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Satellite autonomous orbit determination (OD) is a complex process using filtering method to
integrate observation and orbit dynamic equations effectively and estimate the position and
velocity of a satellite. Therefore, the filtering method plays an important role in autonomous orbit
determination accuracy and time consumption. Extended Kalman filter (EKF), unscented Kalman
filter (UKF), and unscented particle filter (UPF) are three widely used filtering methods in satellite
autonomous OD, owing to the nonlinearity of satellite orbit dynamic model. The performance of
the system based on these three methods is analyzed under different conditions. Simulations show
that, under the same condition, the UPF provides the highest OD accuracy but requires the highest
computation burden. Conclusions drawn by this study are useful in the design and analysis of
autonomous orbit determination system of satellites.

1. Introduction

Orbit determination (OD) of satellite plays a significant role in satellite missions, aiming at
estimating the ephemeris of a satellite at a chosen epoch accurately. To date, the conventional
OD system is dominated by measurements based on (1) ground tracking approaches [1]
such as range, range rate, and angle, and (2) Global Position System measurement [2, 3]. The
orbit determination technologies have shown fair performance on various space missions.
However, its high cost, lack of robustness to loss of contact, space segment degradation, and
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Figure 1: The process of orbit determination.

other factors promote the application of autonomous OD system, which is less costly and less
vulnerable in hostile environment [4].

In general, orbit determination is the process of estimating the satellite’s state variables
(position and velocity) by comparing (in statistical sense) the difference between the
measurement data and the estimated data. Orbit determination system, as shown in Figure 1,
usually includes sensor subsystem, model subsystem, and filter subsystem. Sensor subsystem
contains sensing instruments, such as star sensor, earth sensor, and magnetometer, in order
to measure and process the original measurements which are functions of state variables.
Model system generates estimated data including state model and measurement model. In
the filter subsystem, the optimal algorithms (filtering methods) process both data from sensor
subsystem and from model subsystem and then estimate state variables.

Owing to the nonlinear dynamic model of satellite orbit motion, the filtering method
applied in OD system should be appropriate for nonlinear system [5, 6]. Extended Kalman
filter (EKF), unscented Kalman filter (UKF), and unscented particle filter (UPF) are three
main methods used in satellite OD system. The EKF is based on the analytical Taylor series
expansion of the nonlinear systems and measurement equations. It works on the principle
that the state distribution is approximated by a Gaussian random variable. However, the
Taylor series approximations in EKF introduce large errors due to the neglected nonlinearities
[7]. The UKF uses the true nonlinear model and a set of sigma sample points produced by
the unscented transformation to capture the mean and covariance of state, but the UKF has
the limitation that it does not apply to general non-Gaussian distribution [8, 9]. The particle
filter (PF) is a computer-based method for implementing a recursive Bayesian filter by Monte
Carlo simulations. The performance of the PF largely depends on the choices of importance
sampling density and resampling scheme [10, 11]. Among many improved PF methods, UPF
is a hybrid of the UKF and the particle filter which uses the UKF to get better importance
sampling density [12, 13]. It combines the merits of unscented transformation and particle
filtering and avoids their limitations.

A variety of autonomous orbit determination methods have been proposed and
explored, including a magnetometer-based OD method [14, 15], a celestial OD method
[16, 17], a landmark OD method [18, 19], and an X-ray pulsar OD method [20, 21]. The first
two methods can be used in low earth orbit (LEO) satellite autonomous orbit determination
system. Thus, in this paper, these two OD methods are selected for analysis.
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This paper is divided into five sections. After this introduction, the basic descriptions
of three filtering methods in autonomous OD system are given in Section 2. Then, the state
model and measurement models in OD model subsystem are described in detail in Section 3.
In Section 4, simulations are shown for analyzing and comparing three filtering methods.
Finally, conclusions are drawn in Section 5.

