
on the amplitude and frequency of the forcing. In some cases the chaos occurs after a period-
doubling bifurcation. For the parameter set considered in (2.2), the response is chaotic.
However, the addition of a relatively small level of noise to the initial conditions seemed
to completely annihilate the chaos. A typical response of the model is shown in Figure 1(a)
and the magnified plot in Figure 1(b), and it illustrates the fact that the response is chaotic.
In Figure 1(a) the second state is scaled down by 400 to plot it on the same figure. This
can be demonstrated by a one-dimensional Poincaré plot (Abarbanel [16]). The Poincaré
map corresponding to Figure 1(b) shows that the system is chaotic, and it is shown in
Figure 1(c).

3. The Unscented Kalman Filter

Most dynamic models employed for purposes of estimation neural action potential signals
are generally not linear. To extend and overcome the limitations of linear models, a number
of approaches such as the extended Kalman filter (EKF) have been proposed in the literature
for nonlinear estimation using a variety of approaches. Unlike the Kalman filter, the EKF may
diverge, if the consecutive linearizations are not a good approximation of the linear model
over the entire uncertainty domain. Yet the EKF provides a simple and practical approach to
dealing with essential nonlinear dynamics.

The main difficulty in applying the EKF algorithm to problems related to the
estimation of a neural action potential signal is in determining the proper Jacobian matrices.
The UKF is a feasible alternative that has been proposed to overcome this difficulty, by Julier
et al. [17] as an effective way of applying the Kalman filter to nonlinear systems. It is based
on the intuitive concept that it is easier to approximate a probability distribution than to
approximate an arbitrary nonlinear function or transformation of a random variable.

The UKF gets its name from the unscented transformation, which is a method
of calculating the mean and covariance of a random variable undergoing nonlinear
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Figure 1: (a) Extended HR neuron: state-response plot comparing response of three states to input. (b)
Extended HR neuron: close-up of state-response plot of the first two states illustrating chaos. (c) Extended
HR neuron: close-up of the Poincaré map of the chaotic first state corresponding to Figure 1(b).

transformation y = f(w). Although it is a derivative-free approach, it does not really
address the divergence problem. In essence, the method constructs a set of sigma vectors
and propagates them through the same nonlinear function. The mean and covariance of the
transformed vector are approximated as a weighted sum of the transformed sigma vectors and
their covariance matrices.

Consider a random variable w with dimension L which is going through the nonlinear
transformation y = f(w). The initial conditions are that w has a mean w and a covariance
Pww. To calculate the statistics of y, a matrix χ of 2L+1 sigma vectors is formed. Sigma vector
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points are calculated according to the following equations:

χ0 = w,
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i
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(3.1)
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us(L + κ) − L, αus is a scaling parameter between 0 and 1 and κ is a secondary

scaling parameter. (
√
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square root can be obtained by Cholesky factorization. The weights associated with the sigma
vectors are calculated from the following [18]:
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where β is chosen as 2 for Gaussian distributed variables. We have chosen to use the
scaled unscented transformation proposed by Julier [18], as this transformation gives one
the added flexibility of scaling the sigma points to ensure that the covariance matrices are
always positive definite. The mean, covariance, and cross-covariance of y calculated using
the unscented transformation are given by
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)
,

y ≈
2L∑
i=0

W
(m)
i yi,

Pyy ≈
2L∑
i=0

W
(c)
i (yi − y)(yi − y)T ,

Pwy ≈
2L∑
i=0

W
(c)
i

(
χi − χ

)
(yi − y)T ,

(3.3)

where W
(m)
i and W

(c)
i are the set of weights defined in a manner so approximations

of the mean and covariance are accurate up to the third order for Gaussian inputs for
all nonlinearities, and to at least the second order for non-Gaussian inputs. The sigma
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points in the sigma vectors are updated using the nonlinear model equations without any
linearization.

Given a general discrete nonlinear dynamic system in the form

xk+1 = fk(xk,uk) + wk, yk = hk(xk) + vk, (3.4)

where xk ∈ Rn is the state vector, uk ∈ Rr is the known input vector, and yk ∈ Rm is the output
vector at time k, wk and vk are, respectively, the disturbance or process noise and sensor
noise vectors, which are assumed to be Gaussian white noise with zero mean. Furthermore
Qk and Rk are assumed to be the covariance matrices of the process noise sequence, wk and
the measurement noise sequence vk, respectively. The unscented transformations of the states
are denoted as

fUT
k = fUT

k (xk,uk), hUT
k = hUT

k (xk) (3.5)

while the transformed covariance matrices and cross-covariance are, respectively, denoted as

Pff

k
= Pff

k (x̂k,uk),

Phh−
k = Phh

k

(
x̂−k
)
,

Pxh−
k = Pxh−

k

(
x̂−k,uk

)
.

