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The flight dynamic equations in mathematics for aircraft response to the adverse weathers,
such as wind shear, atmospheric turbulence, and in-flight icing, are nonlinear and unsteady.
To effectively analyze the performance degradation and variations in stability of commercial
aircraft that encountered these weather hazards, the nonlinear and dynamic (i.e., time dependent)
aerodynamic models based on flight data would be needed. In the present paper, a numerical
modeling method based on a fuzzy-logic algorithm will be presented to estimate the aerodynamic
models for a twin-jet transport by using the flight data from the flight data recorder (FDR). The
aerodynamic models having the capability to generate continuous stability derivatives, especially
for sensitivity study of unknown factors in adverse weather conditions, will be demonstrated in
this paper.

1. Introduction

Aircrafts in flight are frequently subject to atmospheric disturbances. The hazards due
to these disturbances may be in the form of wind shear, turbulence (both clear-air and
convective), thunderstorms, in-flight icing, and so forth. The severity of aircraft response to
the disturbance is related to the dynamic aerodynamics that results from the instantaneous
changes of aircraft flight attitudes. To provide the mitigation concepts and promote the
understanding of aerodynamic responses of the commercial transport aircraft in adverse
weather conditions, the nonlinear and dynamic (i.e., time-dependent) aerodynamic models
based on flight data would be needed.

Regarding the flight data of commercial transport aircraft, the flight data recorder
(FDR) is ICAO-regulated devices. The FDR, popularly referred to as a “black box”, is
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a mandatory device used to record specific aircraft parameters for event investigations.
Although the data resolution and accuracy in the FDR are not as well defined as those in
flight test, the predicted aerodynamic derivatives correlated well with the nominal values of
transport aircraft in normal flight [1]. Therefore, the FDR data will be used in the present
analysis.

In setting up the aerodynamic models to predict the required derivatives in
aerodynamics, the traditional method of using the tabulated data derived from such methods
as the maximum likelihood method (MMLE) [2], the least-square or the stepwise regression
method [3], is very difficult to correlate complex functional relations among numerous
parameters. In earlier development of the fuzzy-logic algorithm, Zadeh [4] used the fuzzy
sets to simulate physical parameters with membership functions. The disadvantage in this
approach is that the predicted curves in the functional approximation tend to be piecewise
continuous. Therefore, it is not suitable when derivatives of the function are needed. In 1985,
Takagi and Sugeno [5] used the internal functions, instead of the fuzzy sets, in developing
the fuzzy-logic algorithm. In this approach, the main features are the internal functions,
membership functions, and the output cells. The output curves in the prediction are smooth.
The present development will be based on this second approach. This second approach, to be
called the Fuzzy-Logic Modeling (FLM) technique [6, 7], is capable of correlating multiple
parameters without assuming explicit functional relations.

Among the different adverse weathers, clear-air turbulence is all the more important
in flight safety since it is hard to detect and predict. Clear-air turbulence is the leading cause
of serious personal injuries in nonfatal accidents of commercial aircraft. One main type of
motion that causes flight injuries in clear-air turbulence is the sudden plunging motion with
the abrupt change in altitude. This paper presents FLM technique to establish unsteady
aerodynamic models with six aerodynamic coefficients based on the datasets from the flight
data recorder (FDR) of a twin-jet transport. The aerodynamic derivatives extracted from these
aerodynamic models are then used to evaluate the variations in stability. The sensitivity study
of unknown factors during the sudden plunging motion in severe clear-air turbulence will be
demonstrated in this paper.

2. Theoretical Development

The general idea of the FLM technique is to set up the relations between its input and output
variables of the whole system. The internal functions, membership functions, and outputs are
three basic elements for the FLM approach. Two main tasks are involved in the FLM process.
One is the identification of the coefficients of the internal functions, which is called parameter
identification. The other one is structure identification to identify the optimal structure of
fuzzy cells of the model. Details of the FLM technique are described in the followings [6–8].

2.1. Internal Functions

The fuzzy-logic model uses many internal functions to cover the defined ranges of the
influencing parameters. Although the form of internal functions is very simple, it can
represent a highly nonlinear relationship between the input and output for the whole system.
These internal functions are assumed to be linear functions of input variables [8] as follows:

Pi = yi(x1, x2, . . . , xr , . . . , xk) = pi0 + p
i
1x1 + · · · + pirxr + · · · pikxk, (2.1)
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where pir , r = 0, 1, 2, . . . , k, are the coefficients of internal functions yi, and k is number of input
variables; i = 1, 2, . . . , n, and n is the total number of fuzzy cells.

