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We propose a finite volume method for the numerical resolution of two-dimensional steady dif-
fusion problems with possibly discontinuous coefficients on unstructured polygonal meshes. Our
numerical method is cellcentered, secondorder accurate on smooth solutions and based on a spe-
cial numerical treatment of the diffusion/dispersion coefficients that makes its application possible
also when such coefficients are discontinuous. Numerical experiments confirm the convergence of
the numerical approximation and show a good behavior on a set of benchmark problems in two
space dimensions.

1. Introduction

In the last decades, finite volumemethods have been greatly successful in solving engineering
models of flows in porous media on complex geometrical domain because the finite volume
formulationworks on general polygonal and polyhedral meshes. This great mesh flexibility is
now combined with a strong theoretical foundation, that is, convergence analysis and error
estimates are available on the simplest mathematical models [1]. In this work, we address a
version of the finite volume method that is popularly known as “the diamond scheme” and was
originally presented for the advection-diffusion equation in two dimensions in [2–4] and suc-
cessively extended to convection-dominated problems in [5, 6] and nonlinear flow problems
in partially saturated porous media [7].

The numerical treatment of both diffusion/dispersion flux and of the partially satu-
rated flow is based on averaging one-sided gradients and diffusion (conductivity) tensors.
Many papers addressed the issue of conductivity averaging both in finite differences and in
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finite elements. A seminal work [8] started with a finite difference application to the unsatu-
rated flow equation. Later on they, dealt with the problem in a finite volume scheme [9].
Recent reviews on this topic can be found in [10–12]. They also made performance compar-
isons using different averages. The latter paper shows in conclusion that their scheme, name-
ly, an averaging schemes based on Darcian mean principle used in the framework of either
vertex-centered or cell-centered approach compare favorably to other methods for a range of
test cases. They compared their method with the one of [11]. Aside of the numerical compar-
isons, in [13] it is remarked that the usage of the harmonic average can be motivated on the
basis of physical arguments.

Another reason for dealing with the tensor averaging issue is related to the scale prob-
lems. Typically, the Darcy equation is written at a scale much smaller than the scale of prac-
tical interest [14, 15]. This gives boost to new numerical techniques to able to deal with the
heterogeneity of hydrodynamic parameters. One possibility is to obtain either analytically or
empirically explicit equations for the scale of interest, eliminating other scales in the problem
[16].

Several methods have been recently developed, such as, the heterogeneous multiscale
method (HMM) [16] and the multiscale finite volume element method [17]. Babuška in the
70s motivated the multiscale finite element method [18–20]. Multiscale methods have been
proposed also in the case of saturated flows in heterogeneous porous media and also applied
the multiscale finite volume element method to the Richards equation [21, 22]. In [14], a mul-
tiscale method based on the framework of HMMwas recently extended to solve the Richards
equation with random coefficients.

Another feature of their numerical scheme is the formula estimating the macroscopic
flux inwhich the unsaturated hydraulic conductivity can be calculated as a diagonal tensor. In
particular, it is worth noting that a finite volume high-order accurate approximation of the
pressure head field also allows one to achieve a better resolution in the approximation of
other important fields like the components of the hydraulic conductivity tensor at the mesh
vertices [7]. For the sake of simplicity, in this work it was considered the steady flow in a
layered porous medium in the presence of a source term. It is the Poisson equation which is
suitable to test new schemes which will be applied in further work to the more general unsat-
urated transient cases.

We propose a novel technique that automatically adjusts when the diffusion tensor is
discontinuous across a mesh interface shared by two adjacent cells. This technique is gen-
eral and can be easily implemented in any finite volume scheme that has an explicit nu-
merical flux and may result in a particularly efficient strategy for the numerical resolution
of problems where both the diffusive/dispersive and convective phenomena are simulta-
neously significant. In fact, in such problems high-resolution finite volume methods are
normally coupled with mixed finite elements following the criterion of choosing the best
available technique in accordance with the nature of the equation to be discretized. In fact,
the RT0 − P0 method is more suitable to the numerical discretization of the diffusive part of
the model, and the finite volume method gives an accurate and stable discretization of the
convective part of the model, even in presence of strong convective fields. This approach
was proved successful in the numerical modeling of oil reservoir problems [23] and of
groundwater flow and transport of contaminants in porous media, combared with [24–26].
Moreover, other different engineering areas may benefit from this new technique, such as
[27–38].

The outline of the paper is as follows. In Section 2, we introduce the mathemati-
cal model and discuss the formulation of the finite volume methods based on vertex
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reconstruction. In Section 3, we present the numerical treatment of the diffusion tensor. In
Section 4, we confirm the theoretical results with numerical experiments. In Section 5 we offer
final remarks and conclusions.

