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In the mobile robotic systems, a precise estimate of the robot pose with the intention of the
optimization in the path planning is essential for the correct performance, on the part of the robots,
for tasks that are destined to it. This paper describes the use of RF digital signal interacting with
beacons for computational triangulation in the way to provide a pose estimative at bidimensional
indoor environment, where GPS system is out of range. This methodology takes advantage of
high-performance multicore DSP processors to calculate ToF of the order about ns. Sensors data
like odometry, compass, and the result of triangulation Cartesian estimative, are fused for better
position estimative. It uses a mathematical and computational tool for nonlinear systems with
time-discrete sampling for pose estimative calculation of mobile robots, with the utilization of
extended Kalman filter (EKF). A mobile robot platform with differential drive and nonholonomic
constraints is used as a base for state space, plants and measurements models that are used in the
simulations and validation of the experiments.

1. Introduction

The planning of trajectory for the mobile robots, and consequently its better estimative of
positioning, is the reason of intense scientific inquiry. A good path planning of trajectory is
fundamental for optimization of the interrelation between the environment and the mobile
robot. A great diversity of techniques based on different physical principles exists and
different algorithms for the localization and the planning of the best possible trajectory.

The localization in structuralized environment is helped, in general, by external
elements that are called of markers. It is possible to use natural markers that already existing
in the environment for the localization. Another possibility is to add intensionally to the
environment artificial markers to guide the localization of the robot.
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Figure 2: Direct kinematics for differential traction in mobile robots.

This work uses an important mathematical and computational tool for the calculation
of the data fusing collected by the sensors and the disturbances caused for the errors, with
the purpose of estimate the mobile robot pose, that is the Extended Kalman filter (EKF).
A mobile robot platform with differential traction and nonholonomics restrictions is used for
experiments validation.

In the direct kinematics the system of mobile robot positioning is presented. A model
for state space, plants and measurements are presented, that are needed for the development
of the necessary attributes to the positioning estimates made with the Extended Kalman filter.
Finally, we present the experimental and simulation results obtained from the models created.

2. Direct Kinematics for Differential Traction

This paper focuses on the study of the mobile robot platform, with differential driving wheels
mounted on the same axis and a free castor front wheel, whose prototype used to validate the
proposal system is depicted in Figures 11 and 1 which illustrate the elements of the platform.

We assume that the robot is in one certain point (x, y) directed for a position
throughout a line making an angle θ with x axis, as illustrated in Figure 2.



Mathematical Problems in Engineering 3

Through the manipulation the control parameters ve and vd, the robot can be led at
different positionings. The determination of the possible positionings to be reached, once
given the control parameters, is known as direct kinematics problem for the robot. As
illustrated in Figure 2, in which the robot is located in position (x, y, θ), we have for the
trigonometrical relations of the system

ICC =
[
x − R sin(θ), y + R cos(θ)

]
, (2.1)

where ICC is the robot instantaneous curvature center.
As ve and vd are time functions and if the robot is in the pose (x, y, θ) in the time t,

and if the left and right wheel has ground contact speed ve and vd, respectively, then, in the
time t → t + δt the position of the robot is given by
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Equation (2.2) describes the motion of a robot rotating a distance R about its ICC
with an angular velocity given by ω [1]. Different classes of robots will provide different
expressions for R and ω [2].

The forward kinematics problem is solved by integrating (2.2) from some initial
condition (x0, y0, θ0), it is possible to compute where the robot will be at any time t based
on the control parameters ve(t) and vd(t). For the special case of a differential drive vehicle,
it is given by

x(t) =
1
2

∫ t

0
[vd(t) + ve(t)] cos[θ(t)]dt,

y(t) =
1
2

∫ t

0
[vd(t) + ve(t)] sin[θ(t)]dt,

θ =
1
L

∫ t

0
[vd(t) − ve(t)]dt.

(2.3)

A question more interesting, and at same time more difficult to answer, is the following
how can the control parameters could be selected in a way the robot obtain a specific global
position or follow a specific trajectory? This is known as the task of determining the vehicle’s
inverse kinematics: inverting the kinematic relationship between control inputs and behavior.
It is also related to the problem of trajectory planning.

