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we use the modified variation of parameters method for finding the analytical solution of a
system of third-order nonlinear boundary value problems associated with obstacle, unilateral, and
contact problems. The results are calculated in terms of convergent series with easily computable
components. The suggested technique is applied without any discretization, perturbation,
transformation, and restrictive assumptions. Moreover, it is free from round off errors. Some
examples are given to illustrate the implementation and efficiency of the modified variation of
parameters method.

1. Introduction

In recent years, much attention has been given to solve system of third-order boundary
value problems, see [1–11]. In this paper, we consider the following systems of third-order
nonlinear boundary value problems:

u′′′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(x, u(x)), a ≤ x < c,

f(x, u(x)) + u(x)g(x) + r, c ≤ x < d,

f(x, u(x)), d ≤ x ≤ b,

(1.1)

u′′′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(x, u(x)) + u(x)g(x) + r, a ≤ x < c,

f(x, u(x)), c ≤ x < d,

f(x, u(x)) + u(x)g(x) + r, d ≤ x ≤ b,

(1.2)
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with boundary conditions u(a) = α1, u
′(a) = α2, u(b) = α3, and continuity conditions

of u(x), u′(x), and u′′(x) at internal points c and d of the interval [a, b]. Here r and
αi, i = 1, . . . , 3 are real and finite constants, g(x) is a continuous function on [a, b] and
f(x, u(x)) = f(u) is a nonlinear function. Such type of problems arise in the study of obstacle,
contact, unilateral, and equilibrium problems arising in economics, transportation, nonlinear
optimization, oceanography, ocean wave engineering, fluid flow through porous media, and
some other branches of pure and applied sciences; see [1, 2, 4–15] and references therein.
Several techniques have been used to solve system of linear third-order boundary value
problems associated with obstacle, contact, and unilateral problems. Noor et al. [7] applied
finite difference method for unilateral problems; Al-Said et al. [14] used finite difference
method for obstacle problems; Khalifa and Noor [15] applied quintic spline method for
contact problems; Noor and Khalifa [8] applied quartic spline method for odd-order obstacle
problems; Al-Said and Noor [13] used quartic spline method for obstacle problems. Gao and
Chi [1] applied quartic B-splinemethod for third-order obstacle problems and Islam et al. [11]
proposed nonpolynomial spline methods for solving system of third-order boundary value
problems associated with obstacle, contact, and unilateral problems. Some of these methods
are numerical and require huge computational work for finding the approximate solutions.
Moreover, these numerical methods provide discrete point solution.

In this paper, we use the modified variation of parameters method to solve the systems
of third-order nonlinear boundary value problems associated with obstacle problems. Noor
et al. [4, 5, 10, 16, 17] have used variation of parameters method for solving a wide classes of
higher-order initial and boundary value problems. Ma et al. [18–20] have applied variation of
parameters method for solving some nonhomogenous partial differential equations. Ramos
[21] has used this technique to find frequency of some nonlinear oscillators. Ramos [21] has
also shown the equivalence of this technique with variational iteration method. It is further
investigated by Noor et al. [4, 5, 10, 16, 17] that the proposed technique is distinctly different
from variational iteration method in many aspects. The multiplier used in the variation of
parameters method is obtained by Wronskian technique and is totally different from the
Lagrange multiplier of variational iterative method. Moreover, the variation of parameters
method (VPM) removes the higher-order derivative term from its iterative scheme which
is clear advantage over the variational iteration method (VIM) as the term may cause of
repeated computation and computations of unneeded terms, which consumes time and
effort, in most of the cases, one of the cases is mentioned in [22]. Thus the variation of
parameters method has reduced a lot of computational work involved due to this term as
compared to some other existing techniques using this term. This shows that the variation of
parameters method is better than the other techniques. The modified variation of parameters
method is obtained by combining the variation of parameters method [3–5, 19, 20] and
Adomian’s decomposition method [23]. It turned out that modified variation of parameters
method is very flexible and is very efficient. The use of multiplier and Adomian’s polynomial
together in the modified variation of parameters method increases the rate of convergence
by reducing the number of iterations and successive application of integral operators. This
technique makes the solution procedure simple while still maintaining the higher level of
accuracy. Here, we implement this technique for solving systems of third-order nonlinear
boundary value problems associated with obstacle, unilateral, and contact problems, which
is the main motivation of this paper. Examples are given to illustrate the implementation and
the efficiency of the proposed method. The comparison of the proposed method with other
similar methods is the subject of another paper. It is well known that the obstacle problems
can be studied in the general frame work of the variational inequalities. The applications
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of the modified variation of parameters methods for solving the variational inequalities
is an open and interesting problem for future research. For the formulation, applications,
and numerical techniques for solving the variational inequalities and related optimization
problems, see [2–4, 7, 24, 25] and the references therein.