(3.6)

The UKF estimator can then be expressed in a compact form. The state time-update equation,
the propagated covariance, the Kalman gain, the state estimate, and the updated covariance
are, respectively, given by,

x̂−k = fUT
k−1(x̂k−1),

P̂−k = Pff

k−1 + Qk−1,

Kk = P̂xh−
k

(
P̂hh−
k + Rk

)−1
,

x̂k = x̂−k + Kk

[
yk − hUT

k

(
x̂−k
)]
,

P̂k = P̂−k −Kk

(
P̂hh−
k + Rk

)−1
KT
k .

(3.7)

Equations (3.7) in the same form as the traditional Kalman filter and the EKF. Thus higher
order nonlinear models capturing significant aspects of the dynamics may be employed to
ensure that the Kalman filter algorithm can be implemented to effectively estimate the states
in practice. For our purposes we adopt the UKF approach to estimate the neuron states in the
process model.

The UKF is based on approximating the probability distribution function than on
approximating a nonlinear function as in the case of EKF. The state distributions are
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approximated by a Gaussian probability density, which is represented by a set of determinis-
tically chosen sample points. The nonlinear filtering using the Gaussian representation of the
posterior probability density via a set of deterministically chosen sample points is the basis
for the UKF. It is based on statistical linearization of the state dynamics rather than analytical
linearization (as in the EKF). The statistical linearization is performed by employing linear
regression using a set of regression (sample) points. The sigma points are chosen as the
regression points. The mean and covariance at the sigma points then represent the true mean
and covariance of the random variable with the particular Gaussian probability density. Thus
when transformed to the nonlinear systems, they represent the true mean and covariance
accurately only to the second order of the nonlinearity. Thus this can be a severe limitation of
the UKF unless the nonlinearities can be limited to the first and second order in the process
model.

4. UKF Estimation Applied to a Neuron Model

The success of the application of the UKF depends largely on the approximation to the
covariance which is estimated as a weighted linear sum of the covariance at the sigma
points. When this approximation is such that the covariance is not positive definite, the
UKF algorithm fails as the Cholesky decomposition is not possible. To ensure that this
covariance is essential, adjust the scaling parameter αus, if and when necessary. In the example
illustrated, αus was chosen to be very small positive number. First, to see the need for the
UKF, the traditional extended Kalman filter (EKF) is also applied to the same responses and
the two sets of results are compared. These comparisons are shown in Figure 2. Figure 2
also illustrates the simulated neuron model states plotted to the same scale. While the state
estimates obtained by the UKF and EKF are almost the same in the case of the first state
(which was measured), the EKF estimates of all the other states tend to zero. Although in the
case of the third state z, the EKF seems to perform better than the UKF, the state estimate
in this case as well tends to zero in steady state. This may be due to the inadequacy of
the number of measurements but it is natural to assume that the internal states cannot be
measured. Given that only the first state can be measured, the UKF definitely tends to perform
better than the traditional EKF.

Figure 3 shows the corresponding errors in the simulated states and UKF estimated
states over the same time frame. Figure 4 shows the simulated measurement error of a
typical sensor. Finally it must be said that the filter was run over a much longer time frame
and the performance of the filter did not deteriorate in spite of this long-term operation.
Thus the implementation of an UKF-based state estimator for the HR neuron is successfully
demonstrated over a relatively long time frame.

In particular we observe the relatively large error in the third state, z. We also note
that this error does not significantly influence the error in the estimate of the first state. The
addition of a relatively small level of noise to the initial conditions seems to have the effect
of generating a response that completely shrouds and annihilates the chaotic behaviour and
this appears to be a consequence of the sensitive dependence of the initial conditions as well.
What appears to be noise in the response may well be a combination of both noise and chaos,
but it is not possible to distinguish between the two. This significant change in the response
of z in the estimator, which can be recognized by comparing Figures 1 and 2, explains the
reason for the chaos to be annihilated as this state plays a key role in the appearance of the
chaotic response in the first state. In fact it acts like a switch or gate and the addition of noise
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Figure 2: Neuron model states: plots of the simulated and estimated states on the same scale versus the
time in seconds.

to the equation for z changes the dynamics of its mean value quite significantly which in turn
is responsible for switching off the chaos. However, we also observe that this is not a feature
of the estimator but a result of the addition of noise to the Hiindmarsh-Rose model of the
dynamics of the neuron. We had also observed that when no chaos was present and z was
already well behaved, the introduction of noise was not so significant.