2. Filtering Methods

The best known algorithms to solve the problem of autonomous satellite orbit determination
are the EKF, UKF, and UPF. In this section, we shall present the theories of the three filter
algorithms. These algorithms will be incorporated into the filtering framework based on the
dynamic state-space model as follows:

xk = f(xk−1, k − 1) +wk,

zk = h(xk, k) + vk,
(2.1)

where xk−1 denotes the state of the system at time k − 1, zk denotes the observations at step k,
wk denotes the process noise, and vk denotes the measurement noise. The mappings f and h
represent the process and measurement models. E(wkwT

j ) = Qk, E(vkvTj ) = Rk, for all k, j, and
Qk is the process noise covariance at step k, Rk is the measurement noise covariance at step k.

2.1. Extended Kalman Filter

A Kalman filter that linearizes about the current mean and covariance is referred to as an
extended Kalman filter or EKF. The EKF is the minimum mean-square-error estimator based
on the Taylor series expansion of the nonlinear functions. For example,

f(xk) = f
(
x̂k|k−1

)
+
∂f(xk)
∂xk

|xk=x̂k|k−1

(
xk − x̂k|k−1

)
+ · · · . (2.2)

Using only the linear expansion terms, it is easy to derive the update equations for the mean
and covariance of the Gaussian approximation to the distribution of the states [12].

The equations for the extended Kalman filter fall into two groups: time update
equations and measurement update equations. The specific equations for the time and
measurement updates are presented below as shown in (2.3)∼(2.8) [22].

(1) Time Update

Predicted state estimate:

x̂k|k−1 = f(x̂k−1, k − 1). (2.3)

Predicted estimate covariance:

P−
k = ΦkPk−1ΦT

k +Qk−1. (2.4)
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The time update equations project the state, xk, and covariance, Pk, estimates from the
previous time step k − 1 to the current time step k, Φk is the state transition matrix at step k,
which is defined to be the following Jacobians:

Φk =
∂f

∂xk
|xk=x̂k|k−1

. (2.5)

(2) Measurement Update

Near-Optimal Kalman gain:

Kk = P−1
k HT

k

(
HkP−1

k HT
k + R−1

k

)−1
. (2.6)

Updated state estimate:

x̂k = x̂k|k−1 +Kk

(
zk − h

(
x̂k|k−1, k

))
. (2.7)

Updated estimate covariance:

Pk = (I −KkHk)P−
k, (2.8)

where Kk is known as the Kalman gain. The measurement update equations correct the state
and covariance estimates with the measurement zk. Hk is the observation matrix at step k,
which is defined to be the following Jacobians:

Hk =
∂h

∂xk
|xk=x̂k|k−1

. (2.9)

The major drawback of EKF is that it only uses the first order terms in the Taylor series
expansion. Sometimes it may introduce large estimation errors in a nonlinear system and lead
to poor representations of the nonlinear functions and probability distributions of interest. As
a result, this filter can diverge [23].

2.2. Unscented Kalman Filter

The unscented Kalman filter (UKF) [8, 24] uses the unscented transformation to capture
the mean and covariance estimates with a minimal set of sample points. The UKF process
is identical to the standard EKF process with the prediction-estimation recursive loop. The
exception is that the UKF uses the sigma points and the nonlinear equations to compute the
predicted states and measurements and the associated covariance matrices. If the dimension
of state is n × 1, the 2n + 1 sigma point and their weight are computed by [9]

X0,k = x̂k, W0 =
τ

(n + τ)
,

Xi,k = x̂k +
√
n + τ

(√
P(k | k)

)

i

, Wi =
1

[2(n + τ)]
,

Xi+n,k = x̂k −
√
n + τ

(√
P(k | k)

)

i

, Wi+n =
1

[2(n + τ)]
,

i = 1, 2, . . . , n, (2.10)
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where τ ∈ R, (
√
P(k | k))i is the ith column of the matrix square root. The UKF process can

be described as follows.

(1) Time = 0, initialize the UKF with x̂0 and P0 as follows:

x̂0 = E[x0],

P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]
.

