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A multi-objective two stage stochastic programming model is proposed to deal with a multi-
periodmulti-product multi-site production-distribution planning problem for a midterm planning
horizon. The presented model involves majority of supply chain cost parameters such as
transportation cost, inventory holding cost, shortage cost, production cost. Moreover some
respects as lead time, outsourcing, employment, dismissal, workers productivity and training are
considered. Due to the uncertain nature of the supply chain, it is assumed that cost parameters
and demand fluctuations are random variables and follow from a pre-defined probability
distribution. To develop a robust stochastic model, an additional objective functions is added to
the traditional production-distribution-planning problem. So, our multi-objective model includes
(i) the minimization of the expected total cost of supply chain, (ii) the minimization of the variance
of the total cost of supply chain and (iii) the maximization of the workers productivity through
training courses that could be held during the planning horizon. Then, the proposed model is
solved applying a hybrid algorithm that is a combination of Monte Carlo sampling method,
modified ε-constraint method and L-shaped method. Finally, a numerical example is solved to
demonstrate the validity of the model as well as the efficiency of the hybrid algorithm.

1. Introduction

One of the problems that could be addressed in the scope of supply chain management is
production-distribution planning which is an operational activity that does a plan for the
production process, to give an idea to management as to what quantity of materials and other
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resources are to be procured and when, so that the total cost of operations of the organization
is kept to the minimum over that period. Production-distribution planning has attracted the
attention of many researchers from several years ago [1]. Numerous production-distribution
models with varying degrees of difficulties have been proposed in the last decades. Since
Holt et al. [2] proposed the approach for the first time; scholars have developed numerous
models to help solving the production planning problems, each with their own supporters
and detractors. A rough classification of modeling approaches for production planning
is presented by Soyster [3]; techniques that find the exact and mathematical solutions
and the techniques search for numerical solutions. As a comprehensive remark, Nam and
Logendran [4] reviewed production planning models from 140 journal articles and 14 books
and categorized the models into optimal and near-optimal classifications. Hanssmann and
Hess [5] developed a model based on the linear programming approach using a linear cost
structure of the decision variables. Haehling [6] extended the Hanssmann and Hess [5]
model for multiproduct, multistage production systems in which optimal disaggregation
decisions can be made under capacity constraints. Masud and Hwang [7] presented three
multicriteria decision making (MCDM) methods, which were goal programming (GP),
the step method and sequential multiobjective problem. These methods apply to solve
production planning problem with maximizing profit, minimizing changes in workforce
level, minimizing inventory investment and minimizing backorders. A set of data consisting
of two products, a single production plant and eight planning periods was generated to
compare the results. Goodman [8] developed a GP model which approximates the original
nonlinear cost terms of the Holt’s model by linear terms and solves it using a variant of
the simplex method. Baykasoglu [9] developed Masud and Hwang’s model with more
constraints such as subcontractor selection and setup issues. A tabu search algorithm was
designed to solve the pre-emptive GP model. The integration of production planning
problems with other planning problems were considered, for instance scheduling problems
[10, 11], manpower planning problems [12] and long set up time problems [13]. Production
planning in many production environments is based on some parameters with uncertain
values.

In spite of the fact that the concepts of variance has been considered in other areas,
but to the best of our knowledge, it is the first time workers productivity is considered in a
multiobjective scheme to model robust production-distribution planning under uncertainty.
Moreover, the idea of involving the human-related issues such as workers’ skill level and
workers’ training is also incorporated into the model. Using this idea, we have the option
of training the workers instead of firing them and then hiring new full-skilled ones. Since
the expected total cost, the variance of the total cost and the workers productivity are in
conflict with each other, it is proposed to model a multiobjective production-distribution
problemwhose solutionwill be a set of Pareto-optimal possible plan alternatives representing
the trade-off among different objectives rather than a unique solution. Some approaches
to deal with solving a multiobjective production-distribution planning under uncertainty
are developed such as Possibilistic linear programming method [14] and fuzzy goal
programming approach [15, 16].

According to Masud and Hwang [7], the methods for solving MOMP problems can be
classified into three categories, based on the phase in which the decision maker engages in
the decision making process expressing his preferences.

