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Sludge bulking is the most common solids settling problem in wastewater treatment plants, which
is caused by the excessive growth of filamentous bacteria extending outside the flocs, resulting in
decreasing the wastewater treatment efficiency and deteriorating the water quality in the effluent.
Previous studies using molecular techniques have been widely used from the microbiological
aspects, while the mechanisms have not yet been completely understood to form the deterministic
cause-effect relationship. In this study, system identification techniques based on the analysis of
the inputs and outputs of the activated sludge system are applied to the data-driven modeling.
Principle component regression (PCR) and artificial neural network (ANN) were identified using
the data from Chongqing wastewater treatment plant (CQWWTP), including temperature, pH,
biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SSs),
ammonia (NH4

+), total nitrogen (TN), total phosphorus (TP), and mixed liquor suspended solids
(MLSSs). The models were subsequently used to predict the sludge volume index (SVI), the
indicator of the bulking occurrence. Comparison of the results obtained by both models is also
presented. The results showed that ANN has better prediction power (R2 = 0.9) than PCR
(R2 = 0.7) and thus provides a useful guide for practical sludge bulking control.

1. Introduction

Sludge bulking is the most common solid separation problem in activated sludge problem,
which is caused by the excessive growth of filamentous bacteria extending outside the flocs,
thus interfering with the settling of activated sludge. It has been reported that over 50%
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of the wastewater treatments in US experience bulking [1]. Bulking leads to high level
of total suspended solids in effluent that exceeds the discharge permit limitation and
subsequently loses activated sludge in the aeration basin, resulting in the deterioration of
wastewater treatment process [1]. Sludge setting and compaction are often quantified using
sludge volume index (SVI). When SVI reaches 150mL/g, bulking can be considered to
happen.

Various theories and factors, such as kinetic selection theory [2–4], filamentous
backbone theory [5], substrate diffusion limitation [6], storage phenomena [7, 8], and the
difference in the decay rates between filaments and floc formers [9], have been proposed
and extensively studied for explaining the competition between filaments and floc formers.
However, no single or combined proposed mechanisms can explain completely the sludge
bulking problem; for example, the uncertainty about the factors triggering the filaments,
growth is still unclear. The current efforts to study sludge bulking problem rely mostly
on experimental observation of filamentous bacteria population in the system, while some
experimental results could lead to contradictory conclusions. Thus it is difficult to formulate
deterministic mathematical models for predicting the filaments population, though some
existing models were developed [9, 10].

Developing a model that could predict in real time with reasonable accuracy the
potential for bulking is of great practical importance, as it can be used to improve the
treatment plant efficiency and cost saving [11]. The complexity of the problem can be
overcome by applying data-driven model for the whole system, rather than the breaking
down of the system into small components described individually, in which only the inputs
and outputs of the system are taken into consideration. One major advantage of the data-
driven models over mechanistic models is that they require minimal information of the
intrinsic processes of the system.

In PCR, PCA is first used to convert a set of observations of possibly correlated
var-iables by orthogonal transformation into a set of values of uncorrelated variables
called PCs, thus reducing the complexity of multidimensional system by maximization of
component loadings variance and elimination of invalid components. PCA has been used
alone or in combination with other methods, such as MLR, to model aquatic environmental
and ecological processes including algal blooms problem in freshwater reservoirs [12–14].
From these studies, only the PCs with eigenvalues greater than 1 were selected for MLR,
which can explain the high percentage of total variation of the environmental variables in
PCA. It is followed by the MLR to check if the chlorophyll-a, cyanobacteria abundance,
or microcystin concentrations could be explained by environmental variables and to be
used for further prediction. On the other hand, ANN is regarded as an efficient tool for
modeling and forecasting due to its wide range of applicability and capability to treat
complicated nonlinear problems. After training, ANN can be used to predict the output
with the new independent input parameter; thus, it is appropriate for modeling the water
parameters data [15]. It was reported that ANN provided better results than PCR model,
particularly in handing collinearity and nonlinear structures of forecast problems [12, 16–
18].