2. The Mathematical Model and the Finite Volume Formulation

Let Ω be a polygonal domain with boundary Γ.
We consider the steady diffusion problem for the scalar solution field u given by

−div(Λ∇u) = f in Ω, (2.1)

u = g on Γ, (2.2)

where Λ is the diffusion tensor describing the material properties, f is the forcing term and g
the boundary function that defines nonhomogeneous Dirichlet conditions on the boundary
Γ. Under suitable regularity assumptions on f , g, Λ, and Ω, it turns out that the diffusion
problem is mathematically wellposed, a unique solution exists [39] and such a solution is
continuously dependent on the model data. In particular, due to the elliptic nature of the
model, the diffusion tensor Λ(x) is normally represented by a strictly positive definite matrix
for every x in Ω. The components of the diffusion tensor may be discontinuous in the com-
putational domain; in such a case and without loss of generality, we assume that the mesh is
conforming with each discontinuity of Λ.

The numerical approximation to (2.1)–(2.2) is performed on a sequence of polygonal
partitions {Ωh}h of the domain Ω. For any mesh Ωh, the subscripted label h is the mesh size
and is defined by

h = max
K∈Ωh

hK, hK = sup
x′,x′ ′∈K

∣
∣x′ − x′′

∣
∣, (2.3)

where hK is the diameter of the polygonal cell K ∈ Ωh. We also label the numerical solution
uh calculated on the mesh Ωh by h. Also,

(i) a generic mesh vertex is denoted by V and its coordinate vector by xV. We will also
find it convenient to introduce a local numbering of the vertices, for example, Vi,
and to ease notation to denote the vertex position of the i-th vertex by xi (instead of
xVi);

(ii) a generic cell interface or a boundary edge is denoted by σ, its center (i.e., its edge
midpoint) by xσ , and its measure (edge length) by |σ|;

(iii) a generic polygonal cell is denoted by K its measure (area) by |K|, its center of gravity
by xK, and its boundary by ∂K.

The orientation of each mesh interface σ is reflected by its unit normal vector nσ , which is
fixed once and for all. For any mesh cell K and any face σ of the polygonal boundary ∂K, we
define the unit normal vector nKσ that points out of K and we also use the notation NKσ =
|σ|nKσ .
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Let the algebraic vector uh = (uK)K∈Ωh
be the numerical solution, where each uK ap-

proximates the cell average of the scalar solution u over the cell K. The finite volume scheme
for uh on the computational mesh Ωh reads

−
∑

σ∈∂K
Λσ∇σuh ·NKσ = fK|K| ∀K ∈ Ωh, (2.4)

where Λσ is an evaluation of Λ at face σ taken from the side of K; ∇σ is the discrete face
gradient built inside the diamond cell centered at face σ; NK,σ is the geometric vector per-
pendicular to σ, pointing from K to L, and with lenght |NKσ | = |σ|; fK is the cell average of the
right-hand side term f over the cell K:

fK :=
1
|K|
∫

K

f(x)dV. (2.5)

Let ΛK and ΛL be first-order approximations of the diffusion tensor Λ within the con-
trol volumes K and L. For example, we can take ΛK := Λ(xK) and ΛL := Λ(xL), where xK and
xL are internal points (not necessarily the barycenters) of K and L, respectively. Now, we can
consider either Λσ = ΛK inside K and Λσ = ΛL inside L or a suitable mean of these two
tensors. In particular, we can deal with the arithmetic mean:

Λσ =
1
2
(ΛK + ΛL), (2.6)

or with the harmonic mean:

Λ−1
σ =

1
2

(

Λ−1
K + Λ−1

L

)

. (2.7)

Both approaches deserve a special care when Λ is discontinuous across σ and a proper defi-
nition of the discrete gradient ∇σuh is also needed in order to preserve the property of flux
conservation.

To define the numerical gradient, a special control volume is built around this inter-
face, which has a quadrilateral shape in two dimensions and is named “diamond cell”. The
geometry of a diamond cell is shown in Figure 1, which plots the diamond cell D centered at
the mesh face σ with vertices xi and xi+1 and shared by the cells with centers xK and xL. The
diamond cell D can also be seen as the union of the subdiamonds DK and DL, which are
the triangular cells sharing σ as common base and having, respectively, vertices xK and xL,
the centers of gravity of cells K and L. The four vectors NKi, NLi, NLi+1, and NKi+1 shown in
Figure 1 are respectively orthogonal to the four boundary faces σKi, σLi, σLi+1, and σKi+1, and
their lenght is equal to the lenght of the corresponding face. Instead, when σ is a boundary
face, thus defined by σ = ∂K ∩ Γ (Γ being the boundary of the computational domain Ω), the
diamond cell associated to σ coincides withDK, that is, it is the triangle defined by σ and the
vertex xK.

The numerical diffusive flux is built by using a constant approximation of the solution
gradient and an evaluation of the diffusion tensor Λ within the diamond cell, as discussed
before. Let us give the formulas for an internal mesh face σ, that we suppose to be shared by
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Figure 1: Geometry of the 2D diamond cell.

two cells K and L. All these formulas can be easily adapted to the case of a boundary face by
taking xL equal to the center of gravity of face σ.

Using the Green-Gauss theorem yields:

∇σuh ≈ 1
|D|
∫

D

∇u(x)dV =
1
|D|
∫

∂D

u(x)n(x)dS =
1
|D|
∑

σ∈∂D

∫

σ

u(x)n(x)dS, (2.8)

where n is the unit vector orthogonal to σ ∈ ∂D and pointing out of D. If the restriction of u to
the face σ of ∂D is an affine function, the boundary integral on ∂D in (2.8) only depends on the
values of u at the vertexes of D and the constant vector provided by the formulas that we
derive below must coincide with the gradient of u.