2. Modified Variation of Parameters Method

To illustrate the basic concept of the variation of parameter method for differential equations,
we consider the general differential equation in operator form

Lu(x) + Ru(x) +Nu(x) = g(x), (2.1)

where L is a higher-order linear operator, R is a linear operator of order less than L, N is a
nonlinear operator, and g is a source term. sing variation of parameters method [2–5, 10, 16,
17], we have following general solution of (2.1)

u(x) =
n−1∑

i=0

Bix
i

i!
+
∫x

0
λ(x, s)

(−Nu(s) − Ru(s) + g(s)
)
ds, (2.2)

where n is a order of given differential equation and Bi′s are unknowns which can be further
determined by initial/boundary conditions. Here λ(x, s) is multiplier which can be obtained
with the help of Wronskian technique. This multiplier removes the successive application of
integrals in iterative scheme, and it depends upon the order of equation. Noor et al. [4, 5, 16,
17] have obtained the following for finding the multiplier λ(x, s) as

λ(x, s) =
n∑

i=1

si−1xn−i(−1)i−1
(i − 1)!(n − i)!

. (2.3)

For different choices of n, one can obtain the following values of λ

n = 1, λ(x, s) = 1,

n = 2, λ(x, s) = x − s,

n = 3, λ(x, s) =
x2

2!
− sx +

s2

2!
,

n = 4, λ(x, s) =
x3

3!
− sx2

2!
+
s2x

2!
− s3

3!
,

...

(2.4)

Hence, we have the following iterative scheme from (2.2):

uk+1(x) = uk(x) +
∫x

0
λ(x, s)

(−Nuk(s) − Ruk(s) + g(s)
)
ds, k = 0, 1, 2, . . . . (2.5)

It is observed that the fix value of initial guess in each iteration provides the better approxi-
mation, that is, uk(x) = u0(x), for k = 1, 2, . . .. However, we can modify the initial guess by
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dividing u0(x) in two parts and using one of them as initial guess. It is more convenient way
in case of more than two terms in u0(x). In a modified variation of parameters method, we
define the solution u(x) by the following series:

u(x) =
∞∑

k=0

uk(x), (2.6)

and the nonlinear terms are decomposed by infinite number of polynomials as follows:

N(u) =
∞∑

k=0

Ak(u0, u1, u2, . . . , ui), (2.7)

where u is a function of x andAk are the so-called Adomian’s polynomials. These polynomials
can be generated for various classes of nonlinearities by specific algorithm developed in [23]
as follows:

Ak =
(

1
k!

)(
dk

dλk

)

N

(
n∑

i=0

(
λiui

)
)

λ = 0

, k = 0, 1, 2, . . . . (2.8)

Hence, we have the following iterative scheme for finding the approximate solution of (2.1)
as

uk+1(x) = uk(x) +
∫x

0
λ(x, s)

(−Ak − Ruk(s) + g(s)
)
ds. (2.9)

We would like to mention that the modified variation of parameters method for solving the
system of third-order nonlinear boundary value problems may be viewed as an important
and significant improvement as compared with other similar method.

3. Numerical Results

Example 3.1. Consider following system of third-order nonlinear boundary value problems
relevant to system (1.1):

u′′′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u3

3!
+
u2

2!
+ u + 1, for − 1 ≤ x < −1

2
,

u3

3!
+
u2

2!
− 3u + 2, for − 1

2
≤ x <

1
2
,

u3

3!
+
u2

2!
+ u + 1, for

1
2
≤ x ≤ 1,

(3.1)

with boundary conditions u(−1) = u(1) = 0, u′(−1) = 1.
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Wewill use modified variation of parameters method for solving system of third-order
nonlinear boundary value problems (3.1). By using the modified variation of parameters
method, we have following iterative scheme to solve nonlinear system (3.1):

uk+1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk(x) +
∫x

0
λ(x, s)(Ak + uk + 1)ds, for − 1 ≤ x < −1

2
,

uk(x) +
∫x

0
λ(x, s)(Ak − 3uk + 2)ds, for − 1

2
≤ x <

1
2
,

uk(x) +
∫x

0
λ(x, s)(Ak + uk + 1)ds, for

1
2
≤ x ≤ 1.

