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We discuss the problem of constrained approximation and interpolation of scattered data by using
compactly supported radial basis functions, subjected to the constraint of preserving positivity.
The approaches are presented to compute positive approximation and interpolation by solving the
two corresponding optimization problems. Numerical experiments are provided to illustrate that
the proposed method is flexible.

1. Introduction

The problem of scattered data interpolation consists of constructing a function that
interpolates data values which are known at some scattered points. However, we often have
some additional information that we wish to confine to interpolation. For example, we know
the quantity from which the data is sampled, positive, monotonic, or convex. Thus, it is
important to construct a function which satisfies the underlying constraints.

In the past twenty years, the problem of positivity-preserving scattered data
interpolation has been considered by many researchers. One class of methods for scattered
data interpolation require the points to be triangulated mainly by using piecewise (rational)
cubic interpolation and derived the conditions for preserving the shape of positive data. For
related literature, we refer to the papers [1–6] and the references therein.

Another major class of methods for scattered data interpolation does not involve any
prior triangulation, and can be viewed as meshless method. The two main types are radial
basis functions (RBFs), which include multiquadrics and thin-plate splines, and so forth, and
Shepard-type methods, which include the modified quadratic Shepard approach. Both types,
RBF and Shepard, are widely used in practical fields.

However, there has been relatively little work done on the imposition of constraints
for these meshless methods. For RBF, Utreras [7] considered how positivity can be imposed
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as a constraint in case of thin plate spline interpolation for two-dimensional data. For
Shepard, Asim and Brodlie [8, 9] discussed the modified quadratic Shepard method,
which interpolates scattered data of any dimensionality and can be constrained to preserve
positivity and more general constraint.

In this paper, we show how radial basis functions method, which interpolates or
approximates scattered data, can be constrained to preserve positivity.

2. Radial Basis Functions

A radial basis function (RBF) is a relatively simple multivariate function generated by a
univariate function. Due to its simple form and good approximation behavior, the radial basis
function approach has become an effective tool for multivariate scattered data interpolation
during the last two decades [10–14].

For any given scattered data (xj , fj) ∈ R
s × R, j = 1, . . . , m, where points x1, . . . , xm ∈

R
s are pairwise distinct, the so-called radial basis function interpolation is to use a function

φ : R+ → R to construct the interpolant in the form of

s(x) =
m∑

j=1

λjφ
(∥∥x − xj

∥∥), (2.1)

satisfying

s(xi) =
m∑

j=1

λjφ
(∥∥xi − xj

∥∥) = fi, i = 1, . . . , m. (2.2)

The positive definiteness of φ guarantees that the above interpolation problem (2.2)
possesses a unique solution and refers to φ as a classical radial basis function. If φ has compact
support, then the positive definite linear system is sparse and reduces computational cost
greatly. Thus, we bypass this problem by restricting φ to have compact support.

Compactly supported radial basis functions (CSRBFs) have only recently been
constructed. Wu first constructed a broad variety of CSRBF [15]. Shortly after this, Wendland
constructed these functions such that they possess the lowest degree among all CSRBFs which
are positive definiteness for given space dimension and prescribed order of smoothness [16].
They are radial basis functions which are positive definite on R

s for a given space dimension
s (PDs), belong to a prescribed smoothness class (C2k), are compactly supported and easy to
evaluate. Some examples of such radial basis functions are given in Table 1.

It is a useful property and provides a good selection of Wendland’s functions with
respect to the order of continuity and the dimension of space. Thus, CSRBFs have become a
popular tool for multivariate interpolation of large scattered data [17, 18].

In order to adapt the interpolation to scattered data of different densities, it is necessary
to be able to scale the support of φ. So from now on we assume that the radius α of support
of φ is one and replace φ by

φα(·) = φ
( ·
α

)
, for α > 0. (2.3)
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Table 1: Some of Wendland’s CSRBF φs,k ∈ PDs ∩ C2k .

φ1,0 = (1 − r)+, PD1 ∩ C0

φ3,0 = (1 − r)2
+, PD3 ∩ C0

φ3,1 = (1 − r)4
+(4r + 1), PD3 ∩ C2

Meanwhile, in order to achieve both the best possible approximation behavior and
best possible stability with respect to the support of CSRBF, we adopt the strategy to choose
the radius α as done in paper [17] throughout this paper.

3. Positive Approximation for Positive Data

The problem we are addressing is the following. Given a set of m scattered data xi, xi ∈ R
s

with associated data values fi, i = 1, 2, . . . , m, where fi ≥ 0, we seek an optimal approximating
function F(x) such that F(x) ≥ 0 in least-squares sense.

we first construct the function F(x) as follows:

F(x) =
N∑

i=1

λiφα(‖x − ci‖), (3.1)

where φα(‖x − ci‖) is a compactly supported radial basis function centered on ci with radius
α of support. Usually, the number of N is less than m greatly and centers ci are different from
data points xi.