(2.11)

(2) Time = k, define 2n + 1 sigma points from

Xk−1 =
[
X0,k Xi,k Xi+n,k

]
, i = 1, 2, . . . , n. (2.12)

The equations for the UKF fall into two groups the same as EKF: time update equations
and measurement update equations. The specific equations for the time and measurement
updates are presented below.

(1) Time Update

Xk|k−1 = f(Xk−1, k − 1),

x̂−k =
2n∑

i=0

WiXi,k|k−1,

P−
k =

2n∑

i=0

Wi

[
Xi,k|k−1 − x̂−k

] · [Xi,k|k−1 − x̂−k
]T +Qk,

Zk|k−1 = h
(
Xk|k−1, k

)
,

ẑ−k =
2n∑

i=0

WiZi,k|k−1.

(2.13)

(2) Measurement Update

Pẑk ẑk =
2n∑

i=0

Wi

[
Zi,k|k−1 − ẑ−k

][
Zi,k|k−1 − ẑ−k

]T + Rk,

Px̂k ẑk =
2n∑

i=0

Wi

[
Xi,k|k−1 − x̂−k

][
Zi,k|k−1 − ẑ−k

]T
,

Kk = Px̂k ẑkP
−1
ẑk ẑk

,

x̂k = x̂−k +Kk

(
zk − ẑ−k

)
,

Pk = P−
k −KkPẑk ẑkK

T
k .

(2.14)
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2.3. Unscented Particle Filter

The unscented particle filter (UPF) is a hybrid of the UKF and the particle filter which uses
the UKF to get better importance sampling density. A pseudo-code description of UPF is as
follows [11–13].

(1) Initialization: Time = 0.
Generate N samples xi0, (i = 1, 2, . . . ,N) from the prior p(x0), and set the importance

weight wi
0 of each sample 1/N:

x̂i0 = E
[
xi0
]
, Pi

0 = E

[(
xi0 − x̂i0

)(
xi0 − x̂i0

)T
]
, wi

0 =
1
N

. (2.15)

(2) Time = k.

(I) (a) Update the particles with the UKF:

(i) calculate sigma points from {x̂ik−1,P
i
k−1} using (2.12),

(ii) propagate particle into future by (2.13),
(iii) incorporate new observation to update the measurement by (2.14) and obtain

{x̂ik,Pi
k}.

(b) Sample a new particle x̂i
k

and make x̂i
k
∼ q(xi

k
| xi

k−1, zk) = N(x̂i
k
,Pi

k
).

(II) Compute the importance weight wi
k and normalize the importance weights wi

k
:

wi
k = wi

k−1 ·
p
(
zk | x̂i

k

)
p
(
x̂i
k
| xi

k−1

)

q
(
x̂ik | xik−1, zk−1

) ,

wi
k =

wi
k

∑N
i=1 w

i
k

,

(2.16)

where p(zk | x̂ik) is likelihood probability distribution, which is given by measurement model
zk = h(xk, k)+vk, p(x̂i

k
| xi

k−1) is the forward transition probability distribution, which is given
by process model xk = f(xk−1, k − 1) +wk, q(x̂i

k
| xi

k−1, zk−1) is the proposal distribution [12].

(III) Resampling step:

The basic idea of resampling is to eliminate particles with small weights and to con-
centrate on particles with large weights. Multiply/suppress particles {x̂ik, Pi

k} with high/low
importance weights wi

k, respectively, to obtain N random particles {x̃ik, P̃i
k}.

(IV) Output step:

The overall state estimation and covariance are

x̂k =
N∑

i=1

wi
kx̃

i
k,

Pk =
N∑

i=1

wi
kP̃

i
k =

N∑

i=1

wi
k

(
x̃ik − x̂k

)(
x̃ik − x̂k

)T
.

