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An important objective of health monitoring systems for tall buildings is to diagnose the state
of the building and to evaluate its possible damage. In this paper, we use our prototype to
evaluate our data-mining approach for the fault monitoring. The offset cancellation and high-pass
filtering techniques are combined effectively to solve common problems in numerical integration
of acceleration signals in real-time applications. The integration accuracy is improved compared
with other numerical integrators. Then we introduce a novel method for support vector machine
(SVM) classification, called convex-concave hull. We use the Jarvis march method to decide the
concave (nonconvex) hull for the inseparable points. Finally the vertices of the convex-concave
hull are applied for SVM training.

1. Introduction

Structural vibration control and structural health monitoring (SHM) technologies are
concerned with the safety of building structures. The original problem in SHM is to find the
structural damage and its location by performing some statistical pattern recognition on the
measured data [1] termed as feature extraction. The damage caused by environmental loads
should be repaired; otherwise it will grow with time and may lead to total system failure.
Dynamic parameters like acceleration, velocity, and displacement play an important role in
determining the structure dynamics [2]. Especially in the case of bridges, displacement is
a vital information [3]. Traditional displacement sensors are difficult to install on bridges
and cannot be useful especially during a seismic activity. Another popular sensing method is
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the global positioning system (GPS). But its usage is affected by badweather, electromagnetic
noise, satellite cycling, and cost. Laser Doppler vibrometer (LDV) is another option, which is
limited due to its installation scheme and cost [4]. Because the structure of the accelerometer
is very simple and it does not need any relative reference position, most of acceleration and
tilt measurements use accelerometers [5]. Wireless networks (WNs) have been used to avoid
the high cost of traditional generic wired systems [6].

Since the measured acceleration signal from an accelerometer contains offset and low-
frequency noise, it is not convenient to integrate the acceleration signal directly. The offset
and unknown initial conditions of an accelerometer cause drifts during integration. A drift-
free numerical integrator was proposed in [7]. The drift elimination method in the frequency
domain was designed in [8]. The main problem of these filter-like numerical integrators
is that they have to use large time constants to avoid the drift. Baseline correction is an
alternative method to avoid drift during integration [5]. The main problem of the baseline
correction integrator is that the low-frequency noise was removed using a window filter
designed for a particular input signal, so they cannot be applied for online estimation. Some
SHM use observers to estimate velocity and position using the measured acceleration signal
[9, 10]. However, the behavior of a filter with a large time constant is far from an ideal
integrator.

The structural health monitoring of tall buildings usually uses vibration data. The
damage reflects the changes of structural parameters, such as the stiffness and damping
coefficients. Only few research used a data-mining technique on SHM. In [11] classification
methods were used to determinate the modal parameters, such as the structure’s natural
frequencies, the vibration intensity, and the damping coefficients.

Support vector machine (SVM) is a highly desirable classification method, because
it offers a hyperplane that represents the largest separation (or margin) between the two
classes [12]. However, it needs to solve the quadratic programming (QP) in order to find a
separation hyperplane, which causes an intensive computational complexity. A method of
reducing training data is to use the geometric properties of SVM [13]. Convex hull has been
applied in training SVM [14]. In computational geometry, a number of algorithms are known
for computing the convex hull for a finite set of points. The Graham scan [15] finds all vertices
of the convex hull ordered along its boundary by computing the direction of the cross-product
of the two vectors. The Jarvis march (gift wrapping) [16] identifies the convex hull by angle
comparisons and wrapping a string around the point set. The Divide and Conquer method
[17] is applicable to the three-dimensional case. The incremental convex hull [18] and quick
hull [19] algorithms consist of eliminating some points so that the problems are easily solved.
By using a nonconvex loss function, it forms a nonconvex SVM. But some good properties of
SVM, for example, the maximummargin, cannot be guaranteed [20], because the intersection
parts of data sets are not satisfied convex conditions.

In this paper, a baseline correction scheme is applied to the output of a filter-like
numerical integrator. Instead of using a single baseline correction [5] may not guarantee a
drift-free integration. By usingmultiple baseline correction, the time constant of the proposed
low-pass filter can be reduced to a smaller value compared to the integrator in [7].