Thus, the so-called positive approximation for positive data is reduced to solve the
following optimization problem

min
m∑

j=1

(
F
(
xj
) − fj

)2
,

subject to F(x) ≥ 0.

(3.2)

Note that all φα(‖x − ci‖) are positive and F(x) is a linear combination of φα(‖x − ci‖).
So, we can restrict each λi to be positive in order to guarantee the function to be everywhere
positive. This sufficient condition is the kernel idea of our proposed method.

Therefore, the problem of positive approximation is transformed into a quadratic
optimization problem subjected to linear constraints

min
m∑

j=1

(
F
(
xj
) − fj

)2
,

subject to λ1 ≥ 0, . . . , λN ≥ 0.

(3.3)

Without loss of generality, we illustrate it with a very simple example in 1D.
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Table 2: One dimensional data for the velocity of wind.

Times (min) 0 0.25 0.5 1 1.2 1.8 2
Velocity (km/min) 2 0.8 0.5 0.1 1 0.5 1
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Figure 1: Positive approximation curve for data of wind velocity.

Example 3.1. The set of 7 data points in Table 2 shows the velocity of wind. The velocity is
inherently positive, and we therefore require the resulted approximating function to preserve
this property.

Here, we choose the Wendland’s function as φ(r) = (1 − r)4
+(4r + 1). Figure 1 shows

the positive approximation curve applied to the set of data for the velocity of wind using our
proposed method (3.3) when ci are chosen the same as xi.

Table 3 shows the values of Error =
∑7

j=1(F(xj) − fj)2 when the number of centers N
is varied. Of course, the total error will become less if the centers ci are chosen properly.

Remark 3.2. The proposed method has a good chance to work well if the data are coming from
a function f which is a convolution of the kernel with a positive function g, because then f
can be recovered well by an integration formula which has exactly the form of (3.1).

4. Positive Interpolation for Positive Data

The problem of positive interpolation we are addressing is the following. Given a set of m
scattered data xi, xi ∈ R

s with associated data values fi, i = 1, 2, . . . , m, where fi ≥ 0, the so-
called positive interpolation is to construct a function F(x) such that F(xi) = fi, i = 1, . . . , m
and F(x) ≥ 0, where F(x) is a linear combination of the CSRBF.

The basic idea is also to restrict each combination coefficient λi to be positive in order
to guarantee that F(x) is positive everywhere. Obviously, classical RBF interpolation (2.2)
cannot guarantee that all λi are positive.

One feasible way is to choose n new added data yi, i = m + 1, . . . , m + n and then turn
to find the following interpolant:

F(x) =
m∑

i=1

λiφα(‖x − xi‖) +
m+n∑

j=m+1

λjφβj
(∥∥x − yj

∥∥) (4.1)
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Table 3: Total error for different parametric values of N.

N 3 5 7 9
Error 6.24 × 10−1 8.37 × 10−2 5.04 × 10−2 7.80 × 10−3

such that

F(xi) = fi, i = 1, 2, . . . , m,

λi ≥ 0, i = 1, 2, . . . , m + n.
(4.2)

The above interpolant will naturally arise an inevitable problem: what makes the
system of linear equations (4.1) have a unique solution F(x) satisfying the linear constraints.
In order to solve it in special cases, we require the following lemma.

Lemma 4.1 (see [19, Gordan’s Theorem]). Let A1, A2, . . . , Am be n-dimensional vectors; there
does not exist a vector P such that AT

i P < 0 if and only if there exist nonnegative real numbers
λ1, λ2, . . . , λm such that

∑m
i=1 λiAi = 0.

Undoubtedly, it is hard to give a general result which can determine whether there
exists a solution when the added centers yj and the radius βj are chosen randomly. Thus, we
discuss the following special case to choose centers yj and the radius βj .

For each data xi, i = 1, . . . , m, if we choose the new added data yi in the neighborhood
of xi randomly and choose the radius βi such that the influence domain of φβi(‖x − yi‖) only
contains the data xi, then for this case we have the following.

Theorem 4.2. If the new added data yj and radius βj are chosen as above, then there exists a solution
subjected to the constraints (4.2).