(3.2)

Since the governing equation is of 3rd order, using λ(x, s) = x2/2! − xs − s2/2!, we have

uk+1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk(x) +
∫x

0

(
x2

2!
− xs − s2

2!

)

(Ak + uk + 1)ds, for − 1 ≤ x < −1
2
,

uk(x) +
∫x

0

(
x2

2!
− xs − s2

2!

)

(Ak + 2uk)ds, for − 1
2
≤ x <

1
2
,

uk(x) +
∫x

0

(
x2

2!
− xs − s2

2!

)

(Ak + uk + 1)ds, for
1
2
≤ x ≤ 1.

(3.3)

Case 1 (−1 ≤ x < −1/2). In this case, we implement the modified variation of parameters
method as follows: we take u0 = c1(x2/2!)+c2x+c3, for better approximation. we decompose
initial guess as u0 = c2x, and obtain further iterations as follows:

u1(x) = c3 + c1
x2

2!
+
∫x

0

(
x2

2!
− sx +

s2

2!

)

(A0 + u0 + 1)ds,

u1(x) = c3 +
1
2
c1x

2 +
1
6
x3 +

1
24

c2x
4 +

1
120

c2
2x5 +

1
720

c2
3x6,

uk+2(x) =
∫x

0

(
x2

2!
− sx +

s2

2!

)

(Ak+1 + uk+1) ds, for k = 0, 1, 2, . . . ,

(3.4)

u2(x) =
1
6
c3x

3 +
1
24

c2c3x
4 +
(

1
120

c1 +
1
24

c2c3

)

x5 +
(

1
720

+
1
240

c1c2

)

x6

+
(

1
1008

+
1

840
c1c2

)

c2x
7 +

1
2520

c2
2x8 +

11
181440

c2
3x9 +

1
129600

c2
4x10

+
11

1425600
c2

5x11,

...

(3.5)
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Case 2 (−1/2 ≤ x < 1/2). In this case, we have following approximations:

u0 = c5x,

u1(x) = c6 + c4
x2

2!
+
∫x

0

(
x2

2!
− sx +

s2

2!

)

(A0 + 2u0)ds,

u1(x) = c6 +
1
2
c4x

2 +
1
12

c5x
4 +

1
120

c5
2x5 +

1
720

c5
3x6,

uk+2(x) =
∫x

0

(
x2

2!
− sx +

s2

2!

)

(Ak+1 + 2uk+1)ds, for k = 0, 1, 2, . . . ,

(3.6)

u2(x) =
1
3
c6x

3 +
1
24

c5c6x
4 +
(

1
60

c4 +
1
120

c5
2c6

)

x5 +
1

240
c4c5x

6

+
(

1
1260

c5 +
1
840

c5
2c4

)

c2x
7

+
1

3360
c5

2x8 +
19

181440
c5

3x9 +
1

129600
c5

4x10 +
11

1425600
c5

5x11,

...

(3.7)

Case 3 (1/2 ≤ x ≤ 1). In this case, we proceed as follows:

u0 = c8x,

u1(x) = c9 + c7
x2

2!
+
∫x

0

(
x2

2!
− sx +

s2

2!

)

(A0 + u0 + 1)ds,

u1(x) = c9 +
1
2
c7x

2 +
1
6
x3 +

1
24

c8x
4 +

1
120

c8
2x5 +

1
720

c8
3x6,

uk+2(x) =
∫x

0

(
x2

2!
− sx +

s2

2!