The Gauss-Green theorem applied to the solution gradient ∇u integrated on the 2D
diamond cell D of Figure 1 yields:

∑

σ∈∂D

∫

σ

u(x)n(x)dS =
1
2
((u(xK) + u(xi))NKi + (u(xi) + u(xL))NLi

+(u(xL) + u(xi+1))NLi+1 + (u(xi+1) + u(xK))NKi+1).
(2.9)

Let us introduce the vectors NKL and Nii+1, which are, respectively, orthogonal to the edge
connecting xK to xL and xi to xi+1, and whose lenght are equal to the length of these edges.
Using the geometric relations NKL = −(NKi + NLi) and NKL = −(NKi + NLi) into (2.9) and
rearranging the terms yields:

∫

∂D
∇u(x) · n(x)dS =

1
2
((u(xi+1) − u(xi))NKL + (u(xL) − u(xK))Nii+1). (2.10)

To derive the gradient formula, we replace the function values u(xK) and u(xL) with the cell
unknowns uK and uL, respectively, and the function values u(xi) and u(xi+1) with the corre-
sponding nodal unknowns ui and ui+1. We obtain

(uh) :=
1

2|D| (∇KL(uL − uK)NKL + (ui+1 − ui)Nii+1). (2.11)
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which is a constant approximation of the solution gradient ∇u within the quadrilateral cell
D.

With any vertex xi of the mesh Ωh, we associate the reconstructed vertex value ui =
∑

K∈Ωi
ωKiuK, whereΩi = {K : xi ∈ K} denotes the subset of themesh cells which share the ver-

tex xi. The interpolation weights ωKi are assumed to verify the consistency relations [3]:

∑

K∈Ωi

ωKi = 1,
∑

K∈Ωi

ωKi(xi − xK) = 0. (2.12)

Alternative constructions of the interpolation weights are available in the literature, see, for
instance, [40]. Themain advantage offered by these alternative choices concerns the control of
positivity of the weights, which turns out to be significant when we are aimed at developing
a numerical method with a maximum or minimum principle. However, as this topic is out of
the scope of the current work, we will not pursue it anymore.

The interpolation weights ωKi are obtained by solving the reconstruction problem that
approximates the cell-averaged data set {(xK, uK)K∈Ωi

} by the affine function:

ũi(x) = α + β · (xK − xi) for x ∈ Vi (2.13)

on the covolume Vi =
⋃

K∈Ωi
K and in a least square sense, compared to [3, 41]. The recon-

structed value at vertex xi is now given by taking ui = ũi(xi) = α. The coefficients (α,β) are
the minimizers of the least squares functional:

Ji(α,β) =
∑

K∈Ωi

(α + β · (xK − xi) − uK)2. (2.14)

Imposing the zero gradient condition, that is, ∇α,βJ(α,β) = 0, yields a linear system for the
coefficients (α,β), whose solution returns the interpolation weights. For completeness of
exposition, we briefly review the derivation of the weight formula given in [41]. Let β =
(βx, βy); a straightforward calculation yields:

∂Ji

∂α
= 2
∑

K∈Ωi

(α + β · (xK − xi) − uK) = 0,

∂Ji

∂βx
= 2
∑

K∈Ωi

(α + β · (xK − xi) − uK)(xK − xi) = 0,

∂Ji

∂βy
= 2
∑

K∈Ωi

(α + β · (xK − xi) − uK)
(

yK − yi

)

= 0.

(2.15)
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Let mi be the number of cells of Ωi; we reformulate the linear system written above as

∑

K∈Ωi

miα +
∑

K∈Ωi

(xK − xi)βx +
∑

K∈Ωi

(

yK − yi

)

βy =
∑

K∈Ωi

uK, (2.16)

∑

K∈Ωi

(xK − xi) α +
∑

K∈Ωi

(xK − xi)2βx +
∑

K∈Ωi

(xK − xi)
(

yK − yi

)

βy =
∑

K∈Ωi

(xK − xi)uK, (2.17)

∑

K∈Ωi

(

yK − yi

)

α +
∑

K∈Ωi

(xK − xi)
(

yK − yi

)

βx +
∑

K∈Ωi

(

yK − yi

)2
βy =

∑

K∈Ωi

(

yK − yi

)

uK. (2.18)

For convenience, we consider a suitable local numbering of the cells of Vi, for example, Vi =
K1 ∪ K2 ∪ . . .Kmi , and we introduce the two matrices:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

mi

∑

K∈Ωi

(xK − xi)
∑

K∈Ωi

(

yK − yi

)

∑

K∈Ωi

(xK − xi)
∑

K∈Ωi

(xK − xi)2
∑

K∈Ωi

(xK − xi)
(

yK − yi

)