The data-mining technique in this paper does not identify structure parameters but
compares the changes from the model output and the real output. Since the model of the
building does not change, the vibrations compared with the model can be used to diagnose
faults in the building.

We also propose a new algorithm to search the border points, called convex-concave
hull. By using the Jarvis march method [16], we first find the convex hulls of the data
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set. Then concave hulls are formed using the vertices of the convex hull. In this way, the
misleading points in the intersection become the vertices of the concave hulls. The
classification accuracy is increased a lot compared with the above papers whereas training
time is decreased considerably.

Finally, we design a shake bed and a five-level structure to test our methods. The real
experiment results give validation of our methods.

2. Numerical Integrator for Accelerometer Measurements

An accelerometer can be regarded as a single-degree-of-freedom (SDOF) mechanical system
[21]. It can be modeled using a simple mass m often called as the proof-mass, attached to a
spring of stiffness k and a dashpot with damping coefficient c that is attached to a base

mẍr(t) + cẋr(t) + kxr(t) = −mẍ(t). (2.1)

Here ẍ(t) is the acceleration acting on the accelerometer and ẍr(t) is the relative acceleration
of the proof-mass with respect to the base. Other than the acceleration, the accelerometer
output signal a(t) contains offset and noise. An accelerometer has a bias termed as offset
voltage or 0g-offset measured under the absence of motion or gravity (0g), which is normally
equal to the half of its power supply (Vdd/2). This offset may vary from one sensor to another.
Themain causes for the offset variation are the sensingmaterial, temperature changes, supply
voltage deviation, mechanical stress, and trim errors [22]. This change in the offset from
its ideal value is termed as the offset error. The knowledge of this offset error will help to
remove the bias from the acceleration signal effectively. The accelerometer output signal can
be represented as [21, 23]

a(t) = kaẍ(t) +w(t) + d, (2.2)

where w(t) is the noise and disturbance effects on the measurement and d denotes the 0g-
offset. Mathematically the velocity ẋ(t) and position x(t) are calculated by integrating the
acceleration ẍ(t):

ẋ(t) =
∫ t

0
ẍ(τ)dτ + ẋ(0), x(t) =

∫ t

0

∫ τ

0
ẍ(τ)dτdt + ẋ(0)t + x(0), (2.3)

where ẋ(0) and x(0) are the initial velocity and position, respectively.
Aliasing is unavoidable when digitizing the analog signals using ADCwith a constant

sampling frequency. It has been shown that the aliasing can cause low-frequency errors in the
acceleration signal [24]. During the analog-to-digital conversion the frequency components
above the Nyquist rate are folded back into the bandwidth of interest. Thus the accelerometer
output signal in (2.2) can be modified as

a(t) = kaẍ(t) + ẍs(t) +w(t) + d, (2.4)
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Figure 1: Scheme of the proposed numerical integrator.

where ẍs(t) is the aliasing content due to sampling. This low-frequency content will be am-
plified during the integration process. This error can be minimized by using an anti-aliasing
filter between the accelerometer and the data acquisition card. The ADC sampling rate needs
to be high enough compared to this filter cut-off frequency and the sampling should be done
in uniform time intervals.

It is impossible to eliminate the noise and keep the acceleration signal feature at the
same time. The aim is to minimize the estimation error caused by ẍs(t), w(t), and d. Most
of the accelerometers come with antialiasing filters, which minimizes the aliasing component
ẍs(t). The acceleration gain ka can be easily eliminated by performing calibration. In order
to overcome the above problems, the proposed method combines the baseline correction and
the filter-like integrator effectively. The scheme of the proposed numerical integrator for the
accelerometer measurements is shown in Figure 1. The methods for minimizing the effects of
w(t) and d on estimation are discussed below.

Using multiple baseline corrections, a low-pass filter with a small time constant can be
achieved to approximate the ideal integrator behavior. The transfer function of the filter-like
integrator is

G(s) =
α

s + β
, (2.5)

where α is the gain and β is a time constant, which is close to zero. When β is zero, the above
system reduces to an ideal integrator.