)

(Ak+1 + uk+1)ds, for k = 0, 1, 2, . . . ,

u2(x) =
1
6
c9x

3 +
1
24

c8c9x
4 +
(

1
120

c7 +
1
24

c8c9

)

x5 +
(

1
720

+
1
240

c7c8

)

x6

+
(

1
1008

+
1

840
c7c8

)

c2x
7 +

1
2520

c8
2x8

+
11

181440
c8

3x9 +
1

129600
c8

4x10 +
11

1425600
c8

5x11,

...

(3.8)
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By using MVPM, we have following formula for getting series solution in the whole
domain from the above cases:

u(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑

k=0

uk(x), for − 1 ≤ x ≤ −1
2
,

∞∑

k=0

uk(x), for − 1
2
≤ x ≤ 1

2
,

∞∑

k=0

uk(x), for
1
2
≤ x ≤ 1.

(3.9)

Hence, we have the following series solution after two iterations:

u(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c3 + c2x +
1
2
c1x

2 +
(
1
6
+
1
6
c3

)

x3

+
(

1
24

+
1
24

c3

)

c2x
4 +
(

1
120

c1 +
1
24

c2c3 +
1
120

c2
2
)

x5

+
(

1
720

+
1

240
c1c2+

1
720

c2
3
)

x6+
(

1
1008

+
1

840
c1c2

)

c2x
7

+
1

2520
c2

2x8 +
11

181440
c2

3x9

+
1

129600
c2

4x10 +
11

1425600
c2

5x11, for − 1≤x≤−1
2
,

c6 + c5x +
1
2
c4x

2 +
1
3
c6x

3 +
(

1
24

c6 +
1
12

)

c5x
4

+
(

1
120

c5
2+

1
60

c4+
1

120
c5

2c6

)

x5+
(

1
720

c5
2+

1
240

c4

)

c5x
6

+
(

1
1260

c5 +
1

840
c5

2c4

)

c2x
7 +

1
3360

c5
2x8 +

19
181440

c5
3x9

+
1

129600
c5

4x10 +
11

1425600
c5

5x11, for − 1
2
≤x≤ 1

2
,

c9 + c8x +
1
2
c7x

2 +
(
1
6
+
1
6
c9

)

x3 +
(

1
24

+
1
24

c9

)

c8x
4

+
(

1
120

c7 +
1
24

c8c9 +
1
120

c8
2
)

x5

+
(

1
720

+
1

240
c7c8+

1
720

c8
3
)

x6+
(

1
1008

+
1

840
c7c8

)

c8x
7

+
1

2520
c8

2x8 +
11

181440
c8

3x9 +
1

129600
c8

4x10

+
11

1425600
c8

5x11, for
1
2
≤x≤1.

(3.10)
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By using boundary conditions and continuity conditions at x = −1/2 and x = 1/2 and we
have a system of nonlinear equations. By using Newton’s method for system of nonlinear
equations, we have the following values of unknown constants:

c1 = 1.6049253290, c2 = .2878849923, c3 = −.4129294970,

c4 = .8760312015, c5 = .1067238767, c6 = −.4430093667,

c7 = .1999018898, c8 = .2719677907, c9 = −.4701798231.

(3.11)

By using values of unknowns from (3.11) into (3.10), we have following analytic solution
of system of forth-order nonlinear boundary value problem associated with obstacle
problem(3.1)

u(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−.4129294970 + .2878849923x + .8024626645x2

+.09784508387x3 + .007042032797x4 + .01377983685x5

+.003347168075x6 + .0004439485602x7 + 3.288800349

×10−5x8 + 1.446494291 × 10−6x9 + 5.299941790

×10−9x10 + 1.387067001 × 10−9x11, for − 1 ≤ x < −1
2
,

−.4430093667 + .1067238767x

+.4380156008x2 − .1476697889x3

+.006923669849x4 + .01465338766x5 + .0003912443350x6

+9.658004063 × 10−5x7 + 3.3898767444 × 10−5x8

+1.2729324 × 10−7x9 + 1.001016804 × 10−9x10

+9.712035816 × 10−12x11, for − 1
2
≤ x <

1
2
,

−.4701798231 + .2719677907x + .09995094490x2

+.08830336285x3 + .006003917626x4

+.001992423524x5 + .001643357119x6 + 2.874117436

×10−4x7 + 2.935177745 × 10−5x8 + 1.219584983 × 10−6x9

+4.221481514 × 10−8x10 + 1.043733637 × 10−9x11, for
1
2
≤ x ≤ 1.