In the aspect of wastewater treatment processes, the application of PCR and ANN as
popular data-driven approaches has been widely researched in the literature. Belanche et al.
[19] used ANN as error predictor to improve the accuracy of an existing mechanistic model
of activated sludge process by coupling both techniques. Five key variables including effluent
SS, COD, ammonia, mixed liquor oxygen, and volatile SS were simulated and predicted.
Two steps were involved: optimization of model parameters was first investigated using
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the downhill simplex method to minimize the sum of the square errors between observation
and prediction; then ANNmodels were used to predict the remaining errors of the optimized
mechanistic model. This study used over 10 days’ 6–9 h measurements from the activated
sludge treatment plant located at Norwich, England. Though the study is based on the real
data, the models were not used for predicting bulking phenomena.

Côté et al. [20] developed and applied ANN models for the prediction of future
bulking episodes. The simple prediction models based on the online data (flow rates),
analytical data (COD, BOD), and qualitative data (presence of foam, filamentous bacteria,
microfauna, and appearance) were developed for the effluent TSS that is an indicator of
plant performance. The data came from the WWTP from Catalonia, Spain, in 609 consecutive
days. Through the combined use of the rough set theory and ANN, the reasonable prediction
models are found to show the different importance of variables and provide insight
into the processes’ dynamics. However, compared to SVI, TSS was not a good indicator
for bulking, though during bulking episodes, the effluent TSS undoubtedly increases.
Besides, the parameters sets used for selecting the significant variables are incomplete.
For example, the important variables including temperature, pH, TN, and TP are not
included in the selection, resulting in losing the key information for explaining the bulking
phenomena.

A recent study [21] utilized a self-organizing radial basis function (SORBF) neural
network method to predict the evolution of SVI. The hidden nodes in the SORBF neural
network can be grown or pruned based on the node activity and mutuality to achieve the
appropriate network complexity and overall computational efficiency. The performance of
this method was verified in a real WWTP. This method enhanced the capacity of the RBF
model to adapt to nonlinear dynamic system and thus yielded more accurate predictions
than the other method. However, in this study only limited input parameters, influent flow
rate, DO, pH, BOD, COD, and TN were included, which are not enough to explain sludge
bulking mechanisms.

Considering the drawbacks of previous studies using ANN in wastewater treatment
system, the purpose of the present study is to analyze bulking problems of CQWWTP that
used the A/A/O treatment process that has not been discussed before, based on more
complete daily variables including temperature, pH, BOD, COD, SS, NH4

+, TN, TP, and
MLSS for the whole year. These variables provide more complete data input to explain the
bulking mechanisms, in spite of applying only the data-driven models developed in the
study. The models can be used to evaluate the relative influence of the operational conditions,
influents characteristics, and activated sludge concentrations on the SVI and to predict the
SVI values using PCR and ANN. The comparisons of both models in this study and the
prediction model developed by Han and Qiao [21] were made to select the best prediction
method for wastewater treatment management. The key contributions of this paper not
only focus on the mathematical modeling itself, but also take the complete main factors
that affect the bulking into consideration, by integrating all of those potential mechanistic
bulking causative variables into both models, though only the data-driven models were
applied.

The rest of this paper was organized as follows. The study area and data source
of CQWWTP were first introduced concisely, followed by modeling approaches (PCR
and ANN) formulation and the performance indicators used for evaluation in Section 2.
Section 3 presented and discussed the modeling results performed by PCR and ANN,
respectively, and made comparisons between both methods. The conclusion was drawn
finally in Section 4.
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CQWWTP

Figure 1: Location of CQWWTP.

2. Materials and Methods

2.1. Study Area

Chongqing is the biggest city in Western China. Like Beijing, Tianjin, and Shanghai, it is
directly under the central government of China. The city has grown very quickly during the
last 10 years, with the population of 31 millions and the area of 82,400 km2. There is now a
big effort to collect and treat the wastewater, due to the recent achievement of the three-gorge
dam in the downstream. CQWWTP (29.601615 in latitude and 106.634133 E in longitude,
Figure 1), one of biggest WWTP in Chongqing, is designed to have a capacity of an average
flow rate of 300,000m3/d and about 750,000 person equivalents (in carbon, nitrogen, and
phosphorus). CQWWTP uses conventional A/A/O (anaerobic/anoxic/aerobic) treatment
processes (Figure 2) that are susceptible to sludge bulking. It was reported that 36% of sludge
experience bulking in the year of 2010, and the situation appeared to be worsening in the
recent years, particularly in the springs.