The ideal integrator (β = 0) amplifies the DC offset quickly. On the other hand, a large
β reduces the phase accuracy. Selecting an optimal β is a trade-off problem between aminimal
DC offset and a better phase accuracy. Usually we select α = 1. β is between 0.1 and 0.01.

As this offset changes with time, this circuit needs frequent calibration, which may
be difficult in some cases. Another option is to use a high-pass filter in order to remove the
low-frequency DC components. The major drawback of this approach is that the high-pass
filter introduces a phase error in the cut-off frequency range. Here it is assumed that the
accelerometer is at rest before the seismic activity. In that case, the only output is the 0g-offset.

a(t + n) =

{
d if n < 0
x(t + n) + d if n ≥ 0.

(2.6)
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Finally the offset free acceleration is

¨̂x(t) = r(t) = ẍ(t). (2.7)

It is clear that the above algorithm can remove the pure DC component completely. As
discussed earlier, there exist other sources of offset other than 0g-offset. In that case, the offset
Calibration will not be able to eliminate completely the drift from velocity estimation. Now
the drifted baseline pv(t) needs to be calculated, which can be represented in a polynomial
form as

pv(t) = pv2t
2 + pv1t + pv0, (2.8)

where pvi are the coefficients to be determined. There aremanyways to obtain the coefficients.
In this paper, the curve fitting technique using the least-square method (LMS) is used to
determine the polynomial coefficients. Once the baseline for the velocity is obtained, it is
subtracted from the integrated acceleration signal, to get a drift-free velocity signal. It is found
that a second-order polynomial is enough to get a good solution. Increasing the order of the
polynomial causes numerical oscillation.

Finally the same methodology is applied to perform the baseline correction for the
position estimation. It is found that a third-order polynomial gives a good solution. The
position baseline pd(t) is designed as

pd(t) = pd3t
3 + pd2t

2 + pd1t + pd0. (2.9)

In order to remove the low-frequency components in (2.4), a high-pass filter is added
after the baseline correction as shown in Figure 1. Here a two-pole high-pass filter is used as
in [25]. The transfer function of the single-gain Sallen-Key high-pass filter is

H(s) =
s2

s2 + (2/τ)s + (1/τ2)
, (2.10)

where τ is the filter time constant. The cut-off frequency of the filter is fc = (1/2πτ).

3. Convex-Concave Hull Classification

3.1. Building Model

Since we need to compare the real vibration signals and the output of the building model,
we first need to model the tall buildings. In the case of high-rise flexible buildings, strong
winds cause sickness or psychological responses like anxiety to the occupants and also may
damage the fragile items. When the vibrations of taller buildings due to the high wind exceed
a limit of 0.15m/sec2, the human may feel uncomfortable [26]. As a result, the main objective
of structural control is to reduce the acceleration response of buildings to a comfortable level.
A single-degree-of-freedom structure can be modeled using three components: the mass
componentm, the damping component c, and the stiffness component k. Among these three
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components, the stiffness component k can be modeled as either a linear or a nonlinear, in
other words elastic or inelastic, respectively [27]. Usually themass is considered as a constant.
When an external force f is applied to a structure, it produces changes in its displacement
x(t), velocity ẋ(t), and acceleration ẍ(t). Using Newton’s law, the equation of motion of a
linear elastic system subjected to an external force can be written as

mẍ + cẋ + kx = f. (3.1)

Then the equation of motion of a linear structure with n-degree-of-freedom (n-DOF) can be
expressed as

Mẍ(t) + Cẋ(t) +Kx(t) = F, (3.2)

where M,C and K ∈ R
n×n, are the mass, damping and stiffness matrices respectively,

ẍ(t), ẋ(t) and x(t) ∈ R
n×1 are the relative acceleration, velocity and displacement vectors

respectively and F ∈ R
n×1 is the external force vector. The equation of the motion of a

nonlinear structure subjected to ground acceleration ẍg(t) is

mẍ + cẋ + fs(x, ẋ) = −mẍg. (3.3)