2.1. Inverse Kinematics for Differential Drive Robots

Equation (2.3) describe a constraint on the robot velocity that cannot be integrated into a
positional constraint. This is known as a nonholonomic constraint and it is in general very
difficult to solve, although solutions are straightforward for limited classes of the control
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functions ve(t) and vd(t) [3]. For example, if it is assumed that ve(t) = ve, vd(t) = vd and
ve /=vd, then (2.3) yields

x(t) =
L

2
vd + ve

vd − ve
sin

[
t

L
(vd − ve)

]
,

y(t) = −L
2
vd + ve

vd − ve
cos

[
t

L
(vd − ve)

]
+
L

2
vd + ve

vd − ve
,

θ(t) =
t

L
(vd − ve),

(2.4)

where (x, y, θ)t=0 = (0, 0, 0). Given a goal time t and goal position (x, y). Equation (2.4) solves
for vd and ve but does not provide a solution for independent control of θ. There are, in fact,
infinity solutions for vd and ve from (2.4), but all correspond to the robot moving about the
same circle that passes through (0,0) at t = 0 and (x, y) at t = t; however, the robot goes
around the circle different numbers of times and in different directions.

3. Position Estimation with RF Signal ToF

The communication system between the mobile robot and the beacons is follow described.
The mobile robot, and each one of the beacons, have a module of control and reception of
the address codes and a module of transmission. The communication protocol between the
embedded control system, located in the mobile robot, and the beacons, that are located in
strategical points in the environment, are composed of a frame formed for five quaternary
codes.

3.1. Communication Protocol

The timing diagram shown in Figure 3 illustrates as each one of the codes in function of clock
signal is formed.

Each half clock period correspond to a time about 896μs. Each code has a time period
composed of 8 clocks cycles, that is 14,336 ms. Table 1 depicts in a logic way the formation of
the codes.
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Table 1: Logic formation of each code.

Code Logic sequency

C0 AC + BL +AC + BL

C1 AL + BC +AL + BC

C2 AL + BC +AC + BL

C3 AC + BL +AL + BC

Table 2: The timing of the logic codes.

Logic signal Meaning Duration Time

AC Logic level “1” with short duration (1/2) clock 0,896 ms

AL Logic level “1” with long duration 3(1/2) clock 6,272 ms

BC Logic level “0” with short duration (1/2) clock 0,896 ms

BL Logic level “0” with long duration 3(1/2) clock 6,272 ms

Each code is configured by a logic signals sequence, each one with a determined
period. Table 2 shows how each logic signal of each code is composed.

The idea is to mount a quaternary codifier using binary logic levels, associates in
such way that the logic levels alternate and the total period of each code is the same. The
codification implemented was conceived here aiming the minimizing of the errors, such as
the transmission of the one exactly signal level is transmitted without transitions of level
for long time periods. In this case, the receiver tends to put out of the way itself and to
perform the reading out the correct point, originating errors. In this way, RF transmission
of the codes is sufficiently robust and trustworthy, practically extinguishing errors of signal
decoding signal inside the area of system range.

3.2. The Communication Frame

The communication frames used between the mobile robot and the beacons are composed
for five quaternary codes. The Figure 4 illustrates an example of a communication protocol
frame. As each code has a period about 14,336 ms, the all frame has transmission time about
71,68 ms.

The maximum number of possible combination is given by

Ne = 45 = 1024. (3.1)

Each beacon has it own address, composed by five codes. In this way, the system is
able to deal with up to 1024 beacons, with their own individual address.

3.3. The RF Link

The coded signal is transmitted in RF modulated by BASK-OOK technic. The carrier signal
frequency is about 433,92 MHz (UHF band).

The RF link uses a half-duplex channel between mobile robot and beacons. The mobile
robot control system is previously programmed with quantity and address of each beacon.
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Figure 4: Example of a communication protocol frame.
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Figure 5: An example of environment beacons arrangement and the communication system.

Figure 5 depicts an example of environment configuration of the communication between the
robot and beacons.

3.4. Beacon Transceiver System

The beacon embedded system is composed basically by two modules. One is responsible
for RF signal receive and make all the concerned computation. This module has a 16F630
PIC microcontroller, operating at 4 MHz clock frequency. The other one is the RF signal
transmitter. This module is equipped with 12F635 microcontroller and also operates at 4 MHz.
The system is able to operate in autonomous way, been programmed with specific address.
In other hand, the mobile robot must be programmed with the amount and the address of all
operative beacon inside the navigating environment. Figure 6 depicts the block diagram of
the RF transceiver at mobile robot and at beacons.