2.2. Data Source

Sludge samples were collected daily in the reaction tank over the year of 2010. The monitored
parameters included operational conditions (temperature and pH), influent characteristics
(BOD, COD, SS, NH4

+, TN, and TP), and activated sludge concentrations (MLSS). Water
samples were preserved, delivered, and analyzed using the standard methods of the
American Public Health Association [22].

Figure 3 showed the changes of water parameters over the time, with the simple
statistical analysis shown in Table 1. It was showed that the pH is maintained stable over
the range of 7.6–8.2. The water temperatures matched the atmospheric temperatures that
are low in the winter and high in the summer. The BOD and COD concentrations in
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Figure 2: CQWWTP treatment processes.
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Figure 3: Change of water parameters over time in 2010. (a) Temperature and pH; (b) MLSS and SS; (c)
BOD and COD; (d) TN/NH3-N (lines) and TP (bar chart).
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Table 1:Water quality characteristics of CQ from Jan. 1, 2010 to Dec. 31, 2010.

Parameter Max. Min. Mean Std. dev.
Temp. 29.2 13.5 20.499 4.395
MLSS 6530 14 4088.363 999.860
BOD 609 58 184.975 74.802
COD 899 113 305.094 122.215
SS 755 80 224.798 99.811
pH 8.18 7.56 7.840 0.099
TP 10.4 1.38 3.772 1.220
TN 96.9 20.6 43.460 11.295
NH4

+-N 82 11.2 32.875 9.334
SVI 298 27 123.141 67.893
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Figure 4: Change of SVIs over time in 2010.

the influents fluctuated from time to time, with high standard deviations of 74.8mg/L for
BOD and 113mg/L for COD. However the BOD/COD ratios were within 0.53–0.8 for 85%
of data, which were within the normal range of municipal wastewater, indicating that it is
readily biodegradable wastewater. Similarly, the nitrogen and phosphorus concentrations
in the influents fluctuated with 2-3 times higher or lower than the average values, which
were believed to be the highly possible reasons that affected the growth of the bulking-
causing filamentous bacteria in the reaction tank afterward. Due to the instability of the
wastewater characteristics and the occurrence of bulking, the MLSS in the aeration tank
cannot keep stable, ranging from 2000mg/L to more than 6500mg/L. It was also noted that
the closely zero concentrations at the end of July and August were due to the measurement
errors.

Figure 4 showed the change of SVIs over time, which clearly indicates that the bulking
mostly happened in the springs from Jan. to April, with the SVIs greater than 150mL/g. On
the other hand, bulking levels were low in the summers from July to September, with the
SVI around 50mL/g. When Figure 4 was compared with Figure 3, it was found that there
is a correlation between temperature and SVI, showing that bulking in CQWWTP mostly
happened in the spring and nonbulking occurred in the summer. This relationship would be
further investigated in the following statistical studies.
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2.3. Modeling Approaches

Two different modeling techniques, PCR and ANN, were analyzed and applied to model
the SVI data from CQWWTP. The measured SVI values in the reaction tank reflected
the bulking levels, which in turn depended on the various variables including physical,
chemical, and biological water parameters and the interaction among them. They all affect
the growth of the filamentous bacteria in the biological WWTP. From the literature review
[23, 24], those important parameters include temperature, pH, BOD, COD, SS, NH4

+, TN,
TP, and MLSS. Temperature and pH are the growth environment for microorganisms. The
temperature increases the growth of floc-forming bacteria and filamentous bacteria and
strengthen, their interaction and competition. The optimum pH in the reaction tank is 7–
7.5, and pH below 6.0 would favor the growth of fungi that induces filamentous bulking. SS
and MLSS is the indicator of the amount of activated sludge. The wastewater compositions,
BOD/COD, NH4

+/TN, and TP are the carbon source, nitrogen source and phosphorus
source for microorganisms, respectively. High carbohydrate components and low substrate
concentrations with low F/M (food/microorganism) ratios appear to be conducive to sludge
bulking [1]. Besides, the deficiency of nitrogen and phosphorus results in the production
of nutrient-deficient floc particles and loss of settleability in reaction tanks. Thus all these
parameters were taken as the input of the models.