Mathematical Problems in Engineering 11

−40

−20

0

Fi
rs

ts
ta

te

0 50 100 150 200 250 300

Time (s)

State estimate error

(a)

−30

−20

−10

0

Se
co

nd
st

at
e

0 50 100 150 200 250 300

Time (s)

(b)

−1

−0.5

0

T
hi

rd
st

at
e

0 50 100 150 200 250 300

Time (s)

(c)

−0.01

−0.005

0

Fo
ur

th
st

at
e

0 50 100 150 200 250 300

Time (s)

(d)

Figure 3: Neuron model states: plots of the UKF estimate errors in the state variables versus the time in
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5. Application to ECG Estimation

McSharry et al. [7] have proposed a theoretical nonlinear dynamic model that is capable
of emulating an ECG, which is characterised by several parameters that are adaptable to
many measured ECG signals. A typical ECG signal, shown in Figure 5, is characterised by
six important points labelled as P, Q, R, S, T, or U. These points define the “fiducial” points
which are the landmarks on the ECG signal such as the isoelectric line (PQ junction), the
onset of individual waves such as QRS complex and the P and T waves, and the PQ, QT,
and ST time intervals. The ECG signal is periodic and the period is the elapsed time between
two R-R peaks. The circular radian frequency ω = 2π/TR-R is related to the Heart Rate. The
heart rate is by no means steady as several rhythmic variations are known to influence it.
Coupling between the heart rate and the respiratory cycle causes oscillations in the heart
rate at about 0.25 Hz and is termed as the respiratory sinus arrhythmia. Heart Rate Variability
(HRV) influences the fiducial points and is controlled by the baroreflex regulatory feedback.
The baroreflex feedback mechanism is modelled by a nonlinear delay-differential equation
by McSharry et al. [19] based on a model by Fowler and McGuinness [20] to capture and to
describe the interactions between the heart rate and blood pressure. The model gives rise to
the oscillations in the blood pressure known as Mayer waves with a time period ranging from
10 to 25 seconds, due to the presence of a time delay. The model maintains an intrinsically
stable heart rate in the absence of nervous control and features baroreflex influence on both
heart rate and peripheral resistance. Irregularities in the baroreflex feedback which can create
disturbances in the blood pressure such as the Mayer waves manifest themselves in some form
in the ECG signal. The Mayer waves and the heart rate variability modelling have also been
studied by Seydnejad and Kitney [21]. Analysis of Heart rate variability is also the basis for
the assessment of the sympathetic and parasympathetic responses of the autonomic nervous
system, with the sympathetic tone influencing the low-frequency spectrum only while both
the sympathetic and parasympathetic responses influence the high frequency component of
the ECG spectrum. Consequently the heart rate estimation generally involves both ECG and
additional measurements of the arterial blood pressure and/or features associated with the
respiratory system. For this reason, in this paper, the heart rate is assumed to be either known
or independently estimated.
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The original model proposed by McSharry et al. [7] generates a trajectory in a three-
dimensional state space with coordinates (x, y, and z). The ECG is plot of the z coordinate
with respect to time. An observation of the responses shows that they exhibit a limit-cycle
behaviour and that it is not sinusoidal. The dynamical equations of motion are given by a set
of three ordinary differential equations

ẋ = (1 − r)x −ω1y, (5.1a)

ẏ = (1 − r)y +ω1x, (5.1b)

ż = −
5∑

1=1

aiΔθi exp

(
−Δθ2

i

2b2
i

)
− (z − z0), (5.1c)

where r =
√
x2 + y2, Δθi = (θ − θi) mod 2π , θ = atan 2(y, x) is the four-quadrant inverse

tangent (arctangent) given the sine (y) and cosine (x) of the angle θ defined in the range
−π < θ ≤ π , and ω1 is the angular velocity of the trajectory as it moves around the limit
cycle which is assumed to be either measured or estimated adaptively and hence is treated
as a known parameter. The baseline value of z0 in (5.1c) is assumed to be driven by the
respiratory circular frequency ω2 according to

z0(t) = A0 sin(ω2t), (5.2)

where the constant A0 = 0.15 mV. These equations of motion may be integrated numerically
using the MATLAB built-in m-file ode45.m which is based on an explicit Dormand-Prince
Runge-Kutta ((3.2), (3.3)) pair of formulae over each fixed time step Δt = 1/fs where fs is
the sampling frequency. Equation (5.1c) may be expressed as

ż = −
5∑
i=1

aiΔθi exp
(
−γiΔθ2

i

)
− (z − z0), γi =

1(
2b2

i

) . (5.3)

The parameters of the modified representation of the (5.1c) given by (5.3) are defined in
Table 1.

As rightly pointed by Sameni et al. [22], the first two equations (5.1a) and (5.1b) could
be transformed two other dynamic equations in terms of

r =
√
x2 + y2,

θ = atan 2
(
y, x
)
.

(5.4)
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Table 1: Parameters of the ECG model given by (2.1).