The recorded data in FDR, such as flight altitude (h), calibrated airspeed (CAS), angle
of attack (α), accelerometer readings (ax, ay, and az), Euler angles (θ, φ, and ψ), and so forth,
is chosen as the input variables for a specific fuzzy model. In the present paper, yi is denoted
as an estimated aerodynamic coefficient of force or moment, and xr are the variables of the
input data. The numbers of the internal functions (i.e., cell’s numbers) are quantified by the
membership functions.

2.2. Membership Functions

The values of each fuzzy variable, such as the angle of attack, are divided into several
ranges; each of which represents a membership function with A(xr) as its membership
grade. One membership function from each variable constitutes a fuzzy cell. For the ith cell,
the corresponding membership grades are represented by Ai

r(xr), r = 1, 2, . . . , k. In other
words, the membership functions allow the membership grades of the internal functions
for a given set of input variables to be calculated. For a given system with input variables
x1, x2, . . . , xr , . . . xk, the recorded values of each input variables are normalized by using (xr −
xr,min)/(xr,max − xr,min) to transform them into the ranges of [0, 1]. The membership grading
also ranges from 0 to 1, with “0” meaning no effect from the corresponding internal function
and “1” meaning a full effect. Generally, overlapped straight lines, triangles, or trapezoids are
frequently the shapes used to represent the grades. In this paper, the overlapped triangular
membership function is used to represent the grades of internal functions.

The membership functions partition the input space into many fuzzy subspaces, which
are called the fuzzy cells. The total number of fuzzy cells is n =N1 ×N2 × · · · ×Nr × · · · ×Nk.
For a variable xr , the number of membership function is Nr . Each fuzzy cell is in a different
combination from others formed by taking one membership function from each input
variable.

In the present application, triangular membership functions are used throughout. Let
N be the number of membership functions and let j be the index for the jth membership
functions. Then the membership grades can be described as follows [9]:

(1) N = 2, A(xr) = xr , j = 1,

A(xr) = 1 − xr, j = 2, (2.2)

(2) j = 3 to m, where m = max(0, (N − 2)/2):

A(xr) =
xr
du
, 0 ≤ xr ≤ du,

A(xr) =
(1 − xr)
(1 − du)

, du ≤ xr ≤ 1,

(2.3)

where du = Δx∗1(j − 2), and Δx1 = 1.0/(N −m − 1),
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(3) j ≥N −m,

A(xr) =
(dd − xr)

dd
, 0 ≤ xr ≤ dd,

A(xr) =
(dd − xr)
(dd − 1)

, dd ≤ xr ≤ 1,

(2.4)

where dd = Δx∗2(j −N + m), and Δx2 = 1.0/(m + 1).

2.3. Fuzzy Rule and Output

A fuzzy cell is formed by taking one membership function from each variable. The total
number of cells is the number of possible combinations by taking one membership function
from each input variable. For every cell, it has a fuzzy rule to guide the input and output
relations. The rule of the ith cell is stated [8] as follows: if x1 isAi

1(x1), if x2 isAi
2(x2), . . ., and

if xk is Ai
k(xk), then the cell output is

Pi(x1, x2, . . . , xr , . . . xk) = pi0 + p
i
1x1 + · · · + pirxr + · · · pikxk, (2.5)

where i = 1, 2, . . . , n is the index of the cells, n is the total number of cells of the model;
Pi(x1, x2, . . . , xr , · · ·xk) is the internal function with parameters pi0, p

i
1, . . . , p

i
r , . . . p

i
k

to be
determined, and Ai

k(xk) denotes the membership grade for xk. Each function covers a certain
range of input variables.

In each fuzzy cell, the contribution to the outcome (i.e., the cell output) is based on
the internal function (2.5). The final prediction of the outcome is the weighted average of all
cell outputs after the process of reasoning algorithm. Because of this weighting among many
factors over large ranges of possibilities, the word “fuzzy” is derived to describe the method.
However, its prediction is never “fuzzy”. The output estimated by the fuzzy-logic algorithm
corresponding to the jth input (x1,j , x2,j , . . . , xr,j , . . . , xk,j) is as follows:

ŷj =

∑n
i=1 product

[

Ai
(

x1,j
)

, . . . , Ai
(

xr,j
)

, . . . , Ai
(

xk,j
)]

pi
∑n

i=1 product
[

Ai
(

x1,j
)

, . . . , Ai
(

xr,j
)

, . . . , Ai
(

xk,j
)] . (2.6)

In (2.6) product[Ai(x1,j), . . . , Ai(xr,j), . . . , Ai(xk,j)] is the weighted value of the ith cell, and
the index j of the data set, where j = 1, 2, . . . , m,m is the total number of the data record, and
the “product” stands for product operator of its elements in this paper.

