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This paper proposes an accuracy improvement of the method of multiple scales (MMSs) for
nonlinear vibration analyses of continuous systems with quadratic and cubic nonlinearities. As an
example, we treat a shallow suspended cable subjected to a harmonic excitation, and investigate
the primary resonance of themth in-plane mode (Ω ≈ ωm) in whichΩ and ωm are the driving and
natural frequencies, respectively. The application of Galerkin’s procedure to the equation of motion
yields nonlinear ordinary differential equations with quadratic and cubic nonlinear terms. The
steady-state responses are obtained by using the discretization approach of the MMS in which the
definition of the detuning parameter, expressing the relationship between the natural frequency
and the driving frequency, is changed in an attempt to improve the accuracy of the solutions. The
validity of the solutions is discussed by comparing them with solutions of the direct approach of
the MMS and the finite difference method.

1. Introduction

It is well known that when thin structures are subjected to time variable loads and vibrate
with finite amplitudes that are of the order of their thicknesses, nonlinear dynamic behavior
occurs frequently. Since the nonlinear behavior cannot be captured through a linear theory
of continuous systems, the geometric nonlinear theory is required to properly predict the
nonlinear phenomena. A considerable number of publications have studied the vibration
problems of nonlinear partial differential equations (e.g., [1–12]). To solve the nonlinear
vibration problems of continuous systems, many researchers have used the method of
multiple scales (MMSs) developed by Nayfeh and Mook [13] and Nayfeh [14]. Cartmell
et al. [15] published an exhaustive literature review on the analyses of weakly nonlinear
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mechanical systems using the MMS, and recently the MMS has been employed to analyze
the dynamic characteristics of microelectromechanical systems (MEMSs) (e.g., [16–18]).

For the analyses of nonlinear continuous systems, the application of MMS can be
divided into two categories: direct and discretization approaches. In the direct approach,
the MMS is applied directly to the governing partial differential equations, whereas, in the
discretization approach, the MMS is applied to the ordinary differential equations derived
from Galerkin’s procedure. By comparing the results obtained from both these approaches
in the vibration analysis for the nonlinear continuous systems, the superiority of the direct
approach to the discretization approach was reported [19–32].

Abe [33] investigated the nonlinear vibrations of a hinged-hinged Euler-Bernoulli
beam resting on a nonlinear elastic foundation with distributed quadratic and cubic
nonlinearities by applying Galerkin’s procedure and the shooting method [34]. He gave
testimony to the fact that this method is more suitable than the direct approach of the MMS.
Abe [35] also analyzed the one-to-one internal resonance of a suspended cable possessing
quadratic and cubic nonlinearities, and then demonstrated that the solutions obtained from
the shootingmethod in conjunction with Galerkin’s procedure were more accurate than those
obtained with the direct approach. This means that highly accurate solutions for the vibration
analysis of nonlinear continuous systems can be given by properly taking into account
the vibration modes in Galerkin’s procedure. In the application of the MMS to ordinary
differential equations with cubic nonlinearity, it was reported that the accuracy of the
solutions was improved by defining a detuning parameter, which expresses the relationship
between linear natural frequency and a driving frequency, in the quadratic form [36–40].

This paper presents a remedy for applying the MMS to continuous systems with
quadratic and cubic nonlinearities. As an example, we deal with the primary resonance of a
shallow suspended cable. First, by employing Galerkin’s procedure, the equation of motion is
discretized to the ordinary differential equations having quadratic and cubic nonlinear terms.
Next, we apply theMMS to the equation and solve the steady-state responses. To improve the
accuracy of the solutions obtained with the MMS, the detuning parameter is defined in the
quadratic form. Finally, the validity of the analytical results is discussed by comparing these
results with those from the direct approach of the MMS and the finite difference method
(FDM).

2. Basic Equations

Figure 1 shows a shallow suspended cable with a span having a small equilibrium curvature
under gravity g in which the initial static configuration y(x) is defined as y(x) = −4x(1 − x).
When the cable is subjected to a harmonic vertical load and it vibrates only in the vertical
plane (in plane), the nondimensional equation of motion and the boundary conditions for
the cable can be expressed as [30, 41]

v̈ + 2cv̇ − v′′ = α
(
v′′ + by′′)

∫1

0

(
by′v′ +

1
2
v

′2
)
dx + f(x) cosΩt, (2.1)

v = 0 at x = 0, 1, (2.2)

where v is the nondimensional displacement in the y-direction, c is the viscous damping
coefficient, and f(x) and Ω are the distribution and frequency of the load, respectively. The
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Figure 1: Geometry of a shallow suspended cable.

dot and prime characters express differentiation with respect to the nondimensional time t
and coordinate x, respectively. The nondimensional parameters are defined as

α =
EA

H
=

8bEA
mgl

, b =
b̂

l
, (2.3)

where E, A, and m are Young’s modulus, the cross-sectional area, and the mass per unit
length, respectively.