2.3.1. PCR

PCR is divided into two parts, principle component analysis (PCA) and multiple linear
regressions (MLRs). PCA is a multivariate statistical method which uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set
of values of uncorrelated variables called principle components (PCs), thus reducing the
complexity of multidimensional system by maximization of component loadings variance
and elimination of invalid components. MLR attempts to model the relationship between two
or more explanatory variables and a response variable by fitting a linear equation to observed
data. The eigenvalues of the standardized matrix are calculated from following equation:

|C − λI| = 0, (2.1)

where C is the correlation matrix of the standardized data, λ is the eigenvalues, and I is the
identity matrix. Then the weights of the variables in the PC are calculated by

|C − λI|W = 0, (2.2)

where W is the matrix of the weights.
Varimax rotation was used to obtain values of rotated factor loadings for evaluating

the influence of each variable in the PC. These loadings represent the contribution of each
variable in a specific principle component.

In this study, the PCA was performed on the water parameters to rank their relative
significance and to describe their interrelation patterns as well as on the phytoplankton
population levels. The stepwise option was used to choose the principle components, and the
principle component scores of the selected parameters were used as independent variables in
the MLR to check if the occurrences of phytoplankton could be explained by environmental
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Figure 5: Three-layer feedforward network with Tan-sigmoid function.

variables as well as to predict the phytoplankton abundance. Since phytoplankton abundance
did not show normal distribution, logarithmic transformation was applied to phytoplankton
data to be used in PCA. Kaiser-Meyer-Olkin (KMO) measure of sample adequacy and
Bartlett’s test of Sphericity were used to verify the applicability of PCA [25]. PCA and MLR
were carried out using PASW 19 software package (SPSS Inc.). The detail procedure of PCR
has been described in our previous study [26].

2.3.2. ANN

ANN computing is a new approach to system modeling and identification, with the
attractive self-learning system. Different from conventional computational methods to
process information, ANN is a system based on the operation of biological neural networks.
It has the advantage of being able to assign significance to the input parameters and map the
inputs to outputs when the relationships between parameters are unknown.

The ANN model was built with a three-layered feedforward network (Figure 5): an
input layer, one or more hidden layers, and an output layer. The nodes in each layer were
connected by weights, which will be adjusted through the training process to obtain the
optimum model. Tan-sigmoid transfer function was used in the hidden layer to give the
nonlinear modeling capability. The neural network architecture consists of two or more
layers of neurons connected by weights denoted as wji. Each neuron is used to calculate
its output based on the amount of stimulation it receives from the individual input vector xi
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(where xi is the input of neuron i). Then the net input of a neuron is calculated as theweighted
sum of its inputs, and the output of the neuron are used to estimate the magnitude of this net
input via the transfer. The net output uj from a neuron can be expressed as

uj =
p∑

i=1

wjixi, (2.3)

Sigmoid function was selected as the transfer function in this study, which is represented in
the following equation:

ϕ(v) =
1

1 + exp(−v) ,

yj = ϕ
(
uj

)
,

(2.4)

where yj is the output of the jth neuron in the layers.
The ANN is first to establish a relationship between a set of input variables and

a set of output variables from the historical data sets. This is achieved by repeatedly
presenting examples of the desired relationship to the network and adjusting the connection
weights (i.e., the model coefficients) to reduce the mean-root-square error (RMSE) between
the simulated outputs and the observed outputs. The weights of the network continually
change until the total error of all the training set is below the acceptable error or other stop
mechanism.