∑

K∈Ωi

(

yK − yi

) ∑

K∈Ωi

(xK − xi)
(

yK − yi

) ∑

K∈Ωi

(

yK − yi

)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

B =

⎛

⎜
⎜
⎝

1 1 . . . 1

xK1 − xi xK2 − xi . . . xKmi
− xi

yK1 − yi yK2 − yi . . . yKmi
− yi

⎞

⎟
⎟
⎠

,

(2.19)

and the column vector u = (u1, u2, . . . , umi)
T , which collects the solution averages to be im-

posed. Using such definitions, the linear system (2.16)–(2.18) becomes

A

⎛

⎜
⎝

α

βx

βy

⎞

⎟
⎠ = Bu, which implies that

⎛

⎜
⎝

α

βx

βy

⎞

⎟
⎠ = A−1Bu, (2.20)

since matrix A is, obviously, symmetric and positive definite and, thus, nonsingular. The coef-
ficient α that provides the vertex value is given by

α = (1, 0, 0)

⎛

⎜
⎝

α

βx

βy

⎞

⎟
⎠ = (1, 0, 0)A−1Bu. (2.21)
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We require that such a coefficient be an average of the data in u with coefficients ω =
(ωK1i, ωK2i, . . . , ωKmi

i)
T , that is, α = ωTu. By comparison with (2.21), we have the final weight

formula:

ω = BTA−T

⎛

⎜
⎝

1

0

0

⎞

⎟
⎠. (2.22)

Conditions (2.12) can be checked by a direct calculations.
The functional in (2.14) can be suitably modified to take into account different kind of

boundary conditions, for example, Neumann or Robin, compared to[41]. The values ui at the
vertexes xi ∈ Γ on the Dirichlet boundary are constrained to the boundary data, for instance
ui = 0 for a homogeneous condition. We also mention that this choice of weights provides a
very robust technique, compared to the study of locking effect due to the accuracy of the
reconstruction [42].

3. Treatment of Discontinuous Diffusion Tensors

We discuss, here, how to treat the case of a diffusion tensor that is discontinuous across an
interface σ shared by the cells K and L, that is, σ = K | L. Since we suppose that Λ is dis-
continuous across σ and the normal flux of the exact solution is continuous across σ, the
normal component of the solution gradient must be discontinuous. Consequently, a numer-
ical approximation of the diffusive flux across σ like

∫

σ

Λ∇(u) · ndS ≈ ΛKσ∇σ(uh) ·NKσ (3.1)

cannot be consistent whenever ΛKσ is some kind of average between ΛK and ΛL and the con-
stant vector ∇σ(uh) approximates ∇(u) over all the diamond cell hull (xK, xL, σ). To tackle this
problem, we consider two distinct approximations of the solution gradient within the subcells
DK and DL, denoted by ∇Kσ(uh) and ∇Lσ(uh), respectively, and impose directly the flux
conservation. To derive an expression for such one-sided gradients, we introduce an additional
unknown uσ along face σ and we apply the Gauss-Green Theorem as for the derivation of
∇KLuh in the previous section. Also, we recall that NKσ = NKL and |NKσ | = |σ| and we use
a similar notation for the normal vector from the other side of σ, so that NLσ = −NKL and
|NLσ | = |σ|. The two one-sided gradient formulas are

∇Kσ(uh) :=
1

2|DK|((uσ − uK)NKσ + (ui+1 − ui)Nii+1),

∇Lσ(uh) :=
1

2|DL| ((uσ − uL)NLσ − (ui+1 − ui)Nii+1).

(3.2)

Now, we search for a tensor ΛKσ , which is an average of the diffusion tensors Λk and
ΛL, and a gradient vector ∇KL, which is an average of the gradient vectors ∇Kσ(uh) and
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∇Lσ(uh), that makes it possible to express directly the flux conservation as

ΛKσ∇KL(uh) · nσ := ΛK∇Kσ(uh) · nσ = ΛL∇Lσ(uh) · nσ. (3.3)

Since we expect that the normal component of the vectors ∇Kσ(uh) and ∇Lσ(uh) be the same,
we impose directly this condition by requiring that a scalar coefficient ϕ exists such that

∇Lσ(uh) = ∇Kσ(uh) + ϕnσ, (3.4)

(recall that nσ = nKL). We also assume that ∇KL(uh) be a weighted average of ∇Kσ (uh) and
∇Lσ (uh). Let us be given two nonnegative coefficients μK and μL such that

μK + μL = 1, (3.5)

and such that

∇KL(uh) = μK∇Kσ(uh) + μL∇Lσ(uh). (3.6)

To this purpose, a number of possible choices have been proposed and widely inves-
tigated in the literature for μK and μL. For example, a popular option is to take the volume
of the two subdiamonds DK and DL normalized by the total volume of the diamond, for ex-
ample, μK = |DK|/|D| and μL = |DL|/|D|. The diffusion tensor can be chosen as the simple
average of ΛK and ΛL, for example, ΛKL = μKΛK + μLΛL, or as the harmonic average, for
example, Λ−1

KL = μKΛ−1
K + μLΛ−1

L . Much more attention must be paid when Λ is discontinuous
across σ as none of the previous choices may provide the correct flux information across the
common interface of cells K and L. Our aim in the next developments is at determining a
value for ϕ and of the average diffusion tensor ΛKL in terms of ΛK and ΛL that ensures flux
conservation (3.3) for any given pair of coefficients μK and μL. Our derivation is similar to that
considered in [43], and as pointed out therein, the resulting matrix is the same obtained for
other purposes in the field of upscaling of conductivity, either by means of the large average
techniques [44] or using the homogenization theory in the case of layered materials [45].