The displacement function, which satisfies the boundary conditions (2.2), of the cable
can be expressed by using the eigenfunction φn of the linear vibration as

v(x, t) =
N∑

n=1

φn(x)vn(t), (2.4)

where

φn(x) =

⎧
⎪⎨

⎪⎩

Cn

[
1 − cos(ωnx) − tan

(ωn

2

)
sin(ωnx)

]
(for n = odd),

√
2 sin(ωnx) (for n = even),

(2.5)

and vn and ωn are the amplitude and natural frequency of the nth mode, respectively. A
constant Cn is selected such that it satisfies the condition

∫1
0 φ

2
ndx = 1. By substituting (2.4) in

(2.1) and performing Galerkin’s procedure (i.e., multiplying (2.1) by φn and then integrating
over the interval [0, 1]), we obtain ordinary differential equations having quadratic and cubic
nonlinear terms

v̈n + 2cv̇n +ω2
nvn =

N∑

i=1

N∑

j=1

Hnijvivj +
N∑

i=1

N∑

j=1

N∑

k=1

Gnijkvivjvk + Fn cos(Ωt), (2.6)
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where n = 1, 2, 3, . . . . The coefficients of the nonlinear terms Hnij and Gnijk are given as

Hnij =
αb

2

∫1

0

(

2φ′′
i

∫1

0
y′φ′

jdx + y′′
∫1

0
φ′
iφ

′
jdx

)

φndx,

Gnijk =
α

2

∫1

0

(

φ′′
i

∫1

0
φ′
jφ

′
kdx

)

φndx, Fn =
∫1

0
f(x)φndx.

(2.7)

It should be noted that (2.6) denotes the modal equation of the nth vibration mode.

3. Method of Multiple Scales

In this section, we derive steady-state solutions for the case of the primary resonance (Ω ≈
ωm) by the MMS. First, we introduce a bookkeeping parameter ε, which is later set to 1, and
scale the damping coefficients c and the external load Fn to ε2c and ε3Fn, respectively. Next,
the amplitude vn is expanded in the form

vn(t) = εvn1(T0, T1, T2) + ε2vn2(T0, T1, T2) + ε3vn3(T0, T1, T2) + · · · , (3.1)

where Tp = εpt and p = 0, 1, 2, . . . are different time scales. When the MMS is applied to
ordinary differential equations having cubic nonlinear terms, accurate results are given for
the primary [36], subharmonic [37], and internal resonances [38–40] by defining the detuning
parameter, which expresses the relationship between linear natural frequency and a driving
frequency in the quadratic form. We try to improve the accuracy of the MMS for the analysis
of ordinary differential equations with quadratic and cubic nonlinearities, and hence the
detuning parameter σ is redefined from Ω = ωm + ε2σ to

Ω2 = ω2
m + ε2σ. (3.2)

By substituting (3.1) and (3.2) in (2.6) and equating the coefficients of ε1, ε2, and ε3 on both
the sides, we obtain

(i) order ε1:

D2
0vn1 + Λ2

nvn1 = 0, (3.3)

(ii) order ε2:

D2
0vn2 + Λ2

nvn2 = −2D0D1vn1 +
N∑

i=1

N∑

j=1

Hnijvi1vj1, (3.4)
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(iii) order ε3:

D2
0vn3 + Λ2

nvn3 = −D2
1vn1 − 2D0D2vn1 − 2D0D1vn2 − 2cD0vn1

+ δmnσvn1 +
N∑

i=1

N∑

j=1

Hnij

(
vi1vj2 + vi2vj1

)

+
N∑

i=1

N∑

j=1

N∑

k=1

Gnijkvi1vj1vk1 + Fn cos(ΩT0),

(3.5)

where Dp = ∂/∂Tp and δmn is Kronecker’s delta. The coefficient Λ2
n is defined as

Λ2
n =

⎧
⎨

⎩

Ω2 (for n = m),

ω2
n (for n/=m).