The a priori methods, the interactive methods and the a posteriori or generation methods.
In a priori methods the decision maker expresses his preferences before the solution process
(e.g., setting goals or weights to the objective functions). The criticism about the a priori
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methods is that it is very difficult for the decision maker to know beforehand and to be
able to accurately quantify (either by means of goals or weights) his preferences. In the
interactive methods phases of dialogue with the decision maker are interchanged with phases
of calculation and the process usually converges, after a few iterations, to the most preferred
solution. The decision maker progressively drives the search with his answers towards the
most preferred solution. The drawback is that he never sees the whole picture (the Pareto set)
or an approximation of it. Hence, the most preferred solution is “most preferred” in relation
to what he has seen and compare so far. In the a posteriori methods the efficient solutions of
the problem (all of them or a sufficient representation) are generated and then the decision
maker engages, in order to select among them, the most preferred one.

We formulate the proposed model as a multiobjective robust stochastic mixed-integer
nonlinear programming problem, after linearization, it is solved by using a hybrid algorithm
that is a combination of the extended Monte Carlo sampling method, modified ε-constraint
technique (type of the a posteriori methods) which is a new version of the traditional famous
multicriteria decisionmakingmethod (ε-constraint) for solvingmultiobjective problemswith
conflicting objectives simultaneously and the L-shaped method which is on of the efficient
heuristic method to solve two-stage stochastic optimization problems. This formulation takes
into account not only the expected total cost of supply chain, but also the risk reflected by the
variability of the total cost. The result of the model suggest a set of Pareto-optimal solutions
and give this chance to the decision maker in order to find the best production-distribution
configuration according to his viewpoint.

The rest of the paper is organized as follows: in Section 2, the problem is described.
Section 3 presents the mathematical formulation considering workers productivity. Then the
solution procedure is presented in Section 4. Next, the robustness and effectiveness of the
proposed model are demonstrated by the computational experiments in Sections 5 and 6.
Finally, conclusions are presented in Section 7.

2. Problem Description

The proposed multiobjective multiproduct multisite production-distribution problem can be
described as follows.

There are J factories and C customers. Each factory produces several products. Each
factory characterized by its own available time for production and warehouse capacities. The
available time is limited to the number of k-level labors beside the allowed amount of regular
time and overtime. Every factory could subcontract an allowed proportion of its product to
subcontractors. The transportation cost between factories and customers’ zones as well as the
production cost of a certain item at different factories can be different.

The present work formulates the production-distribution problem as a robust
multiobjective nonlinear programming and tries to minimize the expected total cost of
supply chain, the variability of the total cost of supply chain and the workers productivity,
simultaneously, and take decisions for each period as follows:

(i) the quantity of product i manufactured at factory j to fulfill stochastic demand of
customer zone c by k-level labor,

(ii) the number of k-level labors would be employed, laid off or trained at each factory,

(iii) the quantity of product i stored at factory j,

(iv) the amount of demand in each customer’s zone is not met.
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In our proposed model the scenario-based approach is used to represent the uncertain
parameters. Due to the multiperiod multisite multiproduct nature of the model, the problem
includes a large number of uncertain parameters; a resulting challenge is that a large number
of scenarios are required. To reduce the model size and the number of scenarios, we use
an extended Monte Carlo sampling method to generate the scenarios. Each scenario is
then associated with the same probability with the summation of the probabilities for all
the scenarios equal to 1. The extended Monte Carlo sampling method is an extension of
the conventional Monte Carlo sampling method in which interaction between uncertainties
is analyzed. Therefore value assignment for dependent uncertain parameters is controlled
regarding the type and the level of possible dependencies.

3. Mathematical Formulation

In this paper, a novel multiobjective stochastic robust optimization approach is presented in
which uncertainty is represented by a set of discrete scenarios (n).

3.1. Notations

Parameters

Dn
ict: demand for product i (1, 2, . . . , I) in demand point c (1, 2, . . . , C) in period

t (1, 2, . . . , T) in scenario n (1, 2, . . . ,N);

Cn
qj : production cost per hour in regular time (q = 1), overtime (q = 2), and

subcontracting (q = 3) at factory j (1, 2, . . . , J) in scenario n;

Ln
kjt
: manpower cost of k-level (k = 1, 2, . . . , K) labors at factory j in period t in

scenario n;

aij : production time of product i at factory j;

Fn
kjt
: firing cost of k-level worker at factory j in period t in scenario n;

Hn
kjt
: hiring cost of k-level worker at factory j in period t in scenario n;

Trnkk′jt: training cost for k-level worker trained to level k′ at factory j in period t in
scenario n;

In1ijt: inventory holding cost for product i at factory j in period t in scenario n;