To this purpose, we first derive an expression for ϕ. We multiply (3.4) byΛLnσ and use
flux conservation to obtain

nσ ·ΛL∇Lσ(uh) = nσ · (ΛL∇Kσ(uh) + ϕΛLnσ

)

= nσ ·ΛK∇Kσ(uh), (3.7)

from which we have

nσ · (ΛK −ΛL)∇Kσ(uh) = ϕnσ ·ΛLnσ. (3.8)

Likewise, we multiply (3.4) by ΛKnσ and use flux conservation to obtain

nσ ·ΛK∇Lσ(uh) = nσ · (ΛK∇Kσ(uh) + ϕΛKnσ

)

= nσ · (ΛL∇Lσ(uh) + ϕΛKnσ

)

, (3.9)

from which we have

nσ · (ΛK −ΛL)∇Lσ(uh) = ϕnσ ·ΛKnσ. (3.10)
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Wemultiply (3.8) by μK and (3.10) by μL, we sum the resulting relations and use (3.5) to have

nσ · (ΛK −ΛL)
(

μK∇Kσ(uh) + μL∇Lσ(uh)
)

= ϕnσ · (μKΛL + μLΛK

)

nσ. (3.11)

Solving this last equation for ϕ gives us the formula:

ϕ =
nσ · (ΛK −ΛL)∇KL(uh)
nσ · (μKΛL + μLΛK

)

nσ

. (3.12)

Now, we derive an expression for ΛKL. In view of (3.5) and (3.3), it holds that

nσ ·ΛKL∇KL(uh) = nσ · (μKΛK∇Kσ(uh) + μLΛL∇Lσ(uh)
)

. (3.13)

First, in (3.13), we substitute the expression for ∇Lσ(uh) provided by (3.4), we collect the
factor ∇Kσ(uh) and we obtain:

nσ ·ΛKL∇KL(uh) = nσ · (μKΛK + μLΛL

)∇Kσ(uh) + ϕμKnσ ·ΛLnσ. (3.14)

Second, in (3.13), we substitute the expression for ∇Kσ(uh) provided by (3.4), we collect the
factor ∇Lσ(uh) and we obtain

nσ ·ΛKL∇KL(uh) = nσ · (μKΛK + μLΛL

)∇Lσ(uh) − ϕμLnσ ·ΛKnσ. (3.15)

Third, we multiply (3.14) by μL, (3.15) by μK, we add the two resulting equations, we use
again (3.5) and (3.6), and we obtain

nσ ·ΛKL∇KL(uh) = nσ · (μKΛK + μLΛL

)∇KL(uh) + ϕμKμLnσ · (ΛL −ΛK)nσ. (3.16)

Finally, in (3.16) we substitute the scalar factor ϕ given by (3.12), we collect the vectors nF

and ∇KL(uh) and we obtain:

nσ ·ΛKL∇KL(uh) = nσ ·
(

μKΛK + μLΛL + μKμL +
nσ · (ΛL −ΛK)nσ

nσ · (μKΛK + μLΛL

)

nσ

(ΛK −ΛL)

)

∇KL(uh).

(3.17)

Equation (3.17) suggests us to set

ΛKL = μKΛK + μLΛL + βKL(ΛK −ΛL), (3.18)
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(a) (b)

Figure 2: First and second mesh of mesh familyM1. This mesh family is used in test case 1.

where

βKL =
nσ · (ΛL −ΛK)nσ

nσ · (ΛK/μK + ΛL/μL
)

nσ

. (3.19)

4. Numerical Experiments

In this section, we present and discuss a set of numerical results to show the convergence
behavior of the finite volume method when we compute the diffusive flux using the tech-
nique described in the previous sections. In all the test case that we present in this section,
we compare the behavior of the new numerical treatment that we consider in this paper with
the weighted average, which is the standard approach in the method [5, 41, 42]. In fact, from
the formulation given in equation (3.18), it follows that the average diffusion tensor λKL is
equal to the weighted average μKΛK + μLΛL plus a correction term. This correction term is
specifically designed to take care of possible discontinuities in the diffusion coefficients.

The finite volume formulation based on the least squares reconstruction of vertex
values leads to a linear system for the cell-average unknowns whose coefficients matrix
is generally unsymmetric although displaying a symmetric nonzero pattern. The positive
definiteness of such system is still an open issue and this fact is also the major difficulty
for the development of a full theory of convergence of such method. Theoretical results that
prove coercivity are available only for meshes of slightly deformed quadrilaterals [2–4].

We solve such linear system using the MA41 routine of the HSL software collection,
which implements an unsymmetric multifrontal sparse LU factorization technique especially
designed for matrices with a symmetric nonzero pattern and unsymmetric values. Different
software packages like UMFPACK and standard Krylov methods like BiCG-Stab and GMRES
can be used in alternative. Efficiency issue is beyond the scope of our investigation but more
details and comparison of performance when implementing different linear algebra solvers
are found in the benchmark of the FVCA-6 Conference held in Prague, Czech Republic, in
June 2011, [46].