(2.17)
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3. System Models

3.1. State Model

The state model (dynamical model) of the celestial OD system for a near-Earth satellite based
on the orbital dynamics in the Earth-Centered Inertial (ECI) frame (J2000.0) is

dx

dt
= vx,

dy

dt
= vy,

dz

dt
= vz,

dvx

dt
= −μx

r3
·
[

1 − J2

(
Re

r

)2
(

7.5z2

r2
− 1.5

)]

+ ΔFx,

dvy

dt
= −μy

r3
·
[

1 − J2

(
Re

r

)2
(

7.5z2

r2
− 1.5

)]

+ ΔFy,

dvz

dt
= −μz

r3
·
[

1 − J2

(
Re

r

)2
(

7.5z2

r2
− 4.5

)]

+ ΔFz,

r =
√
x2 + y2 + z2.

(3.1)

Equation (3.1) can be written in a general state equation as

Ẋ(t) = f(X(t), t) +w(t), (3.2)

where X = [x y z vx vy vz]
T is the state vector. x, y, z, vx, vy, vz are satellite positions

and velocities of the three axes, respectively, μ is the gravitational constant of earth, J2 is the
second zonal coefficient and has the value 0.0010826269 [25], and Re is the earth’s radius.
ΔFx, ΔFy, ΔFz are the perturbations including high order nonspherical earth perturbations,
third-body perturbations, atmospheric drag perturbations, solar radiation perturbations, and
other perturbations, which are considered as process noises w(t).

3.2. Celestial Orbit Determination and Its Measurement

The celestial OD method is based on the fact that the position of a celestial body in the inertial
frame at a certain time is known and that its position measured in the spacecraft body frame
is a function of the satellite’s position. To earth satellite, stars are distributed all over the sky,
and the positions of Earth are fixed at a certain time. The geometric relationship among stars,
the Earth, and satellite enables us to determine the position of the satellite [26].

Satellite celestial OD methods can be broadly separated into two major approaches:
directly sensing horizon method and indirectly sensing horizon method. In this paper, the
directly sensing horizon method is used.

The angle between a star and the earth, α, as shown in Figure 2, is a kind of directly
sensing horizon measurement of satellite celestial OD system, which is measured by star
sensor and earth sensor. The measurement model using the star-earth angle is given by [27]

α = arccos
(−s · r

r

)
+ να, (3.3)
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Figure 2: The measurement of celestial OD system.

where r is the position vector of the satellite, which is the same as that in (3.2), s is the position
vector of the star in the earth-centered inertial frame, να is the measurement noise.

Assuming a measurement Z1 = [α] and measurement noise V1 = [vα], (3.2) can be
written as a general measurement equation

Z1(t) = h1[X(t), t] +V1(t). (3.4)

3.3. Geomagnetic Orbit Determination and Its Measurement

Geomagnetic OD system relies on measurements from a three-axis magnetometer to
determine satellite position and orbit. It uses a model of Earth’s magnetic field and a model of
orbital dynamics to predict the time-varying magnitude of Earth’s magnetic field vector at the
space. OD system compares the time history of the predicted magnitude and the measured
magnitude time history in filter sense to obtain the optimal estimated state (position and
velocity) [14].

3.3.1. Magnetic Model

Two main models used for describing Earth’s magnetic vector in the geodetic reference frame
are World Magnetic Model (WMM) and International Geomagnetic Reference Field (IGRF)
[28]. The WMM 2005 is selected in this paper for geomagnetic orbit determination [29].

According to the WMM model 2005, the vector field B can be written as the gradient
of a potential function

B(r, λ, θ, t) = −∇V (r, λ, θ, t), (3.5)

where (r, λ, θ) represent the radius, the longitude, and the colatitude in a spherical, geocentric
reference frame, respectively.