In2ict: inventory holding cost for finished product i in customer’s zone c in period t
in scenario n;

T
ξ
ict: transportation cost from factory j to demand point c at period t in scenario n;
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αt: fraction of the workforce variation allowed in period t;

υk: productivity of k-level labors (0 ≤ υk ≤ 1);

TIqjt: available regular time (q = 1), overtime (q = 2) and capacity of subcontracting
(q = 3) in terms of time unit at factory j in period t;

P1j : product storage capacity at factory j;

P2c: product storage capacity in customer’s zone c;

LTjc: lead time required for shipping end product from factory j to demand point
c;

UPkk′ : 1 if training from skill level k to skill level k′ is possible; 0 otherwise;

πn
ict: shortage cost of product i in customer’s zone c in period t in scenario n;

ρn: Occurrence probability of scenario n.

Variables

Xijgt: number of product i produced at factory j using method g in period t;

XLkjt: number of k-level workers at factory j in period t;

XFkjt: number of k-level workers at factory j fired in period t;

XHkjt: number of k-level workers at factory j hired in period t;

XUkk′jt: number of k-level workers at factory j trained to level k′ in period t;

XPijt: inventory level of product i at factory j in period t;

XInict: inventory level of product i in customer’s zone c in period t in scenario n;

YSn
ijct: number of units of product i provided by factory j for demand point c in

period t in scenario n;

Bn
ict: shortage of product i in demand point c in period t in scenario n;

TCn: Total cost of supply chain under scenario n.
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3.2. Multi-Objective Stochastic Production-Distribution Model

Min Z1 =
∑

n

ρnTCn, (3.1)

Min Z2 =
∑

n

ρn

∣∣∣∣∣TCn −
∑

n

ρnTCn

∣∣∣∣∣, (3.2)

Max Z3 =

∑
t

∑
j

∑
k ukXLkjt

∑
t

∑
j

∑
k XLkjt

, (3.3)

subject to XPijt = XPij(t−1) +
∑

q

Xijqt −
∑

c

YSn
ijct, ∀i, j, t, n, (3.4)

XLkjt = XLkj(t−1) +XHkjt −XFkjt +
∑

k′
XUk′kjt −

∑

k′
XUkk′jt, ∀k, j, t, (3.5)

∑

k

XLkjtυk

(
TI1jt + TI2jt

) ≥
∑

i,q∈{1,2}
xijqt · aij , ∀j, t, (3.6)

∑

i

xij3t · aij ≤ TI3jt, ∀j, t, (3.7)

XInict = XInict−1 +
∑

j

YSn
ijc[t−LTjc] −Dn

ict − Bn
ic(t−1), ∀i, c, t, n, (3.8)

∑

i

XPijt ≤ P1j , ∀j, t, (3.9)

∑

i

XInict ≤ P2c, ∀c, t, (3.10)

∑

k

(
XFkjt +XHkjt

) ≤ α(t−1)
∑

k

XLkj(t−1), ∀j, t, (3.11)

XFkjt +
∑

k′
XUkk′jt ≤ XLkj(t−1), ∀k, j, t, (3.12)

∑

k′
XUk′kjt ·XFkjt = 0, ∀k, j, t, (3.13)

XUk′kjt ≤ M ·UPkk′ , ∀k, k′, j, t, (3.14)

Xijqt, XPijt, YSijct, B
n
ict ≥ 0,

XLkjt, XFkjt, XHkjt, XUkk′jt ≥ 0, and integer,
∀i, j, c, n, k, s,m, t. (3.15)

First objective function (3.1) aims to minimize the expected total cost of supply chain, where
TCn is total cost of supply chain under the realization of scenario n and defined as follows:



Mathematical Problems in Engineering 7

TCn =

⎡

⎣
∑

i,j,q,t

aijC
n
qj ·Xijqt +

∑

k,j,t

Ln
kjt ·XLkjt +

∑

k,j,t

Fn
kjt ·XFkjt

+
∑

k,j,t

Hn
kjt ·XHkjt +

∑

k,k′,j,t

Trnkk′j ·XUkk′jt +
∑

i,j,t

I1
n
ijt ·XPijt

+
∑

i,c,t

I2
n
ict ·XInict +

∑

i,j,c,t

Tn
ict · YSijct +

∑

i,c,t

πn
ict · Bn

ict

⎤

⎦

(3.16)