We solve (2.1)-(2.2) on the domain Ω =]0, 1[×]0, 1[ for the data specified in the three
test cases reported below. For all calculations, we measure the following relative errors:
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Table 1: Data of mesh familyM1; l is the mesh label, NK is the number of cells,Nσ is the number of mesh
edges,NV is the number of mesh nodes, and h is the mesh size parameter.

l NK Nσ NV h

1 121 400 280 2.008 10−1

2 441 1400 960 1.071 10−1

3 1681 5200 3520 5.422 10−2

4 6561 20000 13440 2.719 10−2

5 25921 78400 52480 1.361 10−2

error on the solution:

Eu =

(∑

K∈Ωh
|K| |u(xK) − uK|2

∑

K∈Ωh
|K| |u(xK)|2

)1/2

, (4.1)

error on the gradient:

E∇u =

(∑

σ∈Ωh
|σ| |∇u(xσ) − ∇KLuh|2
∑

K∈Ωh
|σ| |∇u(xσ)|2

)1/2

. (4.2)

Test Case 1

This test case is taken from [47] and is devoted to confirm that the new treatment of tensor
coefficients and the standard weighted arithmetic average show the same behavior when
the diffusion coefficients are regular, for example, constant or smoothly varying functions of
position, even if small anisotropies along the principal direction of diffusion are present.The
exact solution that we want to approximate is given by

u
(

x, y
)

= sin(2πx) sin
(

2πy
)

+ x3 + xy2. (4.3)

We consider two different constant diffusion tensor. The first one, called Λiso, is isotropic,
while the second one, called Λani, is anisotropic.The two diffusion tensors are given by:

Λiso =

(

1 0.25

0.25 1

)

, Λani =

(

1 0.1

0.1 0.25

)

. (4.4)
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We solve this test case on mesh family M1. Each mesh of such family is built as follows.
First, we remap the position (x̂, ŷ) of the nodes of an n × n uniform partition by the smooth
coordinate transformation:

x = x̂ +
(

1
10

)

sin(2πx̂) sin
(

2πŷ
)

,

y = ŷ +
(

1
10

)

sin(2πx̂) sin
(

2πŷ
)

.

(4.5)

The corresponding mesh of M1 is built from this “primal” mesh by splitting each quad-
rilateral cell into two triangles and connecting the barycenters of adjacent triangular cells by
a straight segment. The mesh construction is completed at the boundary Γ by connecting the
barycenters of the triangular cells close to Γ to the midpoints of the boundary edges and these
latters to the boundary vertices of the “primal” mesh. The first and the second mesh of mesh
family M1 are displayed in Figure 2; mesh data are given in Table 1. Approximation errors
for the isotropic diffusion tensor Λiso are shown in Figure 6; approximation errors for the
anisotropic tensor Λani are shown in Figure 7. In both plots, we also show the exact slopes
proportional to h and h2. From Figures 6 and 7, we deduce that in the case of constant diffu-
sion tensors the performance of the new diffusion average proposed in this work and the
weighted arithmetic average are almost the same. This behavior is confirmed both in the case
of an isotropic diffusion tensor and in the case of an anisotropic diffusion tensor.

Test Case 2

In this test case, we show the behavior of the new technique that is proposed in this paper
when the diffusion coefficients are discontinuous along an internal line of the computational
domain. To such purpose, we split Ω = ∪2

i=1Ωi where

Ω1 =
{
(

x, y
) ∈ Ω : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

2

}

,

Ω2 =
{
(

x, y
) ∈ Ω : 0 ≤ x ≤ 1,

1
2
< y ≤ 1

}

.

(4.6)

The diffusion tensor is discontinuous across the horizontal line y = 1/2 and is given by

Λ
(

x, y
)

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

λ1Λ̃ for any x ∈ [0, 1], y ∈
[

0,
1
2

]

λ2Λ̃ for any x ∈ [0, 1], y ∈
[
1
2
, 1
]

,

(4.7)

where

Λ̃ =

⎛

⎜
⎜
⎝

1 + x2 + y2 −
(

x − 1
2

)(

y − 1
2

)

−
(

x − 1
2

)(

y − 1
2

)

1 + x2 + y2

⎞

⎟
⎟
⎠

, (4.8)



14 Mathematical Problems in Engineering

(a) (b)

Figure 3: First and second mesh of mesh familyM2. This mesh family is used in test case 2.

(a) (b)

Figure 4: First and second mesh of mesh familyM3. This mesh family is used in test case 2.

(a) (b)

Figure 5: First and second mesh of mesh familyM4. This mesh family is used in test case 3.
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Figure 6: Test case 1: error curves for the gradient approximation (left plot) and the solution approximation
(right plot). Problem (2.1)-(2.2) is solved using mesh family M1 and the isotropic diffusion tensor Λiso in
(4.4).The errors obtained by average (3.18)-(3.19) are marked by circles, the errors obtained by using the
weighted arithmetic average are marked by squares. Note that the two error curves are superimposed. In
the bottom-left corners of both plots, we show the exact slopes proportional to h and h2.

and λ1 = 1, λ2 = 10. The exact solution is continuous across the line y = 1/2 and is designed
to ensure flux conservation, that is, continuity of the normal component of the flux field. The
exact solution is given by

u
(

x, y
)

=

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪
⎩

1 + x + 3 y3 for any x ∈ [0, 1], y ∈
[

0,
1
2

]

3
λ2 − λ1
23 λ2

+ x + 3
λ1
λ2

y3 for any x ∈ [0, 1], y ∈
[
1
2
, 1
]

.
(4.9)

This test case is solved on the two mesh families described below.