2.4. Parameter Identification

Given a set of membership functions for each input variable, the unknown coefficients of the
internal functions are adjusted by using the Newton gradient-descent method. The accuracy
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of the established aerodynamic model through the fuzzy-logic algorithm is estimated by the
sum of squared errors (SSEs) and the multiple correlation coefficients (R2):

SSE =
m
∑

j=1

(

ŷj − yj
)2
, (2.7)

R2 = 1 −

{

∑m
j=1

(

ŷj − yj
)2
}

{

∑m
j=1

(

y − yj
)2
} . (2.8)

In (2.7) and (2.8), where ŷj , the output of the fuzzy-logic model at point j, is estimated
by (2.6), yj is the data point used for the model training at point j, y is the mean of the
sample data, and m is the total number of data points. The model training is to determine
the unknown coefficients of the internal functions, pir , by maximizing the value of R2. These
coefficients are determined by the following iterative formula to minimize the sum of squared
error (2.7):

pir,t+1 = pir,t − αr
∂(SSE)
∂pir

, (2.9)

where αr is the convergence factor or the step size in the gradient method; subscript index t
denotes the iteration sequence.

In usual, a large value of αr is chosen, such as 10, at the beginning to accelerate the
process of convergence; the small value of less then 1 is taken to obtain more precise unknown
coefficients of the internal functions, pir , in model training process. After simplification, (2.9)
becomes as follows.

For r = 0,

pi0,t+1 = pi0,t − 2α0
(

ŷj − yj
)

×
product

[

Ai
1(x1), . . . , Ai

r

(

xr,j
)

, . . . , Ai
k

(

xk,j
)]

∑n
s=1 product

[

As
1

(

x1,j
)

, . . . , As
r

(

xr,j
)

, . . . , As
k

(

xk,j
)] , (2.10a)

and for r = 1, 2, . . . , k,

pir,t+1 = pir,t − 2αr
(

ŷj − yj
)

×
product

[

Ai
1(x1), . . . , Ai

r

(

xr,j
)

, . . . , Ai
k

(

xk,j
)]

xr,j
∑n

s=1 product
[

As
1

(

x1,j
)

, . . . , As
r

(

xr,j
)

, . . . , As
k

(

xk,j
)] . (2.10b)

The iteration during the search sequence stops when one of the following three criteria
[6, 9] is satisfied:

(1) Cost = SSEt < ε1,

(2) RER = (SSEt − SSEt−1)/SSEt < ε2,

(3) t = tmax.

In the above criteria, Cost = SSEt is the sum of squared errors (SSEs) in current
iteration to be denoted by “Cost” and RER = (cost current − cost previous)/cost current to
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be denoted by “RER” (i.e., the relative error) for simplicity in descriptions; ε1 and ε2 are the
required precision criteria, and tmax is a specified maximum iteration number.

Given membership functions and the training data, this parameter identification
procedure can be applied to establish a fuzzy-logic model. Although the procedure is well
understood, to obtain a good model with the appropriate membership functions that are
quite challenging, it requires numerical experimentation.

2.5. Model Structure Identification

In the fuzzy-logic model, the model structure is indicated by the number of membership
functions. For a fuzzy-logic model with multiple variables, the structure is the combination
of the numbers and forms of the membership functions assigned to all input variables. Since
the sequence defines the one-to-one relationship between the numbers and the forms for each
variable, the structure can be uniquely described by the numbers.

The model structure is optimized by maximizing (2.8). A search forward algorithm
has been employed for the identification. At each search stage, there may be many fuzzy-
logic models with different structure combinations. The search stage numbers are denoted
by Ns. Out of all the possible intermediate fuzzy-logic models at each search stage, for an
efficient search, only some structures are developed and evaluated. Two selection criteria, to
be given below, are used to choose these structures. With the incremental sequence and the
selection criteria, the search forward algorithm can be shown graphically in Figure 1.

The step-by-step searching flow is summarized as follows [6].

(1) Specify the input variables xr , r = 1, 2, . . . , k and the output variable y.

(2) Assume an initial structure, also called parent structure, as (N10,N20, . . . ,Nr0,
. . . ,Nk0).

(3) Begin at the search stage number Ns = l form all possible structures starting
from the parent structure by adding one more membership function a time
only to one input variable. Those all possible structures are called child struc-
tures as (N10 + 1,N20, . . . ,Nr0, . . . ,Nk0), (N10,N20 + 1, . . . ,Nr0, . . . ,Nk0), . . . , and
(N10,N20, . . . ,Nr0, . . . ,Nk0 + 1). Do the identification of internal coefficients in (2.1)
for each child structure and then calculate its R2 by using (2.8).