Figure 7 shows the beacons RF transceiver modules. The transmission module
(Figure 7(b)) is able to function in asynchronous independent way, emitting a address code
frame in a certain period of predetermined time, or synchronous way commanded by the
reception and control module (Figure 7(a)). In the first case, a battery 12 V A23 model is used
which allows autonomy of more than 3 months of continuous use, due to ultra low power
energy consumption given by the embedded microcontroller with nanowatt technology. In
second case the power supply and transmission command are made by the reception control
module, illustrated in Figure 7(a). This second one is the mode utilized by this work.

The mobile robot, as each one of the beacons, have a transceiver control system
composed by reception module and transmission module. As the objective of our system is to
provide a triangulation between the mobile robot position and the beacons, the transmission
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Figure 6: Block diagram of the RF transceiver at mobile robot and at beacons.
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Figure 7: Beacons RF transceiver modules.

modules work in synchronous way. It is assumed that the module of control of reception-
transmission of the mobile robot has been previously loaded with the amount of existing
beacons in the environment and with its respective addresses codes. The functioning of the
system goes to the following procedure.

(1) The mobile robot emits a address code-frame for first beacon. In this instant it sends
an interrupt control signal to the central processing unit for triggering and starts a
timer counter. The robot then, waits the return of the signal. This return must occur
in up to 100 ms.

(2) If the signal returns, means that the beacon recognized the code and sent back the
same code. In this instant is sent a signal to the robot embedded central processing
unit for stops the timer and calculation of the signal return delay time, that could
be about ns.

(3) If the signal was not returned, means that the beacon is out of area reach or occurred
some error in signal transmission-reception.

(4) Increment the number of beacon and go to the loop first item.



8 Mathematical Problems in Engineering

The distance between the robot and a certain m beacon is computed with base of the
delay time in the reception of the same transmitted code. The total elapsed time between the
code final transmission, sent by the robot, and the reception of the same code, sent back to
the beacon, can be calculated by

T = tis + tpm + trs + tq + tpr , (3.2)

where tis is the travel signal time between leaves robot transmitter and reach beacon
reception, tpm is the processing signal time by the beacon, trs is the signal return elapse time,
tq is the frame code period and tpr is the processing time of the sent back signal received by
robot.

It is well known that RF signal cover one meter in about 3,3 ns because its velocity is
about 0,3 m/ns in air. We can considering that the linear speed of the robot is so small that the
displacement of the robot could be considering as being zero during the time T . In this way,
the distance in meters between the mobile robot and the beacon m can be given by

dm =
0, 3(tis + trs)

2
, (3.3)

where tis and trs are given in ns.
The elapsed time T is computed with a 64 bits timer of the Texas Instrument

TMS320C6474-1200 dualcore robot embedded processor. The instruction cycle time of it is
about 0,83 ns (1,2 GHz clock Device), allowing timer calculations in order of ns, essential for
our case of study. The times tpm and tpr are determined empirically and tq = 71, 68 ms. In this
way, the covered distance between the robot and beacon m should be done by

dm =
0, 3

(
T − tpm − trm − tq

)

2
. (3.4)

Algorithm 1 depicts the computation method for distance d calculation using RF ToF.

4. Triangulation

Triangulation refers to the solution of constraint equations relating the pose of an observer to
the positions of a set of landmarks. Pose estimation using triangulation methods from known
landmarks has been practiced since ancient times and was exploited by the ancient Romans
in mapping and road construction during the Roman Empire.

The simplest and most familiar case that gives the technique its name is that of using
bearings or distance measurements to two (or more) landmarks to solve a planar positioning
task, thus solving for the parameters of a triangle given a combination of sides and angles.
This type of position estimation method has its roots in antiquity in the context of architecture
and cartography and is important today in several domains such as survey science. Although
a triangular geometry is not the only possible configuration for using landmarks or beacons,
it is the most natural [1].
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input: The mobile robot is initialized with total number of active beacons
in the environment (Nm) and theirs respectives address.

output: The distance between the robot and the beacon m based at delay RF signal time.
System setup;
while The system is active do

for n = 1 until n = Nm do
To transmit a frame-coded for beacon n;
To initiate timer for period T calculation;
if The same frame-coded signal returns.AND. t < 100 ms then

Stops the timer and calculate the time T ;
Calculate the distance dm = 0, 3(T − tpm − trm − tq)/2;

else
Some tramission/reception RF signal error occurred;
Try next active beacon;

end
end

end

Algorithm 1: Computational method for distance dm calculation using RF ToF.