Backpropagation is most widely used due to its broad applicability to solve complex
nonlinear problems in many domains, such as classification, prediction, and modeling. It
works to determine the optimal weights and improve function approximation potential for
complex nonlinear data by increasing the number of the hidden layers or the neuron in
the hidden layers. Thus the new weights can be calculated by adding a modification to the
old weights. The collected data is divided into two sets, one for training and the other for
testing.

Determining the size of the hidden layer is a significant task in ANN. Some general
rules for selecting the number of hidden nodesNH in the ANNmodel suggest that it should
be within NI and 2NI + 1 [27], where NI is the number of input nodes. Moreover, in order
to prevent overfitting of the training data, Rogers and Dowla [28] also suggest that the
condition NH � NTR/(NI + 1) needs to be satisfied, where NTR is the number of training
samples. In this study, a trial-and-error approachwas carried out to find the optimumnumber
of hidden nodes in the models. In general, a network structure with less hidden nodes is
more preferable; this usually gives better generalization capabilities and fewer overfitting
problems. To avoid the overfitting problem, which commonly occurs with the application
of ANN, cross-validation tests were used. The selection of the network was performed by
considering a minimum value of MSE for the cross-validation data set [29].

In this study, ANN development and simulation were conducted using ANN toolbox
of Matlab 2011a (Matwork, NA). Batch gradient decent backpropagation training algorithm
was adopted; the training stops when it hits one of the several stopping criteria, including
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Table 2: Correlation coefficients between SVIs and water parameters in MSR.

Water parameter Temp MLSS BOD COD SS pH TP TN N-NH3

SVI −0.82 −0.18 0.26 0.32 0.21 −0.23 0.18 0.28 0.19

maximum number of iteration, maximum training time, targeted total sum-squared error,
and minimum gradient.

2.4. Performance Indicators

The performance of models was evaluated using the following indicators: coefficient of
determination (R2) that provides the variability measure for the data reproduced in the
model. Prediction R2 is a good measure for both comparison and seeing the model’s
prediction capability. The calculation method is also known as the cross-validation, in which
we exclude the first observation, and build the model with the remaining ones, use this
model to predict the excluded observation, and repeat for all observations. It is a good
measure for out-of-sample accuracy. As this test cannot give the accuracy of the model, other
statistical parameters should be reported. Mean absolute error (MAE) and root-mean-square
error (RMSE) measure residual errors, providing a global idea of the difference between the
observation and modeling. The indicators were defined as follow:

R2 =

∑n
i=1

(
Yi − Yi

)2 −∑n
i=1

(
Yi − Ŷi

)2

∑n
i=1

(
Yi − Yi

)2
,

MAE =
1
n

n∑

i=1

∣∣∣Ŷi − Yi

∣∣∣,

RMSE =

√√√√ 1
n

n∑

i=1

(
Ŷi − Yi

)2
,

(2.5)

where n is the number of data; Yi and Yi are the observation data and the mean of observation
data; respectively, and Ŷi is the modeling results.

3. Results and Discussion

Correlation between SVIs and water parameters were analyzed to evaluate the influence
of each parameter on the bulking level, which provides a measure of linear relationship
between SVI and each parameter. The results (Table 2) showed that all the coefficients were
greater than 0.15, indicating that all these parameters had high correlation with SVIs and thus
included in the models as input variables. It is noted that high correlation coefficient (0.82)
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Table 3: Eigenvalue and percentage variance of the 9 principle components for the prediction model.

PC 1 2 3 4 5 6 7 8 9
Eigenvalue 4.3 1.3 1.1 0.9 0.7 0.3 0.2 0.1 0.1
% variance 47.8 14.8 12.5 10.3 7.4 3.6 1.9 1.1 0.6

Table 4: Composition of the principle components for the prediction model.

Variables
Component

PC1 PC2 PC3

COD .938 .006 −.131
BOD .913 −.055 −.100
SS .897 −.049 .007
TP .855 .019 .016
TN .685 .551 −.110
NH3 .582 .653 −.048
MLSS −.197 .729 −.004
pH .114 −.265 .767
Temperature −.246 .210 .762

was found between SVI and temperature, which was consistent with the observation that
bulking of CQWWTP mostly occurs in the springs.