(4) Select the top 5 child structures among all calculated values of R2 as new parent
structures for next search step Ns =Ns + l.

(5) Go back to step (2) starting from the new parent structures and repeat the same
procedures in steps (2) and (3) until the best structure is identified;

(6) Pick out the maximum value of R2 among the child structures in each searching
stage as R2

max. The structure of the largest R2
max corresponding to the all picking

values is the optimal structure within a sensible Ns.

In the structure identification, parameter identification to determine the p-parameters
according to (2.9) is also needed. But the number of iteration to determine the p-parameters
is limited to 2000, so that the best structure is decided on a relative basis. After this last step,
(2.9) is applied iteratively until both values of R2 and RER reach the requirements in the final
parameter identification
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N10,N20, . . . ,Nk0

N10 + 1,N20, . . . ,Nk0

N10 + 2,N20, . . . ,Nk0

N10,N20 + 1, . . . ,Nk0 N10,N20, . . . ,Nk0 + 1

N10 + 1,N20 + 1, . . . ,Nk0 N10,N20 + 2, . . . ,Nk0
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max)
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· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 1: Best model structure searching flow.

3. Application to Aerodynamic Modeling

3.1. Flight Data

The twin-jet transport of the present study encountered clear-air turbulence in cruise flight
at the altitude around 10,050 m. As a result, several passengers and cabin crews sustained
injuries, because of which this event was classified as an accident. The present study was
initiated to examine possible concepts of accident prevention in the future. The datasets
used for the modeling are extracted from the FDR during turbulence encounter lasting for
92 seconds.

The main aircraft geometric and inertial characteristics are taken to be

W (take-off) = 1,431,800 N (321900 lb),

S = 260 m2 (2798.7 ft2), c = 6.608 m (21.68 ft), and b = 44.827 m (147.08 ft),

Ixx = 10,710,000 kg-m2 (7,899,900 slugs-ft2), and Iyy = 14,883,800 kg-m2 (10,978,
000 slugs-ft2),

Izz = 25,283,271 kg-m2 (18,648,470 slugs-ft2) and Ixz = 0.0 kg-m2.

The required operational parameters in FDR dataset for generating aerodynamic data
files are time (t), CAS, pressure altitude (h), roll attitude (φ), pitch attitude (θ), magnetic
heading (ψ), longitudinal acceleration (ax), lateral acceleration (ay), vertical acceleration
(az), angle of attack (α), aileron deflection (δa), elevator (δe), rudder (δr), stabilizer (δs),
engine EPR, outside air temperature, wind speed, wind direction, and fuel flow rate. Since
only the normal acceleration is recorded in 8 Hz resolution (i.e., 8 points per second), all other
parameters are interpolated with a monotone cubic spline to the same sampling rate.

3.2. Compatibility Analysis

Typically, the longitudinal, lateral, and vertical accelerations (ax, ay, az) along the (x, y, z)-
body axes of aircraft, angle of attack α, and the Euler angles (φ, θ, and ψ) as well as all
control deflections are available and recorded in the FDR of all transport aircraft. Since the
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recorded flight data may contain errors (or called biases), compatibility analysis is performed
to remove them by satisfying the following kinematic equations:

φ̇ = p + q sinφ tan θ + r cosφ tan θ, (3.1)

θ̇ = q cosφ − r sinφ, (3.2)

ψ̇ =
(

q sinφ + r cosφ
)

sec θ, (3.3)

V̇ =
(

ax − g sin θ
)

cosα cos β +
(

ay + g sinφ cos θ
)

sin β

+
(

az + g cosφ cos θ
)

sinα cos β,
(3.4)

α̇ =

[(

az + g cos θ cosφ
)

cosα −
(

ax − g sin θ
)

sinα
]

(

V cos β
)

+ q − tan β
(

p cosα + r sinα
)

,

(3.5)

β̇ =
cos β

(

ay + g cos θ sinφ
)

V
+ p sinα − r cosα

−
sin β

[(

az + g cos θ cosφ
)

sinα −
(

ax − g sin θ
)

cosα
]

V
,

(3.6)

where g is acceleration due to gravity, V is flight speed, β is sideslip angle, p is roll
rate, q is pitch rate, and r is yaw rate in (3.1)–(3.6). Let the biases be denoted by
bax , bay , baz , bp, bq, br , bV , bα, bβ, bθ, bφ, and bψ , respectively, for ax, ay, az, and so forth. These
biases are estimated by minimizing the squared sum of the differences between the two sides
of the above equations. These equations in vector form can be written as