(3.6)

When there are no internal resonances among the vibration modes, the general solutions of
(3.3) can be given by

vm1 = Am(T1, T2)eiΩT0 + cc,

vn1 = 0, ∀n/=m,
(3.7)

where cc indicates the complex conjugate of the preceding term. By substituting (3.7) in (3.4)
and eliminating the secular terms from vn2 (i.e., D1Am = 0), the solution of the order ε2 can
be obtained as

vn2 = L1n

(
A2

me
2iΩT0 + cc

)
+ L2nAmAm, (3.8)

where

L1n =
Hnmm

Λ2
n − 4Ω2

, L2n =
2Hnmm

Λ2
n

, (3.9)

and Am is a complex conjugate of Am. Next, the substitution of (3.7) and (3.8) in (3.5) yields
the solvability condition in the form

2iΩ(D2Am + cAm) + ΓmA2
mAm − σAm =

Fm

2
, (3.10)

where

Γm = −3Gmmmm −
N∑

i=1

(Hmmi +Hmim)(L1i + L2i). (3.11)
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To solve (3.10), we express Am and Am as

Am =
a

2
exp
(
iβ
)
, Am =

a

2
exp
(−iβ). (3.12)

If we split (3.10) into real and imaginary parts by means of (3.12), the following equations
are obtained:

Ω(D2a + ca) = −Fm

2
sin β,

−ΩaD2β +

(
Γma2

4
− σ

)
a

2
=

Fm

2
cos β.

(3.13)

By substituting conditions D2a = D2β = 0 for the steady-state solutions in (3.13), algebraic
equations in terms of unknown variables a and β are derived. The steady-state solutions can
be obtained from the algebraic equations, and then the in-plane deflection of the cable is given
by

v(x, t) = εφm(x)a cos
(
Ωt + β

)
+
1
2
ε2a2

N∑

i=1

{
φi(x)

[
L1i cos

(
2Ωt + 2βm

)
+
1
2
L2i

]}
. (3.14)

4. Finite Difference Method

The application of analytical approaches to nonlinear continuous systems may lead to unreal
results (e.g., [38]), and hence we should check the validity of the analytical solutions. In this
paper, the accuracy of analytical results is confirmed by comparing our results with those
obtained by the FDM (i.e., direct numerical integration).

The suspended cable is first divided into I short segments separated by an incremental
distance ξ and the time is divided into a series of steps of duration τ . If the time and spatial
difference operators in (2.1) are approximated by means of central difference derivatives

∂(·)
∂s

≈ (·)k+1 − (·)k−1
2Δs

,
∂2(·)
∂s2

≈ (·)k+1 − 2(·)k + (·)k−1
(Δs)2

, (4.1)

then (2.1) can be discretized as

Ui,j+1 =
τ2Q + (cτ − 1)Ui,j−1 + 2Ui,j

1 + cτ
, (4.2)
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where

Ui,j = v
(
iξ, jτ

)
= v(x, t),

Q = UD2 + α(UD2 + 8b)S + f(iξ) cos
(
Ωjτ
)
,

UD2 =
Ui+1,j − 2Ui,j +Ui−1,j

ξ2
,

(4.3)

and the subscripts i and j indicate the spatial node (i = 0, 1, 2, . . . , I) and the time step (j =
0, 1, 2, . . . , J), respectively. The variable S denotes the definite integral in (2.1)

∫1

0

(
by′v′ +

1
2
v′2
)
dx. (4.4)

By using Simpson’s formula, the value is calculated from

S =

(

s0 + 2
I/2−1∑

i=1

s2i + 2
I/2∑

i=1

s2i−1 + sI

)
τ

3
, (4.5)

where

si = b[8(iξ) − 4]UD1 +
(UD1)2

2
,

UD1 =

(
Ui+1,j −Ui−1,j

)

2ξ
.

(4.6)

In this study, the parameters are taken to be I = 200 and τ = (2π/Ω)/10000.

5. Numerical Results and Discussion

In this section, we examine the primary resonance of the first antisymmetric mode (the
second in-plane mode). The following simulation results are provided to demonstrate the
effectiveness of the proposed approach presented in Section 3, in which the analytical results
are compared with those obtained from the direct approach of the MMS [30] and the FDM
presented in Section 4. It should be noted that the detuning parameter σ is defined as
Ω = ω2 + ε2σ in the direct approach. The values of the parameters α and c are set to be
α = 239.16 and c = 0.02, respectively. It is assumed that only the first antisymmetric mode
is directly excited by the load. Hence, the distribution f(x) is defined as f(x) = Fφ2(x) and
the amplitude of the load is taken as F = 0.001. Since the value of the parameter αb2 has a
significant effect on the nonlinear dynamic characteristics (i.e., hardening or softening type)
[30], we also change the value of αb2 in the numerical examples.

In the analysis of the MMS presented in Section 3, the accuracy of numerical results
is dependent upon the number of terms (2.4). We hence examine first of all convergence
characteristics of steady-state responses as the number of terms N of (2.4) increases.
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Figure 2: Convergence characteristics of frequency-response curves for the cable (αb2 = 2).