and including production cost, labor cost, firing cost, hiring cost, training cost, inventory
holding cost, transportation cost and shortage cost, respectively. Second objective function
(3.2) aims to minimize the variability of total cost of supply chain. Third objective function
(3.3) aims to maximize the average manpower productivity along the factories over the
planning horizon. Constraint (3.4) is a balance equation for the product inventory at factory j.
Constraint (3.5) is also a balance equation for workforce level and ensures that the available k-
skill level labors equals the workforce with the same skill level in previous period in addition
to the change of workforce level in current period. Constraint (3.6) limits the available
production time to available workforce regular and overtime, considering their productivity.
Constraint (3.7) restricts the amount of products manufactured by subcontractor. Constraint
(3.8) is an inventory balance equation for demand point c. Constraints (3.9) limit the
raw material and product inventory levels of factories to their related inventory storage
capacities. Constraint (3.10) restricts the product inventory levels at each customer’s zones
to their related inventory storage capacities. Constraint (3.11) guarantees that the change in
workforce level cannot exceed the proportion of workers in previous period. Constraint (3.12)
ensures that the number of k-level workers who are fired or trained for upper skill levels in
current period cannot exceed the available k-level workforce in previous period. Constraint
(3.13) denotes that the labors that are trained for skill level k should not be fired in the same
period. Constraint (3.14) guarantees that training from skill level k to level k′ is possible, once
this training program exists. Constraint (3.15) denotes the variable types.

4. Solution Procedure

In order to overcome the complexity of multiobjective stochastic programming problems,
we combine two techniques; the modified ε-constraint method and the L-shaped method.
The modified ε-constraint method offers an overall framework to obtain the optimal Pareto
solutions for the multiobjective optimization problems. Within this framework, the L-shaped
method is called to solve two-stage stochastic programming model.

4.1. Modified ε-Constraint Method

In this paper, we applied a modified version of ε-constraint method [17]. In this method, one
of the objective functions with some changes is selected as the main objective function to be
optimized, and all other objective functions are transformed into constraint by considering
an upper bound for each of them. The proposed modified ε-constraint method consists of the
following stages.
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Step 1. Select one of the objective functions (Zj) as themain objective function to be optimized
and convert other objective functions into constraint. Then form the payoff table by the
individual optimization of eachobjective functions separately. The interval between the ideal
value and the worst value over the Pareto set for each objective function is named here as the
range of that objective function.

Step 2. Determine the grid points (εk). Then we divide the range of each objective function
to m equal intervals using m − 1 intermediate equidistant grid points; that are used to vary
parametrically the RHS (εk) of that objective function.

Step 3. The modified ε-constraint model is solved for each value of ε which is obtained in the
previous step

Min Zj(x) − θ
∑

k /= j

sk
rk

s.t. Zk(x) + sk = εk, ∀k /= j, x ∈ X, sk ∈ R+,

(4.1)

where θ is an adequate small number usually between 10−6 and 10−3, X is the feasible region
of the original problem sk is a slack variable. Also, rk, gk, Ndk are the range, the number of
grid points and the nadir value for objective function k, respectively.

Note that, at each iteration of the internal loop of modified ε-constraint method, a two-
stage stochastic programming model must be solved. To achieve the optimal solution for this
model, another algorithm is embedded in modified ε-constraint method which is L-shaped
method and we describe it the next subsection.

4.2. L-Shaped Method

As mentioned before our proposed model is a multiobjective stochastic robust optimization
model in which uncertainty is represented by a set of discrete scenarios, we use an extended
Monte Carlo sampling approach to descretize the continuous distribution functions and
generate the scenarios [18]. This method is characterized by an exponential increase in the
problem size with the number of scenarios as well as the number of uncertain parameters
due to the nested structure of the two-stage formulation. In this paper, we use L-shaped
method, a popular method for solving stochastic programming models, to take advantage of
the special decomposable structure of the two-stage stochastic optimization model.

The idea behind of the L-shapedmethod is to first solve themaster problem (themodel
with those constraints that do not include the second stage variables) to obtain a lower bound
of the objective value. We then fix all the first stage decisions and solve each scenario sub-
problem (inner-model that include second stage decisions) to get an upper bound. If the
lower bound and the upper bound fall into a pre specified tolerance, then the algorithm stops.
Otherwise, we add a cut by using of the duals of the scenario sub-problems and return to
the master problem. We use this method whenever needed in the inner loops of modified
ε-constraint method (see Figure 1).