Although landmarks, beacons and robots exist in a three-dimensional world, the
limited accuracy associated with height information often results in a two-dimensional
problem in practice; elevation information is sometimes used to validate the results. Thus,
although the triangulation problem for a point robot should be considered as a problem
with six unknown parameters (three position variables and three orientation variables), more
commonly the task is posed as a two-dimensional (or three-dimensional) problem with two-
dimensional (or three-dimensional) landmarks [4].

Depending on the combinations of sides (S) and angles (A) given, the triangulation
problem is described as “side-angle-side” (SAS), and so forth. All cases permit a solution
except for the AAA case in which the scale of the triangle is not constrained by
the parameters. In practice, a given sensing technology often returns either an angular
measurement or a distance measurement, and the landmark positions are typically known.
Thus, the SAA and SSS cases are the most commonly encountered. More generally, the
problem can involve some combination of algebraic constraints that relate the measurements
to the pose parameters. These are typically nonlinear, and hence a solution may be dependent
on an initial position estimate or constraint [5]. This can be formulated as

x = F(m1, m2, . . . , mn), (4.1)

where the vector x expresses the pose variables to be estimated (normally, for 2D cases
[x y θ]), and m = m1, m2, . . . , mn is the vector of measurements to be used. In the specific
case of estimating the position of an oriented robot in the plane, this becomes

x = F1(m1, m2, . . . , mn),

y = F2(m1, m2, . . . , mn),

θ = F3(m1, m2, . . . , mn).

(4.2)
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Figure 8: Simple triangulation example. A robot at an unknown location x1.

If only the distance to a landmark is available, a single measurement constrains the
robot’s position to the arc of a circle. Figure 8 illustrates perhaps the simples triangulation
case. A robot at an unknown location x1 senses two beacons P1 and P2 by measuring the
distances d1 and d2 to them. This corresponds to our case of study in which active beacons
at known locations emit a signal and the robot obtains distances based on the time delay to
arrive at the robot. The robot must lie at the intersection of the circle of radius d1 with center
at P1, and with the circle or radius d2 with center at P2. Without loss of generality we can
assume that P1 is at the origin and that P2 is at (h, 0). Then we have

d2
1 = x2 + y2,

d2
2 = (h − x)2 + y2.

(4.3)

A small amount of algebra results in

x =
h2 + d2

1 − d
2
2

2h
,

y = ±
√
d2

1 − x2 = ±

√√√
√d2

1 −
[
h2 + d2

1 − d
2
2

2h

]2

,

(4.4)

resulting in two solutions x1 and x2.
In a typical application, beacons are located on walls, and thus the spurious (in our

example, the x2) solution can be identified because it corresponds to the robot’s being located
on the wrong side of (inside) the wall.

Although distances to beacons provide a simple example of triangulation, most
sensors and landmarks result in more complex situations [6]. The situation for two beacons is
illustrated in Figure 9(a). The robot senses two known beacons and measures the bearing to
each beacon relative to its own straightahead direction. This obtains the difference ins gearing
between the directions to the two beacons and constrains the true position of the robot to lie
on that portion of the circle shown in Figure 9(a). We can note that the mathematics admits
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Figure 9: Location estimative of the mobile robot based on beacons triangulation.

two circular arcs, but one can be excluded based on the left-right ordering of the beacon
directions. The loci of points that satisfy the bearing difference is given by

h1 =
√
d2

1 + d2
2 − 2|d1||d2| cosα, (4.5)

where d1 and d2 are the distances from the robot’s current position x to beacons P1 and P2,
respectively. The visibility of a third beacon, as can be seen at Figure 9(b), gives rise to three
nonlinear constraints on d1, d2 and d3:

h1 =
√
d2

1 + d2
2 − 2|d1||d2| cosα,

h2 =
√
d2

1 + d2
3 − 2|d1||d3| cos β,

h3 =
√
d2

2 + d2
3 − 2|d2||d3| cos

(
α + β

)
,

(4.6)

which can be solved using standard techniques to obtain d1, d2, and d3. Knowledge of d1, d2

and d3 leads to the robot’s position [7].
The geometric arrangement of beacons with respect to the robot observer is critical

to the accuracy of the solution. A particular arrangement of beacons may provide high
accuracy when observed from some locations and low accuracy when observed from others.
For example, in two dimensions a set of three collinear beacons observed with a bearing
measuring device can provide good positional accuracy for triangulation when viewed from
a point away from the line joining the beacons (e.g., a point that forms an equilateral triangle
with respect to the external beacons). On the other hand, if the robot is located on the line
joining the beacons, the position can only be constrained to lie somewhere on this (infinite)
line.
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4.1. Triangulation with RF Beacons