(3.12)
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Figure 1

Figure 1 a graphical representation of analytical solution of system of third-order
nonlinear boundary value problem (3.1) by using modified variation of parameters method.

Example 3.2. Consider following system of third-order nonlinear boundary value problem
relevant to system (1.2):

u′′′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−1 + u + 2u3, fo − 1 ≤ x < −1
2
,

2u3, for − 1
2
≤ x <

1
2
,

−1 + u + 2u3, for
1
2
≤ x ≤ 1,

(3.13)

with boundary conditions u(−1) = u(1) = 0, u′(−1) = 1.
Proceeding as before, we have a following iterative scheme to solve nonlinear system (3.13)
by using the modified variation of parameters method:

uk+1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk(x) +
∫x

0

(
x2

2!
− xs +

s2

2!

)

(−1 + uk +Ak)ds, for − 1 ≤ x < −1
2
,

uk(x) +
∫x

0

(
x2

2!
− xs +

s2

2!

)

(Ak)ds, for − 1
2
≤ x <

1
2
,

uk(x) +
∫x

0

(
x2

2!
− xs +

s2

2!

)

(−1 + uk +Ak)ds, for
1
2
≤ x ≤ 1.

(3.14)

Case 1 (−1 ≤ x < −1/2). In this case, we implement MVPM as follows. We consider the initial
value as

u0 = c2x (3.15)
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and obtain further iterations as follows:

u1(x) = c1
x2

2!
+ c3 +

∫x

0

(
x2

2!
− xs +

s2

2!

)

(A0 + u0 − 1)ds,

u1(x) = c3 +
1
2
c1x

2 − 1
6
x3 +

1
24

c2x
4 +

1
60

c2
3x6,

uk+2(x) =
∫x

0

(
x2

2!
− xs +

s2

2!

)

(Ak+1 + uk+1) ds, for k = 0, 1, 2, . . . ,

u2(x) =
1
6
c3x

3 +
(

1
120

c1 +
1
10

c2
2c3

)

x5 − 1
720

x6 +
(

1
70

c2c1 +
1

5040

)

c2x
7

− 1
336

c2
2x8 +

1
1890

c2
3x9 +

1
9900

c2
5x11,

...

(3.16)

Case 2 (−1/2 ≤ x < 1/2). In this case, we have following approximations:

u0 = c5x,

u1(x) = c4
x2

2!
+ c6 +

∫x

0

(
x2

2!
− xs +

s2

2!

)

(A0)ds,

u1(x) = c6 +
1
2
c4x

2 +
1
60

c5
3x6,

uk+2(x) =
∫x

0

(
x2

2!
− xs +

s2

2!

)

(Ak+1)ds, for k = 0, 1, 2, . . . ,

u2(x) =
1
10

c5
2c6x

5 +
1
70

c5
2c4x

7 +
1

9900
c5

5x11,

...

(3.17)

Case 3 (1/2 ≤ x ≤ 1). In this case, we proceed as follows:

u0 = c8x,

u1(x) = c7
x2

2!
+ c9 +

∫x

0

(
x2

2!
− xs +

s2

2!

)

(A0 + u0 − 1)ds,

u1(x) = c9 +
1
2
c7x

2 − 1
6
x3 +

1
24

c8x
4 +

1
60

c8
3x6,

uk+2(x) =
∫x

0

(
x2

2!
− xs +

s2

2!

)

(Ak+1 + uk+1)ds, for k = 0, 1, 2, . . . ,

u2(x) =
1
6
c9x

3 +
(

1
120

c7 +
1
10

c8
2c9

)

x5 − 1
720

x6 +
(

1
70

c8c7 +
1

5040

)

c8x
7

− 1
336

c8
2x8 +

1
1890

c8
3x9 +

1
9900

c8
5x11,

...