Index (i) 1 (P) 2 (Q) 3 (R) 4 (S) 5 (T)
Time (secs) −0.2 −0.05 0 0.05 0.3

θi (radians) −1
3
π − 1

12
π 0

1
12
π

1
2
π

ai 1.2 −5.0 30.0 −7.5 0.75
γi 8.000 50.00 50.00 50.0 3.125

Table 2: Typical initial conditions for the states in (3.3).

θ 1.5π a1 1.2 γ1 50.0
Z −0.0110 a2 −5.0 γ2 34.7222
φ1 0 a3 15.0 γ3 55.4017

a4 −7.5 γ4 78.1250
a5 0.75 γ5 8.0

The r-dynamics take the form ṙ = f(r) and are essentially unobservable. Consequently
(5.1a) and (5.1b) may be replaced by θ̇ = ω1. Thus (5.1a), (5.1b), and (5.3) may now be
augmented by additional state equations and expressed as

θ̇ = ω1, (5.5a)

ż = −
5∑
i=1

aiΔθi exp
(
−γiΔθ2

i

)
−
(
z −A0 sinφ2

)
, (5.5b)

ȧi = 0, γ̇i = 0, i = 1, 2, . . . , 5, φ̇2 = ω2. (5.5c)

Equations (5.5a) and (5.5b) represent a classic pair of the first-order equations that exhibit
both limit cycle and chaotic behaviour. The complete set of 13 equations characterised by
eight parameters θi, i = 1, 2, . . . , 5, ω1, ω2, and A0 represents a dynamic model of the ECG
with typical initial conditions as illustrated in Table 2. In addition one could assume that the
state space dynamics include a number of disturbances. The state space equations including
the random white noise disturbances are given by (5.6) as

θ̇ = ω1 +w1,

ż = −
5∑
i=1

aiΔθi exp
(
−γiΔθ2

i

)
−
(
z −A0 sinφ2

)
+w2,

φ̇2 = ω2 +w3, ȧi = wi+3, γ̇i = wi+8, i = 1, 2, . . . , 5,

(5.6)

with the set wj i = 1, 2, . . . , 13 being zero mean white noise process disturbances with a
known covariance matrix.
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Figure 6: Comparison of simulated and estimated responses of the states θ, z plotted against the number
of time steps.

Given a set of continuously sampled ECG measurements, the measurements may be
expressed by the equation

zm = z + v (5.7)

with v being a zero mean white noise measurement disturbance with a known covariance.
The UKF may be employed to estimate the states θ, z and the augmented states φ1, ai, γi,
i = 1, 2, . . . , 5.

In Figure 6 a typical set of simulated and estimated responses of the states θ, z is
compared. In Figure 7 the errors in the estimate over 10 000 time steps, Δt = 0.0002 s are
shown.

In Figure 8 a typical estimated error in the measurement is shown. Thus the UKF is
capable of performing extremely well given the measurements with well-behaved covariance
characteristics. When the noise covariance matrices are unknown, it is possible to estimate the
states adaptively. The filter is currently undergoing extensive tests with actual measured ECG
data and in this case the adaptive estimation appears not only to be more appropriate but also
performs better than the nonadaptive UKF. A complete discussion of the application of the
adaptive UKF to ECG measurements, where the process and measurement noise covariance
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Figure 7: Errors in the estimated responses of the states θ, z, plotted against the number of time steps.
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matrices are recursively updated, is beyond the scope of this paper and will be presented
elsewhere.

6. Conclusions and Discussion

The unscented Kalman filtering method was applied to estimate the states of an HR-like
neuron model which in the absence of noise were deliberately chosen to be chaotic. The
process and measurement was then corrupted by the introduction of very low levels of
white noise. The noise had a profound effect on the response of the model as it seemed to
annihilate the chaos. It was observed that the filter performs quite well in reconstructing
the states of the system. Neither the filter nor the noise corrupted process model gave any
indications of chaos. Moreover, the exercise gave us valuable experience in applying the
UKF to a biological neuron. Preliminary studies of the application of the UKF to a Hodgkin-
Huxley type model indicated that the successful application of the unscented approach to an
ensemble of biological neurons was feasible, provided the sigma points were scaled according
to certain scaling laws related to the gate constants. Finally the methodology of the unscented
Kalman filter is successfully applied to filter a typical simulated ECG signal using a synthetic
model-based approach.

References

[1] R. C. Elson, A. I. Selverston, R. Huerta, N. F. Rulkov, M. I. Rabinovich, and H. D. I. Abarbanel,
“Synchronous behavior of two coupled biological neurons,” Physical Review Letters, vol. 81, no. 25,
pp. 5692–5695, 1998.

[2] R. D. Pinto, P. Varona, A. R. Volkovskii, A. Szücs, H. D.I. Abarbanel, and M. I. Rabinovich,
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