The nonlinear force fs(x, ẋ) in (3.3) can be modeled using the Bouc-Wen model

fs(x, ẋ) = α̃kx + (1 − α̃)kη̃fr . (3.4)

In the above expression, fr introduces the nonlinearity, which satisfies the following
condition:

ḟr =
δ̃ẋ − ν̃

(
β̃|ẋ|∣∣fr∣∣ñ−1fr + γ̃ ẋ

∣∣fr∣∣ñ
)

η̃
, (3.5)

where fr is the nonlinear time-dependent restoring force and δ̃, β̃, γ̃ , ν̃, η̃, and ñ are the
parameters, which controls the shape of the hysteresis loops and system degradation. The
variables δ̃, α̃, η̃, and k control the initial tangent stiffness [28]. In the case of n-DOF structures,
the nonlinear model can be modified as

Mẍ(t) + Cẋ(t) + Fs(x(t), ẋ(t)) = −MΛẍg(t), (3.6)

where Λ ∈ R
n×1 denotes the influence of the excitation force.
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3.2. Faults Diagnosis

We assume that na accelerometers are installed in the building. The numerical integration
outputs are velocity ẋa ∈ Rna and displacement xa ∈ Rna . The fault diagnosis signals are

x1 = xa − x ∈ Rna, x2 = ẋ − ẋa ∈ Rna. (3.7)

We define that a damage does not occur when

a1i ≤ |x1i| ≤ b1i, c2i ≤ |x2i| ≤ d2i, x1 = [x11 · · ·x1na]
T , x2 = [x21 · · ·x2na]

T , (3.8)

where i = 1 . . . na and a1i, b1i, c2i, and d2i are previous defined constants. When no damage
occurs, we define that the property of (x1i, x2i) is +1. Otherwise the property of (x1i, x2i) is −1.
In Figure 4, they are marked “o” and “+”.

Because the accelerometers work on-line, the sampled data are huge. Normal classifi-
cation techniques do not work. We use the convex-concave hull method.

3.3. Convex-Concave Hull

In many real applications of SVM, the data are not perfectly separated, and the kernel
methods are not so powerful for nonlinear separation. The closest points in the convex hulls
are no longer support vectors. In this case, the soft margin optimization of SVM can be
applied directly to the inseparable sets of the convex hulls. The penal parameter affects the
optimal performance of SVM. The optimization becomes a tradeoff between a large margin
and a small error penalty.

For the intersection parts, the convex hulls have to be reduced such that the insepa-
rable case becomes separable case [29]. The key disadvantage of this reduced convex hull is
that the convex hull has to be calculated in each reducing step [14].

In this paper, we first find the convex hulls of the data set. Then we propose a new
algorithm to search the border points; the nonconvex hulls are formed by the vertices of the
convex hull. In this way, the misleading points in the intersection become the vertices of the
concave hulls. The classification accuracy increases a lot compared with the other convex hull
methods whereas training time is decreased considerably.

In order to define the vertices of a convex-concave hull, we used the border points
definition B(X), which are the outer border points located on the boundaries of the set X.
The vertices of a convex-concave hull are the border points’ B(X):

B(X) = VCH(X) ∪ VNCH(X), (3.9)

where VCH(X) is the set of vertices of a convex hull and VNCH(X) is the set of the vertices of a
nonconvex hull (concave hull); see Figure 2. A set S ∈ Rn is said to be convex if

if x1, x2 ∈ S, then αx1 + (1 − α)x2 ∈ S, ∀α ∈ (0, 1). (3.10)

The border points B(X) have the following characteristics. For any two extreme points in
CH(X), all other points in X are located on one side of the line connecting these two points.
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We use two adjacent extreme points as reference points to detect the concave hull NCH(X)
between them. The convex-concave hull searching scheme behaves good if the data set X
has a uniform distribution of elements in a region. However, the distribution of a data set
is unknown in advance. Computing the convex-concave hull B(X) directly from X is not
appropriate for training the SVM classifier. In order to avoid the density problem, we separate
X intoX+ andX− and then we create partitions P+ (∪P+ = X+ and ∩P+ = ∅) and P− (∪P− = X−

and ∩P− = ∅), they will be abbreviated as P±
i .