In our case of study the beacons’s position at 2D environment are known and thus,
the distances between the beacons. If the N beacons are positioned at points
(xs1, ys1), (xs2, ys2), . . . , (xsN, ysN) and the robot’s position is given by x = (x, y), then, (4.6),
that express the robot triangulation with three beacons, yield

d2
1 =

(
y − ys1

)2 + (x − xs1)2,

d2
2 =

(
y − ys2

)2 + (x − xs2)2,

d2
3 =

(
y − ys3

)2 + (x − xs3)2,

(4.7)

where the robot’s position x = (x, y) can be inferred by numerical methods.

5. Data Fusion

The question of how to combine data of different sources generates a great quantity of
research in the academics ambients and at the research laboratories. In the context of the
mobile robotic systems, the data fusing must be effected in at least three distinct fields:
arranging measurements of different sensors, different positions, and different times.

5.1. State Space Models

A system for which the state vector can be fully determined from enough number of
measurements is described as being perceivable. As used by Bar-Shalom et al. [8], to describe
the estimate of state to be computed, is used x̂(k | k1) to denote the estimate of the vector x in
the time step k using collected data in a period of time where k is including the time step k1.
Using remarks until step k, however abstaining k, to form a prediction, this is in general
expressed as x̃(k) which denotes prediction of state vector x(k) based in the information
availability strict before the time k. Being based on the availability of information until, and
including themselves, the time k, it forms an updated date state estimated x̂(k), which denotes
the estimative of the state vector x(k) in the time k.

5.2. Plant Model

A plant model that describes how a state of the system x(k), which in ours particular case
represents the position of the mobile robot, changes in function of the time, control input
u(k) and the noise v(k) can be expressed by

x(k + 1) = Ψ(x(k),u(k)) + v(k), (5.1)

where Ψ(x(k),u(k)) is the state transition function and v(k) is the noise function. One of
most common and conventional way to represent the noise model is using the Gaussian
noise model with zero average with covariance Q(k) (Gelb also utilizes the notation
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v(k) ∼ N(0,Q(k)) to represent the Gaussian noise model with zero average with covariance
Q(k)) [9].

A model of linear plant, from (5.1), can be written as

x(k + 1) = Ψx(k) + Υu(k) + v(k), (5.2)

where the matrix Ψ tells how the system evolves from a state to another one in the absence
of entrances (that is frequently given as a identity matrix) and the matrix Υ tells how the
entrances of the control modifies the state of the system.

Considering a linear omnidirectional mobile robot with displacements restricted to the
plan, a simple model of plant can be considered, as follow presented.

The robot state is given by x(k) = [x(k) y(k)]T where (x(k), y(k)) describes the
robot pose at global coordinates system. As suppose that the robot is equipped with some
omnidirectional locomotion system, then the control input u(k) = [Δx Δy]T can be
described as an independent change in the robot x and y localization. If the error in the
movement of the robot is independent in the directions x and y, and if this error can be
modeled by some noise function vx(k) and vy(k), then the robot plant model is given by
(5.1), and at ours particular case becomes

[
x(k + 1)

y(k + 1)

]

=

[
x(k) + Δx(k) + vx(k)

y(k) + Δy(k) + vy(k)

]

, (5.3)

which the robot moves to where it will be commanded with each movement being corrupted
by the noise process. Equation (5.3) describes a model of linear plant.