Mathematical Problems in Engineering 9

Select one of the objective
functions as the main one
and calculate ranges for εk
by using the payoff table

Record all feasible
solutions obtained in

previous step

Set number of grid points gk
for the k − 1 objective
functions’ ranges

GenerateN scenarios
using extended Monte
Carlo sampling method

Run L-shaped method
to construct payoff

table:
Min Zj : (x), k = 1, . . . , K

Convert other objective functions into
constraint and run L-shaped method to
solve modified ε-constraint model for

each vector of εk

Figure 1: Flowchart of the proposed method.

5. Numerical Experiments

Consider the supply chain network problem depicted in Figure 2. A typical company is
willing to plan its aggregate production planning. The planning horizon of time is assumed
to be 12 periods. Also the number of skill levels and products are both assumed to be 5. This
company owns four factories F1, F2, F3, and F4 which are spread geographically, and three
customer centers located in three different cities C1, C2, and C3. We assume that the demand
follows a normal distribution with the expected value and standard deviation equal to 1000
and 100, respectively, (N(μ : 1000, σ : 100)). Cost items’ distribution functions as well as
associated parameters are shown in Table 1.

We solve the example with a sampling size of 100 scenarios. The mathematical model
has 1920 integer variables, 19680 continuous decision variables and 44148 constraints. Using
L-shaped method the ideal and the nadir vales for each objective functions are obtained and
reported in Table 2.

Figure 3 shows the convergence of the L-shapedmethod for the first objective function.
We consider the first objective function (total cost of supply chain) as the main objective
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F4

C1

C2

C3

Figure 2: Supply chain network.

Table 1: Cost items distribution functions.

Cost item Probability distribution
Product inventory holding cost ($/unit period) Uniform (5, 20)
Hiring cost (10$/manpower) Normal (μ : 6, σ2 : 3)
Firing cost (10$/manpower) Normal (μ : 10, σ2 : 3)
Salary cost (10$/manpower) Uniform (20, 30)
Training cost (10$/manpower) Normal (μ : 20, σ2 : 5)
Production cost ($/min) Uniform (0.5, 1.5)
Transportation cost ($/unit) Uniform (0.015, 0.25)
Shortage cost ($/period. unit) Normal (μ : 2.5, σ2 : 1.5)

Table 2: The payoff table for modified ε-constraint method.

The optimal solution for kth single-objective model
(k = 2, . . . , K) Z1(x) Z2(x) Z3(x)

x∗
1 1,733,212 92,705.3 0.25

x∗
2 10,594,461 0 0.5

x∗
3 4,414,184 281,715.4 0.95

Ideal value (Id) 1,733,212 0 0.95
Nadir value (Nd) 10,594,461 281,715.4 0.25

function and divide the other objectives’ ranges by 9 and 3 grid points for variability and
workers productivity, respectively. Pareto curve for the expected and variance of total cost
is given in Figure 4. As can be seen, there is a significant conflict between expected value
and the variability of the total cost of supply chain. This condition arises from this fact
that in the case of expected total cost, the model tries to find the solutions that they have
a good expected value not regarding to the variability of the total cost under realization of
the different scenarios. Conversely, in the case of the variability of total cost, the model tries
to find solutions that they have objective values as close as possible to each other under
realization of the different scenarios not regarding to the objective values (see Figure 5).
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Figure 3: Convergence of the L-shaped method.

The size of the resulting stochastic programming problem is very large and increases
exponentially as the number of scenarios increases. For the stochastic programming model
with 100 scenario case, mathematical programming solvers could not solve the problem
in reasonable amount of time due to its huge size, that is, the problem cannot be solved
directly, although the deterministic model can be solved to optimality within five minutes.
By using the proposed method, we can obtain the optimal solution for the 100 scenario
case in around 1h with 0.01% optimality tolerance. In Table 3 we report the state of the
staff upgrading versus the average workers productivity, as can be seen, as the average
productivity decreases, the diversity of training courses decreases. For instance, in average
productivity level 1, 9 training courses are held, but in levels 0.75 and 0.5 the number of
courses decreases to 8 and 4, respectively. Finally in the case of level 0.25 training diversity
decreases to 3. In other words, workers’ training plays a significant role to enhance workers
productivity in factories.

6. Efficiency of the Proposed Method

In this section, five large scaled test problems are generated to evaluate the efficiency of
the proposed algorithm. As we described earlier, for these problems, standard mathematical
programming solvers cannot solve the problem in reasonable amount of time. Therefore, each
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Table 3: State of the staff upgrading versus the average workers productivity.