The basic idea here is to obtain regions P±
i where the distribution is more uniform than

in the original ones. Convex-concave hull searching is then applied on each P±
i to reduce

the size of X whereas preserving most support vectors. The VCH(X+) and VCH(X−) are always
included in B(X±) regardless whether X is linearly separable or inseparable. In addition,
points on the intersection of convex hulls are also included in B(X±).

The subsets Pi can be quickly created by introducing all points in a binary tree of height
h and then using the leaves as a version of the original points. Once all points have been
introduced in the binary tree, it is possible to look down from height hg < h of the tree and
take all leaves as a subset Pi.

We propose a gridmethod to preprocess the data set. Figure 3 shows the data set before
process.

There are basically two cases for the two-class classification using SVM: the linearly
separable and the linearly inseparable. In the nonlinear case, suitable kernel can be applied
to map the nonlinear classification into the linear classification.
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In the separable case, CH(X+) ∩ CH(X+) = ∅, where X± represents the elements in X
with label +1 or −1, respectively. It has been demonstrated that if the data set is a linearly
separable one, then the SV corresponds to the closest vertices of CH(X+) and CH(X−).
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In the linear inseparable case, the convex-hulls-intersect. The convex-hull-based meth-
ods do not work well for SVM, because SVs are generally located on the exterior boundaries
of data distribution; see Figure 5. Further, the reduced convex hull distorts the original data
distribution and produces poor classification accuracy.

After we obtain the vertices of the convex-concave hull, B(X) = VCH(X) ∪ VNCH(X),
these points are sent to train the SVM classifier, that is, to find an optimal hyperplane or to
solve the following quadratic programming problem (primal problem):

min
w,b

J(w) =
1
2
wTw + C

n∑
k=1

ξk

subject : yk

[
wTϕ(xk) + b

]
≥ 1 − ξk,

(3.11)

where ξk is slack variables to tolerate misclassifications ξk > 0, k = 1 · · ·n, c > 0, wk is the
distance from xk to the hyperplane [wTϕ(xk) + b] = 0, and ϕ(xk) is a nonlinear function.

In our convex-concave hull SVM classification, the penal factor C can be selected very
small, because all the misleading points almost disappear by the concave algorithm. The
classification accuracy is improved.



Mathematical Problems in Engineering 11

The kernel which satisfies the Mercer condition [30] is K(xk, xi) = ϕ(xk)
Tϕ(xi).

Equation (3.11) is equivalent to the following quadratic programming problem which is a
dual problem with the Lagrangian multipliers αk ≥ 0:

max
α

J(α) = −1
2

n∑
k,j=1

ykyjK
(
xk, xj

)
αkαj +

n∑
k=1

αk,

subject :
n∑

k=1

αkyk = 0, 0 ≤ αk ≤ c.

(3.12)

Many solutions of (3.12) are zero; that is, αk = 0, so the solution vector is sparse; the sum is
taken only over the nonzero αk. The xi which corresponds to nonzero αi is called a support
vector. Let V be the index set of support vectors, then the optimal hyperplane is

∑
k∈V

αkykK
(
xk, xj

)
+ b = 0. (3.13)

The resulting classifier is

y(x) = sign

[∑
k∈V

αkykK(xk, x) + b

]
, (3.14)

where b is determined by the Kuhn-Tucker conditions. The decision hyperplane

∑
k∈V1

ykα
∗
1,kK(xk, x) + b∗1 = 0. (3.15)

4. Experiments

In this paper, the velocity and position estimations are evaluated in a shaking table; see
Figure 6. The accelerometer we used is Summit Instruments 13203B, which is mounted on
the SDOFmechanical structure. The sensitive axis of the accelerometer is mounted parallel to
the ground to measure the structure acceleration. A linear magnetic encoder (LM15) position
sensor with a resolution of 50μm is used for verifying the estimated position data. The
building structure base is mounted on the shaking table; see Figure 7. We first evaluate the
numerical integrator proposed in this paper. We use the earthquake signal of Loma Prieta
East-West on October 17, 1989. The position estimation is shown in Figure 8.