5.3. Measurement Model

The measurement model describes how the sensors data change in function of the system
state. If the sensor model is inverting (hypothetical case) it will allows that the sensor data
cam be used for state calculations. As explained for Leonard and Durrant-Whyte [10], which
developed works with mobile robots equipped with ultrasonic sensors, the measurement
model tells the sensor observation for robot position and the target geometry (bulkhead) that
produces the observation, and it has the form of

zi(k) = hst(x(k),pt) + wi(k), (5.4)

where wi(k) is the noise function for wi(k) ∼ N(0,Ri(k)) so that represents the Gaussian
noise model with zero average with covariance matrix Ri(k), and pt is the target state
vector and change accordingly the aim shape, that can be basically corners, edges, cylindrical
surfaces or plain surfaces. The measurement function hst(x(k),pt) express a observation z(k)
about the sensor s for the target t with a vehicle localization function x(k) and the target
geometry.
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As well as in the plant model, a linear measurement model is particularly interesting.
From (5.4), this takes the form of

zi(k) = ΛEx(k) + wi(k), (5.5)

where ΛE is the matrix which express how the measurements are derived with the state
linear transformation. This simple case illustrate how a stare estimative cam be recover for
measurement:

x̂(k) = Λ−1
E zi(k), (5.6)

if it is assumed the ΛE matrix is reversibly.
The majority of the mobile robots traction by wheels (MRTW) cannot be modeled

in a linear way, and it is necessary to consider plant, model and not linear estimative
processes, as ours case. Considering a nonlinear system, where the robot can be modeled
as a punctual robot with independent control of the orientation and the speed, as the case of
the synchronous transmission mobile robots. Then, for this type of robot, the control input
u(k) = [T(k) Δθ(k)]T that is, in the period k until k + 1 the robot moves from a distance
T(k) forward, to direction that it is pointed, and then rotate itself Δθ(k). The system state is
given by x(k) = [x(k) y(k) θ(k)]T and the nonlinear plant model is given by

Ψ(x(k),u(k)) =

⎡

⎢⎢
⎣

x(k) + T(k) cos[θ(k)]

y(k) + T(k) sin[θ(k)]

θ(k) + Δθ(k)

⎤

⎥⎥
⎦. (5.7)

Each movement of the robot has a noise process parcel v(k), which has a covariance
matrix known or estimable Q(k). It is assumed for this process of noise that the same satisfies
the necessary conditions that assures the use of the Kalman filter(presented in Section 5.4).
If, in the practical way, the robot moves in distinct steps composites of pure rotations or
pure translations (i.e., only one between Δθ(k) and T(k) is different of zero), then only two
versions of Q(k) are necessary.

Assuming now that the robot is equipped with a sensor that can determine the distance
from robot to one determined target marker in the environment. For example, the target can
emit an only sound with a known frequency, and the robot is equipped with a receiver that
captures the sound. If the robot and the sound emitted at the target have synchronized clocks,
the distance between the target and the robot can be estimated. If the target is located at
(xs, ys), measurement model for this robot comes from (5.4) and is given by

z1(k) =
√
[x(k) − xs]

2 +
[
y(k) − ys

]2 + w1(k). (5.8)

This model of measurement has the parcel of degradation given by the noise process w1(k)
with covariance matrix R1(k).
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Figure 10: Schematic for Kalman filter mobile robot localization.

5.4. Kalman Filter

To control a mobile robot, frequently it is necessary to combine information of multiple
sources. The information that comes from trustworthy sources must have grater importance
about those one collected by less trustworthy sensors.

A general way to compute the sources that are more or less trustworthy and which
weights must be given to the data of each source, making a weighed pounder addition of
the measurements, are known with Kalman filter [11]. It is one of the methods more widely
used for sensorial fusing in mobile robotics applications [12]. This filter is frequently used to
combine data gotten from different sensors in a statistical optimal estimate. If a system can
be described with a linear model and the uncertainties of the sensors and the system can be
modeled as white Gaussian noises, then the Kalman filter gives a optimal estimate statistical
for the casting data. This means that, under certain conditions, the Kalman filter is able to find
the best estimative based on correction of each individual measure [13]. Figure 10 depicts the
particular schematic for Kalman filter localization [14].