Mesh Family M2

This mesh sequence is the first of the mesh collection of the two-dimensional benchmark of
the conference “Finite Volumes for Complex Applications—V” held in Aussois (France) in
2008. The first mesh and the first refined mesh of this mesh suite are shown in Figure 3; mesh
data are reported in Table 2.
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Mesh Family M3

Below y = 1/2, we consider a regular mesh formed by 2n × n squares, while above y = 1/2
we consider a regular mesh formed by 4n × 2n squares. All the mesh nodes except those
located at the boundaries and those located at the internal discontinuity line y = 1/2 are then
displaced by perturbing their position to a random position inside a square box centered at
that original node position. The sides of this square box are aligned with the coordinate axis
and their length is equal to 0.8/n (note that 1/n is the distance between two consecutive
nodes in each direction). Instead, the nodes lying at y = 1/2 are allowed to change only the
abscissa in order not to modify the shape of the interface line while the nodes at the boundary
are not displaced. We treat a nonmatching mesh as a conformal polygonal mesh modifying
the shape of the polygons that are immediately below the line y = 1/2: these polygons are
treated as degenerate pentagons with two parallel consecutive edges. The first mesh is built
by taking n = 10 and mesh refinement is implemented by doubling the value of n at each
refinement step, thus implying that the mesh size parameter is approximately halved when
passing from one mesh to the next one in the refinement process.The first mesh and the first
refined mesh of this mesh suite are shown in Figure 4; mesh data are reported in Table 3.

The numerical results for the gradient and the solution approximation on mesh family
M2 are shown in the two plots of Figure 8 and onmesh familyM3 in the two plots of Figure 9.
In the bottom-left corner of both plots, we show the exact slopes proportional to h1/2 (gradient
errors) and to h and h2 (solution errors). The solution gradient has a discontinuous normal
component across such lines, and, due to this lack of regularity, the convergence rate cannot
be expected to be better than that of a first-order scheme. This behavior is reflected in both
left plots of Figures 8 and 9. Even if the convergence rate of the gradient is the same in the
two cases, the approximation errors of the formulation using the new average are smaller
than those obtained when using the standard weighted arithmetic average. Concerning the
solution approximation, the results are even more spectacular because adopting the new
average allows us to recover the second-order convergence rate, thus confirming the superior
behavior of the new method.

Test Case 3

In this test case we aim at confirming the behavior of test case 2 for a more difficult case
in which the diffusion tensor has intersecting discontinuities with an internal cross point.To
such purpose, we split the computational domain as Ω = ∪4

i=1Ωi where

Ω1 =
{
(

x, y
) ∈ Ω : 0 ≤ x ≤ 1

2
, 0 ≤ y ≤ 1

2

}

,

Ω2 =
{
(

x, y
) ∈ Ω :

1
2
≤ x ≤ 1, 0 ≤ y ≤ 1

2

}

,

Ω3 =
{
(

x, y
) ∈ Ω :

1
2
≤ x ≤ 1,

1
2
< y ≤ 1

}

,

Ω4 =
{
(

x, y
) ∈ Ω : 0 ≤ x ≤ 1

2
,
1
2
< y ≤ 1

}

.

(4.10)
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Table 2: Data of mesh familyM2; l is the mesh label, NK is the number of cells,Nσ is the number of mesh
edges,NV is the number of mesh nodes, and h is the mesh size parameter.

l NK Nσ NV h

1 250 535 286 1.865 10−1

2 1000 2070 1071 9.051 10−2

3 4000 8140 4141 4.693 10−2

4 16000 32280 16281 2.407 10−2

5 64000 128560 64561 1.215 10−2

Table 3: Data of mesh familyM3; l is the mesh label, NK is the number of cells,Nσ is the number of mesh
edges,NV is the number of mesh nodes, and h is the mesh size parameter.

l NK Nσ NV h

1 56 92 37 2.500 10−1

2 224 352 129 1.250 10−1

3 896 1376 481 6.250 10−2

4 3584 5440 1857 3.125 10−2

5 14336 21632 7297 1.563 10−2

6 57344 86272 28929 7.813 10−3

7 229376 344576 115201 3.906 10−3

Table 4: Data of mesh familyM4; l is the mesh label, NK is the number of cells,Nσ is the number of mesh
edges,NV is the number of mesh nodes, and h is the mesh size parameter.

l NK Nσ NV h

1 100 220 121 1.796 10−1

2 400 840 441 9.150 10−2

3 1600 3280 1681 4.788 10−2

4 6400 12960 6561 2.423 10−2

5 25600 51520 25921 1.216 10−2
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Figure 7: Test case 1: error curves for the gradient approximation (left plot) and the solution approximation
(right plot). We use the anisotropic diffusion tensor Λani of (4.4). The errors obtained by average (3.18)-
(3.19) are marked by circles, the errors obtained by using the weighted arithmetic average are marked
by squares. Note that the two error curves are superimposed. In the bottom-left corners of both plots, we
show the exact slopes proportional to h and h2.