Figure 2 shows a convergence study for the stable response of the cable (αb2 = 2) when a
driving frequency Ω is near ω2 (i.e., natural frequency of the first antisymmetric mode). The
ordinate umax represents the maximum displacement of the cable at x = 0.25. The number of
the symmetric mode considered in the analysis is denoted byNs. It can be seen from Figure 2
that the responses converge with an increase in number of the terms. Therefore, we consider
the first to fifth symmetric modes (i.e.,Ns = 5) in addition to the first antisymmetric mode in
the analysis of the MMS.

Figure 3 shows the frequency-response curves near a primary resonance (Ω ≈ ω2)
in which only the stable responses are plotted. Figures 3(a), 3(b), 3(c), and 3(d) present
the results for the values αb2 = 1, 2, 3, and 4, respectively. Solid, broken, and dotted lines
indicate the responses obtained by using the discretization approach of the MMS mentioned
in Section 3, the direct approach of the MMS [30], and the FDM, respectively. In the FDM,
the calculation is performed for 10,000 periods so that the transient response decays. It can be
observed in all these cases that the results obtained by the present approach approximately
coincide with those obtained by the FDM. On the other hand, the amplitudes predicted by the
direct approach are smaller than those predicted by the present approach and the FDM. This
tendency appears remarkably in Figures 3(b) and 3(c). Therefore, it can be said that the soft
(or hard) spring characteristic is prone to appear when using the direct approach of theMMS.

As an example, the normalized spatial distribution of the displacement v(x) for the
cable (αb2 = 2, and Ω/ω2 = 1.025) shown in Figure 3(b) is illustrated in Figure 4. The
results of the FDM are denoted by the symbol ◦. As seen in Figure 4, the results of the present
approach are in good agreement with those of the FDM, whereas those of the direct approach
are distinctly different near x = 0.75. Therefore, we confirm that the present approach is valid
and is more accurate than the direct approach.



Mathematical Problems in Engineering 9

0.98 1 1.02 1.04
0

1

2

3

4

5

6
u
m
ax

× 103

Ω/ω2

(a)

0

2

4

6

0.96 1 1.04 1.08

Ω/ω2

u
m
ax

× 103

(b)

0

2

4

6

0.94 0.96 0.98 1 1.02

8

Ω/ω2

Present approach
Direct approach
FDM

u
m
ax

× 103

(c)

0.96 0.98 1 1.02
0

2

4

6

8

Ω/ω2

Present approach
Direct approach
FDM

u
m
ax

× 103

(d)

Figure 3: Comparison of three approaches on the stable response: (a) αb2 = 1, (b) αb2 = 2, (c) αb2 = 3, and
(d) αb2 = 4.

In a discretization approach of the MMS using the conventional detuning parameter
Ω = ωm + ε2σ, the solutions for a continuous system with quadratic and cubic nonlinearities
become equal to those of the direct approach of the MMS when an infinite number of
vibration modes are used in the discretization process [21, 30]. However, as mentioned
above, the present discretization approach of the MMS in which a finite number of the
vibration modes are taken into account is superior to the direct approach in regard to the
accuracy of the solutions. Therefore, we conclude that by redefining the detuning parameter
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Figure 4: Comparison of three approaches on the normalized spatial distribution of the displacement
v(x) (αb2 = 2, Ω/ω2 = 1.025).

from Ω = ωm + ε2σ to Ω2 = ω2
m + ε2σ, the accuracy of the solutions predicted by the

discretization approach of the MMS is improved for continuous systems with quadratic and
cubic nonlinearities.

6. Concluding Remarks

Nonlinear vibrations of a suspended cable with quadratic and cubic nonlinearities were
investigated using the discretization approach of the MMS, where we focused on the primary
resonance of the first antisymmetric mode (the second in-plane mode). To accurately obtain
the solutions, we defined a detuning parameter, which expresses the relationship between
linear natural frequency and a driving frequency, in the quadratic form. By comparing the
results predicted by the direct approach of the MMS and the FDM, we demonstrated that the
present approach is valid and is more suitable than the direct approach.

Many researchers have investigated the dynamic characteristics of continuous systems
with quadratic and cubic nonlinearities by using the direct approach. However, since the
direct approach cannot adopt the detuning parameter defined in the quadratic form, highly
accurate solutions may not be obtained. Hence, the validity of the solutions predicted by
the direct approach of the MMS for nonlinear continuous systems should be checked in
comparison to those predicted by other approaches.
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