The Kalman filter consists of the stages follow presented in each time step, except for
the initial step. It is assumed, for model simplification, that the state transition matrix Ψ and
the observation function ΛE remain constant in function of the time. Using the plant model
of (5.2) and computing a system state estimate in the time (k + 1) based on robot position
knowledge in the instant of time k, we have how the system evolves in the time with the
input control u(k):

x̂(k + 1) = Ψx̂(k) + Υu(k). (5.9)

In some practical equations the input u(k) is not used. It can also, to actualize the state
certainty as expressed for the state covariance matrix P(k + 1 | k) through the displacement
in the time, as:

P(k + 1 | k) = ΨP(k)ΨT + Q(k). (5.10)



16 Mathematical Problems in Engineering

Equation (5.10) express the way which the system state knowledge gradually decays with
passing of the time, in the absence of external corrections. The Kalman gain can be expressed
as

K(k + 1) = P(k + 1)ΛT
ER−1

i (k + 1), (5.11)

but, how it did not compute P(k + 1), this can be computed by

K(k + 1) = P(k + 1 | k)ΛT
E

[
ΛEP(k + 1 | k)ΛT

E + Ri(k + 1)
]−1

. (5.12)

Using this matrix, a estimate of revised state can be calculated that includes the
additional information gotten by the measurement. This involves the comparison of the
current sensors data z(k + 1) with the data of the foreseen sensors using it state estimate.
The difference between the two terms

r(k + 1) = z(k + 1) − hst(x̂(k + 1 | k),pt), (5.13)

or, at the linear case

r(k + 1) = z(k + 1) −ΛEx̂(k + 1 | k) (5.14)

is related as the innovation. If the state estimate is perfect, the innovation must be not zero
only which the sensor noise. Then, the state estimate actualized is given by

x̂(k + 1) = x̂(k + 1 | k) + K(k + 1)r(k + 1), (5.15)

and, the up-to-date state covariance matrix is given by

P(k + 1) = [I −K(k + 1)ΛE]P(k + 1 | k), (5.16)

where I is the identity matrix.

5.5. Extended Kalman Filter

In many robotic applications with sensor data fusing, the system to be modeled fails for
having a nonlinear Gaussian noise distribution. While the errors are approximately Gaussian,
the Kalman filter can be used, even so, probably will not be optimal. For nonlinear systems,
is used the Extended Kalman filter (EKF). This involves the linearization of the plant, (5.1) and,
if necessary, the linearization of the measurement (5.4) cancelling high order terms of the
Taylor expansion [15].

The model plant linearization involves the jacobian calculation of the plant model
∇Ψ(x̂(k),u(k)) and to use it as a linear estimate of Ψ in the Kalman filter. The model
measurement linearization involves the jacobian calculation of the measurement model
∇hst(x(k),pt) and to use it as linear estimative ΛE.
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For ours case of EKF use, takes the example of the plant model and nonlinear
measurement model presented in Section 5.3. To simplify the exposition, it is assumed that
Q(k) = Q and Ri(k) = Ri. For each robot movement, the next stages are follow.

(1) For represent the robot displacement, it’s used (5.1) and (5.7). The known control
parameters are utilized for the robot pose estimation at the time k + 1, as:

x̂(k + 1 | k) =

⎡

⎢⎢
⎣

x(k) + T(k) cos[θ(k)]

y(k) + T(k) sin[θ(k)]

θ(K) + Δθ(K)

⎤

⎥⎥
⎦. (5.17)

(2) A linearized plant model version is generated in the current estimative of the robot
pose x̂(k) as:

∇Ψ =

⎡

⎢⎢
⎣

1 0 −T(k) sin[θ(k)]

0 1 T(k) cos[θ(k)]

0 0 1

⎤

⎥⎥
⎦. (5.18)

(3) The state uncertainty is generated by the state covariance matrix actualization,
using measurements obtained until the time k, including itself, through:

P(k + 1 | k) = ∇ΨP(k)∇ΨT + Q (5.19)

which is the result of the linearization of (5.10).

(4) The sensor model is linearized around current estimative of robot pose x̂(k), as:

ΛE = ∇hst(x(k),pt), (5.20)

If the sensor have a reference dot like target in (xb, yb), then

ΛE =

⎡

⎢⎢
⎣

2x(k)[x(k) − xb]

2y(k)[y(k) − yb]

0

⎤

⎥⎥
⎦

T

, (5.21)

(5) Using the value ΛE, the Kalman gain, that comes for (5.12), is computed like

K(k + 1) = P(k + 1 | k)ΛT
E

[
ΛEP(k + 1 | k)ΛT

E + Ri

]−1
. (5.22)

(6) The innovation, like presented in (5.13), in this way is compute as

r(k + 1) = z(k + 1) − hst(x̂(k + 1k),pt). (5.23)
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Figure 11: Experimental mobile robot prototype.