3.1. PCA

The values of KMO for both prediction and forecast models were above the criteria value of
0.6, indicating that the PCA was applicable [13]. PCA demonstrates the relative importance
of each standardized variable in the PC calculations.

The PCA for the prediction model was performed using the 9 selected parameters
from the result of correlation analysis. Table 3 showed that the first 3 principle components
can explain 74.1% variation of the data variation. The scree test suggested only 3 components
with the eigenvalues greater than 1 to be retained, in which all the 9 parameters were
included. The composition of the 3 principle components are shown in Table 4, in which PC1
represented the component of water characteristics in the influent expressed as a function of
COD, BOD, SS, TP, TN, and NH3-N, PC2 represented the component of activated sludge
mixed liquor concentration expressed as a function of MLSS, and the PC3 represented
the component of environmental condition expressed as a function of temperature and
pH.

3.2. MLR

The MLR results for the prediction model were shown in Table 5. Stepwise approach was
adopted. A t-test (significance level of 0.05) was applied to calculate the statistically valid
parameters. MLR result showed that all PCs were significant. Therefore, the prediction model
for phytoplankton abundance can be written as SVI = 468.935 + 0.025(PC1) − 0.007(PC2) −
15.898(PC3).
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Table 5: MLR result for prediction model.

Included independent variables Regression
coefficient (B) Std. Error of B Std. regression

coefficient (β) t Sig.

(Constant) 468.935 16.782 27.942 .000

PC1 .025 .008 .097 3.238 .001
PC2 −.007 .003 −.070 −2.392 .017
PC3 −15.898 .603 −.794 −26.381 .000

Table 6: Performance indexes of the PCR and ANN prediction models.

Performance index Accuracy performance (training set) Generalization performance (testing set)

PCR ANN PCR ANN

R2 0.689 0.901 0.772 0.907
RMSE 37.360 21.141 31.673 20.258
MAE 28.524 16.375 24.490 15.899

3.3. ANN

To apply the ANNmodel, several network structures were tested to find themost appropriate
topology. Using the 9 water parameters as inputs, the best architecture consisted of a three-
layer network. Sigmoid and linear functions were used as activation function in the neurons
of the hidden layer and output neuron, respectively. 70% of original data were used for
training, among which 10% were randomly selected for cross-validation, and the remaining
30% of data were used for testing. The training was performed for a maximum of 30000
iterations. The detailed results were presented in Figures 6–9, and they are discussed in more
detail in the next section.

3.4. Modeling Results Comparison

Testing of the models invoked two parts, the accuracy performance and the generalization
performance. Accuracy performance is to test the capability of the model to predict the
output for the given input set that originally used to train the model, while generalization
performance is to test the capability of the model to predict the output for the given input
sets that were not in the training set. In order to prevent the overfitting issue of the model,
both performance checks need to be considered. In the present research, the performance
indexes for ANN’s models were averaged with 50 runs.

The performance of prediction models were shown in Table 6. Using the PCR model,
the performance indexes for the testing step were generally better than those for the training
step, with the R2 of 0.689 for training and 0.772 for testing. Compared to PCR model, the
ANN model has the best performance, with R2 (0.901, 0.907), RMSE (21.141, 20.258), and
MAE (16.375, 15.899) for accuracy and generalization performance, indicating that instead of
PCR, ANN can handle well the nonlinear relationship between SVIs and water parameters.

It was noted that the ANN model did not need to perform PCA to obtain the good
results. The PCA-ANN results obtained with the R2 of 0.9 (not shown here) cannot improve
the prediction powers for testing and training data sets, confirming that ANN is a powerful
tool for dealing with collinearity of data.
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Figure 6: Observed and predicted SVIs for the training data set of the prediction model.
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Figure 7: Observed and predicted SVIs for the testing data set of the prediction model.