It has been seen that the proposed filter-like integrator is able to estimate the velocity
and position in a reasonable manner. Still there is some error found between the estimated
and the measured position. This error is caused due to the phase error introduced by the
high-pass filter, which resulted in a small phase delay. But it is found that the estimation will
be reasonable for the structural control and health monitoring applications.

Then we use our convex-concave hull classification (CCHSVM) to diagnose the
fault. We compare our algorithms with the other four SVM classification methods: SMO
[31], LIBSVM [32], clustering-based SVM (CSVM) [33], and the reduced convex hull SVM
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Figure 6: Shaking table.

Figure 7: Six-floor structure.
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Table 1: Classification results.

Data set hg K Tbp Ttr #SV #BS Acc
10K — — — 928 171 — 99.8
B(10K) 7 25 587 241 101 768 99.7
50K — — — 12,589 1,495 — 98.6
B(50K) 2 15 2,635 2,887 626 2,924 98.4
100K — — — 43,443 1,252 — 99.8
B(100K) 7 25 3,557 3,094 770 5,319 99.4
200K — — — 53,643 1,173 — 99.7
B(200K) 9 40 6,719 2,001 627 4,632 98.3
250K — — — 69,009 6,839 — 98.7
B(250K) 4 15 6,501 7,181 1,237 13,171 98.4

(RCHSVM) [29]. One part of data is shown in Figure 9. The circles represent the normal case.
The squares correspond to a stiffness change in the second floor.

We first examine how does the training data size affect the training time and
classification accuracy of our convex-concave hull SVM (CCHSVM). We use 10K (K =
103), 50K, 100K, 200K, and 250K data set samples to train CCHSVM and SMO. For all data
sets, the training data are chosen randomly from 70% of the data set; the remainig data are
used for testing data set. The comparison results are shown in Table 1. Here 10K means to
use 10K data to train SMO, B(10K) means to use 10K data to train CCHSVM. hg and K are
CCHSVM algorithm parameters, Tbp is the time to compute border points, Ttr is the training
time, #SV is the number of support vectors, #BS is the number of vertices of the convex-
concave hull, and Acc is the classification accuracy.

We can see that our CCHSVM has less training time than SMO and almost the same
classification accuracy with SMO. When the data size is increased, the training time is dra-
matically increased with SMO, while ours only increases a little. Although the classification
accuracy cannot be improved significantly when data size is very large, it does not get worse,
and the testing accuracy is still acceptable.

Now we compare our CCHSVM with SMO [31], LIBSVM [32], CSVM [33], and
RCHSVM [29] with 40K data set. The comparison results are shown in Table 2.
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Table 2: Classification results.

Data set hg K Tbp Ttr #SV #BS Acc
SMO — — — 11,243 648 — 97.3
LIBSVM — — — 7,130 540 — 97.8
CSVM — — — 830 310 — 97.6
RCHSVM — — — 19,325 350 — 90.6
CCHSVM 4 7 437 548 253 894 96.2

We can see that compared with the other SVM classifiers, our approach has good
classification accuracy while the training is significantly faster than other SVM classifiers.
The classification accuracy is higher than the other convex hull SVMs.

5. Conclusions

In this paper, we use two techniques for structural health monitoring of tall buildings: numer-
ical integrator and convex-concave hull classification (CCHSVM). A numerical integrator
is proposed for estimating velocity and position from an acceleration signal. This method
combines the multiple baseline corrections and the filtering techniques. The proposed
integrator is able to produce stable and accurate estimation.

The CCHSVM uses convex-concave hull and grid before process; the CCHSVM
overcomes the problems of slow training of SVM and low accuracy of many geometric
properties based SVMs. The key point of our method is that we use the Jarvis march method
to decide the concave (nonconvex) hull for the inseparable points.

The experimental results demonstrate that the accuracy of the drift-free integrator is
increased by adding the offset cancellation filter, and our approach has good classification
accuracy while the training is significantly faster than other SVM classifiers. The classification
accuracy is higher than the other convex hull SVMs.
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