⇀̇
z =

⇀

f (x) =
⇀

f (xm −Δx), (3.7)

where

⇀
z=

(

V, α, β, θ, φ, ψ
)T , (3.8)

⇀
xm =

(

ax, ay, az, p, q, r, V, α, β, θ, φ, ψ
)T
, (3.9)

Δ
⇀
x=

(

bax , bay , baz , bp, bq, br , bV , bα, bβ, bθ, bφ, bϕ
)T
, (3.10)

where the subscript “m” indicates the measured or recorded values. The cost function is
defined as

J =
1
2

(

⇀̇
z−

⇀

f

)T

Q

(

⇀̇
z−

⇀

f

)

, (3.11)

where Q is a weighting diagonal matrix with elements being 1.0 except the one for the slowly

varying flight speed being 10.0 and
⇀̇
z is calculated with a central difference scheme with

⇀
zm,
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which is the measured value of
⇀
z. The steepest descent optimization method is adopted to

minimize the cost function. As a result of the analysis, variables not present in the FDR, such
as β, p, q, and r, are also estimated.

The force and moment coefficients are obtained from the following flight dynamic
equations [7, 10] about the airplane body axes:

max = CxqS + Tx, (3.12)

may = CyqS + Ty, (3.13)

maz = CzqS + Tz, (3.14)

ClqSb = Ixxṗ − Ixz
(

ṙ + pq
)

−
(

Iyy − Izz
)

qr, (3.15)

CmqSc = Iyyq̇ − Ixz
(

r2 − p2
)

− (Izz − Ixx)rp − Tm, (3.16)

CnqSb = Izzṙ − Ixz
(

ṗ − qr
)

−
(

Ixx − Iyy
)

pq, (3.17)

where m is denoted as aircraft mass; q is denoted as dynamic pressure; S is denoted as wing
reference area; Cx, Cz, and Cm are denoted as longitudinal aerodynamic force and moment
coefficients; Cy, Cl, and Cn are denoted as lateral-directional aerodynamic force and moment
coefficients; Ixx, Iyy, and Izz are denoted as moments of inertia about x-, y-, and z-axes,
respectively; Ixy, Ixz, and Iyz are denoted as products of inertia; Tx, Ty, Tz, and Tm are denoted
as thrust terms about x-, y-, z-axes, and in equation of pitching moment, respectively, in (3.7)–
(3.12).

The above equations are used to determine all aerodynamic coefficients based on
accelerometer readings (ax, ay, and az), Euler angles (φ, θ, and ψ), angular rates (p, q, and
r), and thrusts (Tx, Ty, Tz, and Tm). The angular rates are estimated through compatibility
analysis. Since thrusts were not measured during flight for most flight vehicles, those values
and the effects on the forces and pitching moments in equations of (3.7), (3.8), (3.9), and
(3.11) should be predicted by a thrust model.

3.3. Equivalent Harmonic Motion

The reduced frequency is a parameter to indicate the degree of unsteadiness in unsteady
aerodynamics and is estimated in this paper by fitting the local trajectory with a harmonic
motion. In the static case, the reduced frequency is 0. Large values of the reduced frequency
imply the importance of unsteady aerodynamic effect. For longitudinal aerodynamics, the
equivalent harmonic motion is the one based on the angle-of-attack variation following
the classical unsteady aerodynamic theory of Theodorsen [11]. For lateral-directional
aerodynamics, it is based on the time variation of roll angle [8].

For the longitudinal motion, the time history of the angle of attack (α) and time rate of
angle of attack (dα/dt, or α̇) are fitted with one of a harmonic motion at any instant [7, 12] as
follows:

α(t) = α + α cos
(

ωt + φ
)

, (3.18)

α̇(t) = −aω sin
(

ωt + φ
)

, (3.19)
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where those terms on the left hand side of (3.13) and (3.14) are given and the unknowns
are the local mean angle of attack (α), the local amplitude of the harmonic motion (a), the
phase lag (φ), and the angular frequency (ω). These unknowns are calculated through an
optimization method by minimizing the following cost function (least squares):

J =
n
∑

i=1

[

αi −
(

α + a cos
(

ωti + φ
))]2

+
[

α̇i −
(

α + aω sin
(

ωti + φ
))]2

. (3.20)

In (3.15), αi is the measured value at point i and n is the number of the data points
used in the optimization. For the case in the present study, n = 20 is found to be the best
value. The 20 points preceding and including the current time are employed in (3.15). The
least-square method is found to converge well and gives reasonably accurate results. The
lateral-directional equivalent reduced frequency is computed in the same manner.