G
ra

d
ie

nt
 e

rr
or

 c
ur

ve
s

10−1

10−2

10−2

Mesh size h

(a)

So
lu

ti
on

 e
rr

or
 c

ur
ve

s

Mesh size h

10−1
10−5

10−4

10−3

10−2

10−2

(b)
Figure 8: Test case 2: error curves for the gradient approximation (left plot) and the solution approximation
(right plot). Problem (2.1)-(2.2) is solved using mesh family M2 and the discontinuous diffusion tensor
(4.7).The errors obtained by average (3.18)-(3.19) are marked by circles, the errors obtained by using the
weighted arithmetic average are marked by squares. In the bottom-left corner of both plots, we show the
exact slopes proportional to h1/2 (gradient errors) and to h and h2 (solution errors).
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Figure 9: Test case 2: error curves for the gradient approximation (left plot) and the solution approximation
(right plot). Problem (2.1)–(2.2) is solved using mesh family M3 and the discontinuous diffusion tensor
(4.7). The errors obtained by average (3.18)-(3.19) are marked by circles, the errors obtained by using the
weighted arithmetic average are marked by squares. In the bottom-left corner of both plots we show the
exact slopes proportional to h1/2 (gradient errors) and to h and h2 (solution errors).
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Figure 10: Test case 3: error curves for the gradient approximation (left plot) and the solution approx-
imation (right plot). Problem (2.1)-(2.2) is solved using mesh family M4 and the discontinuous diffusion
tensor (4.11). The errors obtained by average (3.18)-(3.19) are marked by circles, the errors obtained by
using the weighted arithmetic average are marked by squares. In the bottom-left corner of both plots we
show the exact slopes proportional to h1/2 (gradient errors) and to h and h2 (solution errors).
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The diffusion tensor is discontinuous across the horizontal line y = 1/2 and the vertical line
x = 1/2 and is given by

Λi =
1
αi

⎛

⎜
⎜
⎜
⎜
⎝

1 +
(

x − 1
2

)(

y − 1
2

)

−(x − 1/2)
(

y − 1
2

)

−
(

x − 1
2

)(

y − 1
2

)

1 +
(

x − 1
2

)(

y − 1
2

)

for
(

x, y
) ∈ Ωi, i = 1, . . . , 4,

⎞

⎟
⎟
⎟
⎟
⎠

,

(4.11)

where α1 = α3 = 1 and α2 = α4 = 100. The exact solution is continuous across such line and is
designed to ensure flux conservation, that is, continuity of the normal component of the flux
field. The exact solution is given by

u
(

x, y
)

= 2αi(1 − x)
(
1
2
− x

)

cos
(

2πy
)

for
(

x, y
) ∈ Ωi, i = 1, . . . , 4. (4.12)

This test case is solved on the mesh family M4 5 that is built by displacing randomly all
the nodes except those at the subdomain interfaces x = 1/2 and y = 1/2 of a n × n regular
partition of Ω. We consider five meshes with n = 10, 20, 40, 80, 160; mesh data are shown in
Table 4, and the first mesh and the first refined mesh of this mesh suite are shown in Figure 5.

The numerical results for the gradient and the solution approximation on mesh family
M4 are shown in the two plots of Figure 10. In the bottom-left corner of these plots, we show
the exact slopes proportional to h1/2 (gradient errors) and to h and h2 (solution errors).
As in test case 2, the normal component of the solution gradient is discontinuous across
the internal lines x = 1/2 and y = 1/2. Therefore, the convergence rate that is numerically
measured in this test case is proportional to h1/2, cf. the left plot of Figure 10. This fact is
independent of the average technique that is used for the diffusion coefficients. Nonetheless,
the approximation errors given by the new average are smaller than those obtained when
using the standard weighted arithmetic average. Concerning the solution approximation,
such results confirms the behavior seen in test case 2. Consequently, the finite volume
approximation of the scalar solution recovers the optimal second-order convergence rate
when we apply the new average technique.

5. Conclusions

The numerical treatment of diffusion coefficients is an open problem and major problem,
as, for example, the conductivity of different layers of soil is abruptly spatially variable.
Moreover, it is particularly important in view of the problems of different scales involved
and of random fields of the coefficients themselves. To this purpose, we proposed and tested
a new technique for the numerical treatment of the conductivity tensor that interpolates the
information coming from the different sides of a mesh interface shared by two adjacent cells.
We point it out that this design is particularly suitable to the case of discontinuous conduc-
tivity tensors since the interpolation automatically adjusts its value by introducing an appro-
priate correction to the standard weighted average. Numerical experiments confirm this be-
havior. Furthermore, it may result in a particularly efficient strategy for the numerical
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resolution of problems where both the diffusive/dispersive and convective phenomena are
simultaneously significant.
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