(3.18)
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Hence, we have the following series solution after two iterations

u(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c3 + c2x +
1
2
c1x

2 +
(
1
6
c3 − 1

6

)

x3 +
1
24

c2x
4

+
(

1
120

c1 +
1
10

c2
2c3

)

x5 +
(

1
60

c2
3 − 1

720

)

x6

+
(

1
70

c2c1 +
1

5040

)

c2x
7 − 1

336
c2

2x8 +
1

1890
c2

3x9

+
1

9900
c2

5x11, for − 1 ≤ x < −1
2
,

c6 + c5x +
1
2
c4x

2 +
1
10

c5
2c6x

5 +
1
60

c5
3x6

+
1
70

c5
2c4x

7 +
1

9900
c5

5x11, for − 1
2
≤ x <

1
2
,

c9 + c8x +
1
2
c7x

2 +
(
1
6
c9 − 1

6

)

x3 +
1
24

c8x
4

+
(

1
120

c7 +
1
10

c8
2c9

)

x5 +
(

1
60

c8
3 − 1

720

)

x6

+
(

1
70

c8c7 +
1

5040

)

c8x
7 − 1

336
c8

2x8 +
1

1890
c8

3x9

+
1

9900
c8

5x11, for
1
2
≤ x ≤ 1.

(3.19)

By using boundary conditions and continuity conditions at x = −1/2 and x = 1/2 and we
have a system of nonlinear equations. By using Newton’s method for system of nonlinear
equations, we have the following values of unknown constants:

c1 = −1.3277592790, c2 = −.0523372235, c3 = .5249671414,

c4 = −1.0719942050, c5 = .0140953604, c6 = .5362933242,

c7 = −.8198949242, c8 = −.0519640842, c9 = .5476022141.

(3.20)

By using values of unknowns from (3.20) into (3.19), we have following analytic solution
of system of third-order nonlinear boundary value problem associated with obstacle
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Figure 2

problem (3.13)

u(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.5249671414 − .0523372235x − .6638796395x2

−.07917214313x3 − .002180717646x4 − .01092086245x5

−.001391278245x6 − 6.234120193 × 10−5x7 − 8.15233620

×10−6x8 − 7.585255857 × 10−8x9 − 3.966598131 × 10−11x11, for − 1 ≤ x < −1
2
,

.5362933242 + .0140953604x − .5359971025x2

+1.065503205 × 10−5x5 + 4.667424523 × 10−8x6

−3.042613354 × 10−6x7 + 5.620121814 × 10−14x11, for − 1
2
≤ x <

1
2
,

.5476022141 − .0519640842x − .4099474621x2

−.07539963101x3 − .002165170175x4 − .006684590535x5

−.001391227503x6 − 4.193796883 × 10−5x7 − 8.036506092

×10−5x8 − 7.424172074 × 10−8x9 − 3.827200321 × 10−11x11, for
1
2
≤ x ≤ 1.

(3.21)

Figure 2 is a graphical representation of analytical solution of system of third-
order nonlinear boundary value problem (3.13) by using modified variation of parameters
method.
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4. Conclusion

In this paper, we have used the modified variation of parameters method, which is a
combination of variation of parameters method and Adomian’s decomposition method for
solving system of third-order nonlinear boundary value problem. It is worth mentioning that
we have solved nonlinear systems of boundary value problem by our proposed technique
while most of the methods in the literature are proposed to solve linear systems of boundary
value problems associated with obstacle problems. We took two examples for both the
systems which are highly nonlinear in their nature. After applying our proposed technique
we obtained series solutions as well as their graphical representation over the whole domain.
We analyze that our proposedmethod is well suited for such physical problems as it provides
best solution in less number of iterations. It is worth mentioning that the method is capable
of reducing the volume of the computational work as compared to the existing classical
methods. The use of multiplier gives this technique a clear edge over the decomposition
method by removing successive application of integrals. Therefore, it may be concluded
that modified variation of parameters method is very powerful and efficient technique for
finding the analytical solutions for a wide class of systems of nonlinear boundary value
problems. We would also like to mention that Ma et al. [26, 27] have used the multiple
expo function method and linear superposition principle for solving the Hirota bilinear
equations for constructing a specific subclass of N-soliton solutions. It is an interesting and
open problems to compare the modified variation of parameters method with the technique
of Ma et al. [26, 27] for solving the system of third-order nonlinear boundary value problems
associated with variational inequalities. Applications of the multi-expo function method
for solving the variational inequalities and related optimization problems is an interesting
problem for future research. Results proved in this paper may inspire the research for novel
and innovative applications of these techniques.
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