The local equivalent reduced frequency in the longitudinal motion is defined as

k1 =
ωc

V
, (3.21)

where c is the mean chord length of wing airfoil section.
The lateral-directional equivalent reduced frequency is defined as

k2 =
ωb

V
, (3.22)

where b is the wing span.

3.4. Fuzzy-Logic Thrust Model

As shown before, the thrust terms appear in the force equations and the pitching moment
equations (3.7)–(3.9) and (3.11). Since the values of thrust for aircraft in flight cannot
be directly measured in the current state of the art, they are not recorded in the FDR.
The manufacturers of airplanes and engines and safety agencies agreed that using such
parameters as the Mach number, airspeed, flight altitude, temperature, the rpm of the
pressure compressors, and engine pressure ratios is adequate to estimate the engine thrust. A
realistic thrust model is quite complex and cannot be represented by any simple equation.
Since such thrust model is not available for the present study, a realistic one tied to the
recorded engine performance parameters will be developed with the fuzzy-logic algorithm.

For a commercial aircraft, most likely only the axial force and the pitching moment
are affected by thrust. This assumption will be made in this paper. Theoretically, clear-air
turbulence (i.e., random change in u, w (or α), and v (or β) affects the engine performance
through its effects on static and dynamic distortions at the engine face. However, the effects
of clear-air turbulence on the engine parameters and the thrust magnitude are not known
and, therefore, are ignored.

For this purpose, data from the flight manual for the fuel flow rates (ṁf) at various
altitudes (h), weights (W), Mach numbers (M), calibrated airspeed (CAS), engine pressure
ratios (EPRs) in cruise flight are utilized. Note that the drag polar for a given aircraft is
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generally not known to most researchers. To estimate it and, hence, the thrust magnitude
in cruise, the assumption of a design lift-to-drag ratio (L/D) of 17.5 is made. This value of
lift-to-drag in cruise is assumed based on the past design experience for twin-jet transports.
In the flight manual, various weights, altitudes, Mach numbers, CAS, EPR, and fuel flow
rates in cruise are tabulated. The lift coefficient can be calculated at each flight condition
immediately. As a result, the drag coefficient can be estimated from the assumption of lift-to-
drag ratio. Therefore, the design thrust in cruise at various Mach numbers can be estimated.
For the Pratt & Whitney turbofan engines, thrust (T) is defined by EPR, so that the thrust
model is set up as

T = f
(

h,W,M,CAS,EPR, ṁf

)

. (3.23)

For GE turbofan engines, the rpm of the low-pressure compressor (N1) is used to set
the level of thrust, so that the thrust model is set up as

T = f
(

h,W,M,CAS,N1, ṁf

)

. (3.24)

In the present study, the P & W turbofan engines powering one twin-jet transport will
be illustrated. The actual thrust in operation is obtained by using the recorded variables in
the FDR, in particular the fuel flow rates.

In the present study, the P & W engines powering the twin-jet commercial aircraft will
be illustrated.

The following climb equation [13] is to be satisfied in the least-square sense over a
5-second internal:

W

g

dV

dt
= T −D −W sin γ, (3.25)

D

W
=
D

L
cos γ. (3.26)

All these equations are still valid in descent with negative climb angles (γ). The above
equations are further employed for parameter identification in the process of modeling.

Once the thrust model is generated as a function of h, W, M, CAS, EPR, and ṁf with
the flight conditions of climbing, cruise, and descent, one can estimate the thrust magnitude
by inserting these flight variables from the FDR into the model.

3.5. Fuzzy-Logic Unsteady Aerodynamic Models

Modeling means to establish the numerical relationship among certain variables of interest.
In the fuzzy-logic model, more complete necessary influencing flight variables can be
included to capture all possible effects on aircraft response to atmospheric disturbances. For
longitudinal aerodynamics, the models are assumed to be of the form [6]

Cx,Cz, Cm = f
(

α, α̇, q, k1, β, δe,M, p, δs, q
)

, (3.27)
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Figure 2: Predicted aerodynamic coefficients in normal force and moments for a twin-jet transport
encountering severe clear-air turbulence at cruise altitudes around 10,050 m.

where the left-hand side represents the coefficients of axial force (Cx), normal force (Cz), and
pitching moment (Cm), respectively. All variables on the right-hand side of (3.22) have been
defined in the previous section. It should be noted that the stabilizer angle (δs) is included
here, because it varies, though slowly, in flight to provide pitch trim (i.e., reducing the total
static pitching moment to 0.0). The roll rate is included here because it is known that an
aircraft under high aerodynamic loads at transonic speeds may have its longitudinal stability
derivatives affected when additional disturbance due to roll rate is imposed.