In the prediction models, no delay was observed for the PCR model in the training set
data (Figure 6), but the magnitude is more fluctuate than the ANNmodels. The prediction of
the testing set in Figure 7 for both models exhibit over-estimates in the low SVI level region.
In general, ANN was successful to predict the SVIs with a reasonable degree of accuracy for
the forecast and the prediction model.

The modeling SVIs versus observed SVIs for PCR and ANN were showed in Figures
8 and 9, respectively. For both training and testing data, both models fitted the measured
data well, with the slopes equal to 1 for both fitting curves, that is, the modeling results
are equal to the measured data. However, compared to the PCR in which the measured
data were distributed more scatter along the fitting curve, ANN models provided better
simulation for the measurements, confirming that ANN fits better than PCR when used
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Figure 8: Training (a) and testing (b) results of PCR prediction model.
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Figure 9: Training (a) and testing (b) results of ANN prediction model.

in predicting the SVIs of CQWWTP. From the modeling point of view, a disadvantage of
ANN is that the mechanisms of the inner signal processing are unknown. However, it
has provided enough information for CQWWTP to prevent the sludge bulking problems;
for controlling the sludge bulking problem occurrence, the engineers can only control the
predicted SVI < 150mL/g by adjusting the operational variables, such as MLSS, without
understanding the complete mechanisms and the relationships among the variables. ANN
was demonstrated to effectively solve the problems where response flexibility and constant
tuning of the models are required.

When compared with the SORBF model recently developed by Han and Qiao [21],
our ANN models showed similar values of RMSE and R2 and simpler ANN algorithm,
demonstrating that our ANN model is suitable and has more advantages for the SVI
prediction. This is highly probably due to the more complete bulking causative variables
involved in the ANN model thus providing more information in explaining the sludge
bulking phenomena, despite that the complete mechanisms causing bulking and the rela-
tionships among variables are still unclear.

In summary, predicting sludge bulking using our ANN model can provide accurate
prediction results. The fitting accuracy was found to improve with the increasing number
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of bulking causative variables. The model has been tested in the CQWWTP using A/A/O
processes, which are different from the traditional aerobic process. Thus, empirical studies
will also be conducted in the future for additional data sets to demonstrate that the ANN
model is generalizable to extensive data sets under different circumstances.

4. Conclusions

The econometric technique (PCR) and the artificial intelligence technique (ANN) applied
in the study are powerful analysis tools that can be used to solve a problem that is
poorly understood or difficult to solve with the traditional deterministic relationship.
The updated knowledge on sludge bulking is still unclear, and thus the unconventional
systematic data-driven modeling approaches could be used to improve the prediction.
Prediction models with PCR and ANNwere compared for simulating the SVIs in CQWWTP,
using nine water parameters including environmental conditions of temperature and pH,
wastewater characteristics of BOD, COD, SS, NH4

+, TN, and TP, and activated sludge
concentration of MLSS. PCA result indicated that only 3 PCs with eigenvalues greater than
1 were obtained, which can explain 74.1% variance of data. The application of PCA in
the PCR model was considered better than using the original data, as it would eliminate
the collinearity problem and reduce the number of inputs, thus decreasing the model
complexity.

PCR showed worse prediction performance than ANN, indicating that the complex
nonlinear relationship among the variables in the treatment systems cannot not be simulated
using linear model alone. Besides, by using PCR, the highest SVI values were underestimated
during the training step. On the other hand, ANN had better prediction power with the
R2 of 0.9 for both accuracy performance and generalization performance, implying that
ANN is good to deal with the collinearity problem in the data without performing data
pretreatment using PCA. Compared with the recently developed SORBF model, ANN
model is suitable and has more advantages for the SVI prediction by using simpler ANN
algorithm and including more bulking causative variables in the model. The ANN models
established by this research project performed well to address the wastewater quality and
sludge bulking problem of CQWWTP. The modeling approach described here for analyzing
the bulking problem has yielded useful information for effective wastewater treatment
management.

Though the ANN presented here is obtained from the CQWWTP, the technique can
also be applied for the other WWTPs, as the input parameters and operational conditions are
similar. The method can be used for control of wastewater treatment operation in order to
improve the treatment performance.
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