Proof. Let

AT
j = −

{
φβj

(∥∥xi − yj
∥∥)

}m
i=1

=
(
0, . . . , 0,−bj , 0, . . . , 0

)
, j = m + 1, . . . , 2m,

AT
j = −{φα

(∥∥xi − xj
∥∥)}m

i=1, j = 1, 2, . . . , m, AT
2m+1 =

(
f1, . . . , fm

)
, ∀fi ≥ 0,

(4.3)

where bj , j = m + 1, . . . , 2m, are positive real numbers.
It is easy to see that there does not exist a vector P such that AT

i P < 0, i = m +
1 . . . , 2m+1. According to Gordon lemma, we know that there exist nonnegative real numbers
λ1, λ2, . . . , λ2m+1 such that

∑2m+1
i=1 λiAi = 0 and λ2m+1 > 0.

We naturally wish that there are many zero coefficients λj , j = m + 1, . . . , m + n, in the
formulas (4.1). That is to say, we add as few data as possible. For example, if the original
interpolation function is positive, then we certainly need not add any new data. So from now
on we hope to minimize the objective function sgn(λm+1)+· · ·+sgn(λ2m), where sgn(·) denotes
the sign function.
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Figure 2: One-dimensional data for the velocity of wind—CSRBF interpolation loses positivity.
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Figure 3: Positive interpolation curve for data of wind velocity using piecewise cubic.

Therefore, an approach is presented to compute the positive interpolation by solving
the following optimization problem:

min
(
sgn(λm+1) + · · · + sgn(λ2m)

)
,

subject to

⎧
⎨

⎩
F(xi) = fi, i = 1, 2, . . . , m,

λi ≥ 0, i = 1, 2, . . . , 2m.

(4.4)

We illustrate it with an example using the same data given in Table 2 and make
comparisons with several existing methods.

Example 4.3 (Example 3.1 is continued). In Figure 2, we show the original interpolation
curve by using CSRBF without the constraint of positivity. Generally, the curve has good
approximation behavior, but the curve goes beyond the range of the data values which makes
physical nonsense and indeed the positivity is violated.

In Figure 3, the positive curve applied to the same set of positive data using piecewise
cubic method [8] is shown. Meanwhile, we reveal the positive curve using constrained
modified quadratic Shepard method (CMQS) [9] in Figure 4.
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Figure 4: Positive interpolation curve for data of wind velocity using CMQS.
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Figure 5: Positive interpolation curve for positive data.

By contrast, in Figure 5, we show the positive interpolation curve applied to the
same data of wind velocity using our proposed approach (4.1). From the experiment, the
constructed curve possesses relatively good approximation behavior in contrast to piecewise
cubic method and constrained modified quadratic Shepard method.

Remark 4.4. It is pointed out that we generally add corresponding new data ym+k if fk is the
minimal data among all value fi, i = 1, . . . , m instead of adding m new data directly to solve
the positive interpolation in practical use.

5. Numerical Example

The strong and sufficient condition that all λi are positive may degrade the quality of the
interpolating function, in comparison with the original unconstrained CSRBF interpolation.
We evaluate the quality of the new interpolant by calculating the variances between
the exact and calculated values on a set of test points by the following experiment in
2D.
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Figure 6: Interpolated function S(x, y).
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Figure 7: Positive interpolating surface for S(x, y).

Example 5.1. We illustrate it with the following function S(x, y) [9] which is defined as:

S
(
x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, if
(
y − x) ≥ 0.5,

2
(
y − x), if 0.5 ≥ (

y − x) ≥ 0,

cos(4πr) + 1
2

, if r ≤ 1
4
,

0, otherwise,

(5.1)

where r =
√
(x − 1.5)2 + (y − 0.5)2.

The interpolated function S(x, y) is shown in Figure 6. Meanwhile, we show the
positive surface generated by our proposed method at a random set of 100 points in Figure 7.

In order to measure the quality of new interpolant, we carry out the following
experiment. Firstly, we construct two interpolants by constrained modified quadratic
Shepard method and our proposed method, based on a series of data sets where the number
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Table 4: Variances for two interpolants for S(x, y).

Number of data points 30 60 100 150 250
CMQS 1.54 1.20 0.97 0.54 0.11
Our proposed method 2.32 1.97 1.55 0.97 0.24

of randomly chosen points increases. Secondly, we evaluate the interpolants on a grid of
25×25 points and calculate the variances between the exact and calculated values. The results
are shown in Table 4.

6. Conclusion

Positivity preserving interpolation is an interesting work. In this paper, we discuss the
approximation and interpolation problem of scattered data by using CSRBF under the
constraint of positivity. The approaches are presented to compute positive approximation
and interpolation by solving the two corresponding optimization problems.

However, we have not discussed how to select the optimal number and position of the
new added data yi in order to both achieve the existence and better possible approximation
behavior of interpolation. These problems would be attractive and remain to be our future
work.
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