For the lateral-directional aerodynamics [8],

Cy,Cl, Cn = f
(

α, β, φ, p, r, k2, δa, δr ,M, α̇, β̇
)

, (3.28)

where the left-hand side represents the coefficients of side force (Cy), rolling moment (Cl),
and yawing moment (Cn), respectively.

4. Numerical Results and Discussions

In the present study, the accuracy of the established unsteady aerodynamic models with
six aerodynamic coefficients by using FLM technique is estimated by the sum of squared
errors (SSEs) and the square of multiple correlation coefficients (R2). Figure 2 presents the
aerodynamic coefficients of normal force Cz, pitching moment Cm, rolling moment Cl, and
yawing moment Cn predicted by the unsteady aerodynamic models. The predicted data by
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the final models have good agreement with the flight data. The Cm-data scattering is most
likely caused by turbulence-induced buffeting on the structure, in particular on the horizontal
tail. Once the aerodynamic models are set up, one can calculate all necessary derivatives to
analyze the stability.

The fuzzy-logic aerodynamic models are capable of generating the continuous
derivatives for the static and dynamic stability study of a twin-jet transport in turbulence
response. Firstly, how the fuzzy-logic prediction is achieved will be illustrated with one
numerical example in the Cz calculation. At first, the range for each variable is defined to
be larger than what actually occurred in the present set of Cz data as follows: [α] = [−13, 12],
[α̇] = [54, 50], [q] = [−20, 10], [k1] = [0, 0.6], [β] = [−7, 3], [δe] = [−10, 6], [M] = [0, 1.6],
[p] = [−24, 38], [δs] = [−3, 3], and [q] = [4.964, 21.746].

For the first cell (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), the coefficients in (2.1) after model training
are found to be p1

k
= (2.61755, 1.26662, 1.42338, 2.07962, −0.44241, 2.78017, 1.78150, 1.30818,

1.82872, 1.67592, 1.13787).
Assume that in the following flight conditions Cz is to be predicted: α = 6.91015 deg.;

α̇ = 2.95510 deg/sec; q = 1.16609 deg/sec; k1 = 0.01965; β = −1.55252; δe = 0.68120 deg;
M = 0.77279; p = −2.62359 deg/sec; δs = −0.13930 deg; q = 11.0545 kpa.

These values of variables are converted to [0, 1]. For example, xα = [6.91015 −
(−13)]/[12 − (−13)] = 0.79641.

Other variable values are converted in the same way. It follows that the cell internal
function becomes P 1 = 2.61755 + (1.26662) ∗ (0.79641) + (1.42338) ∗ (0.54764) + (2.07962) ∗
(0.70554) − (0.44241) ∗ (0.03275) + (2.78017) ∗ (0.54475) + (1.7815) ∗ (0.66758) + (1.30818) ∗
(0.48299) + (1.82872) ∗ (0.34478 + (1.67592) ∗ (0.47678) + (1.13787) ∗ (0.3730) = 11.04817.

The membership functions for the first cell are exactly equal to xr , being 0.79641,
0.54764, and so forth. Their product can be calculated to be 1.08536E− 004. Therefore, the
contribution of the first cell to the total output is 11.04817 ∗ 1.08536E − 004 = 1.19912E − 003.

The total output from all cells can be calculated to be 5.9962; while the denominator
in (2.6) is calculated to be 7.46459. Therefore, the final prediction is 0.8033. Comparing with
data of 0.81038, this prediction has an error of −0.88%.

To examine the stability characteristics, it is imperative to understand the flight
environment in detail. The corresponding flight data are presented in Figure 3. In general,
one uses an instead of az for turbulence intensity study. Note an is the same as az in this
paper. The variation of normal acceleration is presented in Figure 3(a), showing the highest
an being 1.75 g around t = 3930 seconds and the lowest being 0.02 g around t = 3932 seconds.
Figure 3(b) shows that α is approximately in phase with an. When an is the highest (around
t = 3930 seconds), the aircraft rapidly plunging downward with the altitude (h) reaching
the lowest as shown in Figure 3(c); and α is highest about 6.5 deg. in Figure 3(b). At the same
time, M is around 0.77 in Figure 3(d). Since α reaches a value about 6.5 deg in transonic flight,
compressibility effect is important. It should be noted that the turbulent vertical wind field
was not measured or estimated in the FDR, but is included in the total α.