(7) Now, is possible to calculate the robot pose estimative, like shown at (5.15), like
been

x̂(k + 1) = x̂(k + 1 | k) + K(k + 1)r(k + 1). (5.24)

(8) Finally, the actualized covariance matrix, like illustrated by (5.16), is now calculate
as

P(k + 1) = [I −K(k + 1)ΛE]P(k + 1k). (5.25)

After certain time interval, that is shortest possible, the derivatives used in the
linearization model must be recalculated through the estimated current state. This backwards
a deficiency in the EKF: if the estimated state is very far from the current state, the linear
approach of the system behavior will not be enough precise.

6. Mobile Robot Rapid Prototyping

Figure 11 illustrates the mobile robot prototype developed by a research team led by authors
and used for experiments validation and as base for the models and simulations.

The use of the rapid prototyping technique in mobile robotic systems differs from
the traditional target used in mechanics engineering and enters in new field of research
and development for projects of mobile robots mechatronics systems. In this way, the rapid
prototyping of these systems is associated not only with the project of the physical system,
but mainly with the experimental implementations in the fields of hardware and software
of the robotic system. It is fundamental that the architecture of hardware of the considered
system be opened and flexible in the way of effecting the necessary modifications for system
optimization. A proposal of open architecture system was presented in [16].

The software of the embedded control system of the mobile robot, in the context of
the rapid prototyping, can be elaborated in simulators and tested all the parameters for
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Figure 12: HIL technique for mobile robot system.

adjustments that makes necessary in accordance with the physical system to be implemented,
the hardware architecture, the actuators and the sensors. In this way, in the context of this
work, the rapid prototyping is then the methodology that allows the creation of a virtual
environment of simulation for the project of a controller for mobile robots. After being
tested and validated in the simulator, the control system is programmed in the control board
memory of the mobile robot. In this way, a economy of time and material are obtained, sooner
validating all the model virtually and later operating the physical implementation of the
system.

6.1. HIL (Hardware-in-the-Loop)

The HIL technique is used in development and tests for real-time embedded systems. HIL
provide a platform accomplish of development for adding the complexity of the plant under
control to the tests platform. The control system is enclosed in the tests and developments
through its mathematical models representations and all the respective dynamic model [17].

The Figure 12 illustrates the use of the HIL simulation technique for real-time
simulation and experimental validation of the considered mobile robotic system. With the
utilization of HIL it’s possible to implement de Kalman filter methodology with others
embedded control techniques for improve the mobile robot localization.
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Figure 13: Almost linear trajectory.

7. Experimental Results

Figures 13 and 14 depicts the result of EFK pose estimative applied in the trajectory of the
mobile robot prototype (showed in Figure 11) accomplishing different routes.

As illustrated in Figure 13 it can seen that the mobile robot starts at point (10,10)
moving itself with constant linear speed. The ellipses delimit the area of uncertainty in
the estimates. It can be observed that these ellipses are bigger in the trajectory extremities,
because in these points lass measurements date are computed. The average quadratic error
varies depending on the chosen trajectory. It can be noticed that the pose estimative improves
for more linear trajectories and with high frequency of on-board sensors measurements.

Figure 14 depicts another mobile robot trajectory example. In this case, the route is
more irregular and curvilinear. The uncertainty of pose estimative are great than the first
example (Figure 13). Thats because in this trajectory the on-board sensors measurements
becomes more unprecise and with low-frequency samples.

8. Conclusions

Once given the nonlinearity of the system in question, the use of the EKF become necessary. It
does not have therefore, at beginning, theoretical guarantees of optimality nor of convergence
of this method. Therefore, it was implemented a model of simulation that allows, underneath
of next conditions of the reality, to verify the performance of this technique. Among others
parameters that were looked to realistic model the increasing error in the measure of the
position of a marker (reference object in the environment) to the measure meets that in the
distance between the robot and it increases. This effect also was introduced in the estimate of
the observation covariance matrix to allow a more coherent performance of the filter. A factor
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extremely important is the characterization of the covariances matrices of the presents signals
in the system.

The results of the simulations associated with experimental validations confirm that
this technique is valid and promising so that the mobile robots, in autonomous way, can be
able to correct its own trajectory. The consistency of the data fusing relative to the odometry
of the mobile robot and the markers it is obtained even after inserted disturbances in the
system.

The presented method does not make an instantaneous absolute localization, but
successive measurements show that the estimative state converges for the real state of the
robot.
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