Z3 Upgraded level Factory j
Period t

1 2 3 4 5 6 7 8 9 10 11 12
3 → 5 1 1
3 → 5 2 4 9
4 → 5 2 5

1 1 → 3 3 3 1
2 → 4 3 1 1
3 → 5 4 6
1 → 5 1 4 3

0.75 1 → 5 2 2 8
2 → 5 1 10
1 → 5 1 8

0.5 3 → 5 1 8
1 → 5 2 1 2

0.25 1 → 5 1 6 3
3 → 5 1 4

test problem is solved four times with 50, 100, 500 and 1000 scenarios and compared with
lower bounds of linear programming solvers obtained after one and half an hour.

To evaluate the efficiency of the algorithm, the usual relative gap (RG) between the
average of best values of first objective function in Pareto set solutions (AB) (obtained
from the proposed method) and the average of the lower bounds (AL) of the first objective
function in Pareto set solutions (obtained by standard linear programming solver) is used
and reported in Table 4

RG =
AB −AL

AL
× 100. (6.1)

Table 4 shows the characteristics of the test problems and compares the performance obtained
by the proposed method with different scenario numbers. As can be seen, the proposed
method can solve the problem in less than half an hour, even for large scaled ones. This
comparison demonstrates that the relative gap between the lower bound of the objective
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Figure 5: The behavior of Z1 against Z2.

Table 4: Comparison of the performance of the proposed algorithm with different scenario numbers.

Prob. No. Problem info. No. of j/c 50 scenarios 100 scenarios
CPU Time (min) RG% CPU Time (min) RG%

1 12/20 17 1.253 17 1.358
2 20/25 18 1.668 18 1.681
3 25/30 20 2.446 23 2.588
4 25/35 21 2.477 24 2.356
5 30/40 25 2.302 25 3.01

Prob. No. Problem info. No. of j/c 500 scenarios 1000 scenarios
CPU Time (min) RG% CPU Time (min) RG%

1 12/20 18 1.392 20 1.501
2 20/25 20 1.382 21 1.661
3 25/30 24 2.508 27 2.446
4 25/35 27 2.210 28 2.477
5 30/40 29 2.788 32 2.302

function and the best value obtained from the proposed method in worst case is not more
than 2.78 percent.

7. Conclusion

In this paper a multiobjective two-stage stochastic programming model is developed to deal
with production-distribution planning in an uncertain supply chain considering workers
productivity. In addition to the traditional production planning problem in which the total
cost is considered as the main objective function we added two extra objective functions that
are variability and workers productivity. Risk is described in the form of absolute deviation
and indicates the variability of the total cost of supply chain and productivity is described
in the form of average workers productivity among all factories in all periods. It is assumed
that all of the parameters are subject to uncertainty. The proposed model is solved with a
novel hybrid algorithm composed of modified ε-constraint method, extended Monte Carlo
sampling method and L-shaped method. Finally a numerical example is generated based on
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some normal and uniform distributions and the result demonstrates the validity of the model
as well as the efficiency of the proposed method.
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[13] P. Porkka, A. P. J. Vepsäläinen, and M. Kuula, “Multiperiod production planning carrying over set-up
time,” International Journal of Production Research, vol. 41, no. 6, pp. 1133–1148, 2003.

[14] R. C. Wang and T. F. Liang, “Applying possibilistic linear programming to aggregate production
planning,” International Journal of Production Economics, vol. 98, no. 3, pp. 328–341, 2005.

[15] A. Jamalnia and M. A. Soukhakian, “A hybrid fuzzy goal programming approach with different goal
priorities to aggregate production planning,” Computers & Industrial Engineering, vol. 56, no. 4, pp.
1474–1486, 2009.

[16] S. C. H. Leung and S. S. W. Chan, “A goal programming model for aggregate production planning
with resource utilization constraint,” Computers & Industrial Engineering, vol. 56, no. 3, pp. 1053–1064,
2009.

[17] Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer, “On a bicriterion formulation of the problems of
integrated system identification and system optimization,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 1, no. 3, pp. 296–297, 1971.

[18] N. V. Sahinidis, “Optimization under uncertainty: state-of-the-art and opportunities,” Computers and
Chemical Engineering, vol. 28, no. 6-7, pp. 971–983, 2004.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