The aerodynamic derivatives extracted from the unsteady aerodynamic models can
be calculated with two approaches, first one being the central difference method [7] and the
other being the forced small-amplitude oscillation method [14]. The longitudinal stability
derivative (Cmα) is extracted from the model of Cm. It is evaluated with the central difference
approach as follows:

Cmα =
[Cm(α + Δα, . . .) − Cm(α −Δα, . . .)]

2Δα
, (4.1)
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Figure 3: The time history of flight variables for a twin-jet transport in sever clear-air turbulence at the
altitude around 10,050 m in transonic flight.

where Δα = 0.5 degree represents that α is perturbed by 0.5 degree while keeping all other
variables unchanged. The roll damping (Clp) is extracted from the models of Cl with the
central difference approach as follows:

Clp =

[

Cl

(

. . . , p + Δp, . . .
)

− Cl

(

. . . , p −Δp, . . .
)]

2Δp
, (4.2)

where Δpdeg/sec. Similarly, all other aerodynamic derivatives are calculated by using the
same method.

The time period between 3927.5 seconds and 3932.5 seconds is emphasized in
evaluating the stability characteristics, because of the plunging motion that affects the
flight safety the most. In order to evaluate the variations in characteristics, the units of all
aerodynamic derivatives are converted to rad−1. The main longitudinal and lateral-directional
stability derivatives along the flight path are presented in Figure 4. It should be noted
that these derivatives are evaluated at the instantaneous conditions, instead of about the
trim conditions as have been traditionally done. From the point of view in static stability,
initially, the configuration has longitudinal stability (Czα < 0 and Cmα < 0) as shown in
Figure 4(a), stable longitudinal damping (Cmq < 0) in Figure 4(b), lateral stability (Clβ < 0)
and directional stability (Cnβ > 0) in Figure 4(c), small roll damping (Clp < 0) and insufficient
directional damping (Cnr small or positive) in Figure 4(d). During the plunging motion, in
the period between t = 3928.5 seconds. and t = 3930.5 seconds, Cmα > 0 and Clβ > 0, so
that the static stability becomes unstable. The aerodynamic instability is most likely caused
by the motion that produces a time-dependent pressure distribution on the aircraft surface
involving compressibility effects.
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Figure 4: The time history of main longitudinal and lateral-directional of the static stability derivatives
along the flight path.

Figure 5 presents the time history of main longitudinal and lateral-directional
oscillatory derivatives along the flight path to associate with α̇ and β̇-derivatives. Note that
in Figure 5(a), the oscillatory derivatives are defined as

(

Cmq

)

osc = Cmq + Cmα̇, (4.3)
(

Czq

)

osc = Czq + Czα̇ (4.4)

In Figure 4(c), the oscillatory derivatives are defined as

(

Clp

)

osc = Clp + Clβ̇ sinα, (4.5)

(Cnr)osc = Cnr − Cnβ̇ cosα. (4.6)

During the plunging motion, the values have some differences between oscillatory
and damping derivatives in Figures 5(a) and 5(c) due to the effects of the dynamic
derivatives (i.e., α̇ and β̇-derivatives). The effects of α̇-derivative on (Czq)osc, and β̇-derivative
on (Clp)osc are small. However, the effect of α̇-derivative on (Cmq)osc is to improve the
stability in pitch after t = 3929.5 seconds; while the effects of β̇-derivative is to cause the
directional stability more unstable (i.e., (Cnr)osc more positive). These results indicate that
the turbulent crosswind has the effects on directional stability and damping. Although the
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Figure 5: The time history of main longitudinal and lateral-directional oscillatory derivatives along the
flight path.

dynamic derivatives tend to be small for the present configuration, these are much helpful
to understand the unknown factors of instability characteristics. To be stable, (Czq)osc < 0,
(Cmq)osc < 0, (Clp)osc < 0, and (Cnr)osc < 0. Physically, if it is unstable, the motion will be
divergent in oscillatory motions.

5. Concluding Remarks

The main objective in this paper was to illustrate the nonlinear unsteady aerodynamic models
based on the FLM technique having the capability to evaluate the variations in stability of
commercial aircraft with adverse weather effects. It was shown that the FLM technique was
capable of handling nonlinear and unsteady aerodynamic environment exhibited for a twin-
jet transport in severe clear-air turbulence with sudden plunging motion in transonic flight.
The predicted results showed that the models could produce relatively accurate aerodynamic
coefficients and several derivatives for the assessment of stability characteristics, especially
for the sensitive study of unknown factors in adverse weather conditions.
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