This potential V can be expanded in terms of spherical harmonics:

V (r, λ, θ, t) =
N∑

n=1

n∑

m=0

Vm
n = a

N∑

n=1

(
a

r

)n+1 n∑

m=0

[
gm
n (t) cos(mλ) + hm

n (t) sin(mλ)
]
P̆m
n (cos θ),

(3.6)
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where N = 12 is the degree of the expansion of the WMM, a is the standard Earth’s magnetic
reference radius, gm

n (t) and hm
n (t) are the time-dependent Gauss coefficients of degree n and

order m, and P̆m
n (cos θ) are the Schmidt normalized associated Legendre polynomials.

3.3.2. Magnetic Measurement Model

Based on the relationship between magnetic vector, which is obtained by the magnetometer,
and the earth magnetic model, the measurement model can be written as

Bs = AsbAbiAitBt + vB, (3.7)

where Bs is the magnetic vector of local position in sensor coordinates, which can be
obtained from vector magnetometer system consisting of three mutually orthogonal, single-
axis magnetometers. Bt = [Bn Be Bv]

T is the magnetic vector of local position in geocentric
coordinates, and it can be obtained from WMM according to local longitude, latitude, and
height, as shown in Figure 3; Asb, Abi, and Ait are the transformation matrices from satellite
body coordinates to sensor coordinates, from earth inertial coordinates to satellite body
coordinates, and from earth inertial coordinates to geocentric coordinates, respectively. vB
is the measurement noise.

Assuming a measurement Z2 = Bs and measurement noise V2 = vB, (3.7) can be
written as a general measurement equation as

Z2(t) = h2[X(t), t] +V2(t). (3.8)

4. Analysis and Comparison

4.1. Simulation Condition

The trajectory used in the following simulation is a LEO satellite whose orbital parameters
are semimajor axis a = 7136.635444 km, eccentricity e = 1.809 × 10−3, inclination i = 65◦, right
ascension of the ascending node Ω = 30◦, and the argument of perigee ω = 30◦. The orbit
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Figure 4: Three filtering methods results of celestial OD system (T = 3 s).
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Figure 5: Three filtering methods results of geomagnetic OD system (T = 3 s).

and attitude data of the satellite are produced by the Satellite Tool Kit (STK) software [30].
The accuracy of star sensor and earth sensor is selected 3′′ and 0.02◦, respectively. The stellar
database used in simulation is the Tycho stellar catalog [31]. The magnetometer measurement
and geomagnetic model accuracy is considered as 100 nT [32].

4.2. Performances under Different Sampling Intervals

Figures 4 and 5 show the performances comparison among the EKF, UKF, and UPF methods
of celestial OD system and geomagnetic OD system, respectively. Data is obtained with a 3 s
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Table 1: Performance of celestial OD system under different sampling intervals.

RMS (after convergence) Maximum (after convergence)
Sampling interval

Position error/m Velocity error/m/s Position error/m Velocity error/m/s

T = 3 s
EKF 203.318211 0.196622 532.987272 0.486705
UKF 161.312723 0.162900 357.545600 0.407503
UPF 159.756079 0.160780 354.555359 0.402378

T = 15 s
EKF 271.640953 0.287641 703.000581 0.613708
UKF 245.939302 0.219864 593.829098 0.563749
UPF 245.229683 0.219566 593.802048 0.563396

T = 60 s
EKF 934.238939 0.976641 2457.895170 2.348656
UKF 736.876288 0.699942 2322.291896 2.302674
UPF 735.166932 0.698808 2314.761249 2.294924

Table 2: Performance of geomagnetic OD system under different sampling intervals.

RMS (after convergence) Maximum (after convergence)
Sampling interval

Position error/m Velocity error/m/s Position error/m Velocity error/m/s

T = 3 s
EKF 591.253628 0.601946 1129.365510 1.061735
UKF 376.894372 0.371566 877.909403 0.799659
UPF 376.516863 0.366538 861.513975 0.783449

T = 15 s
EKF 1481.673752 1.358867 2851.660177 2.607626
UKF 705.765450 0.648228 1325.501267 1.276198
UPF 705.161263 0.647876 1323.976107 1.274585

T = 60 s
EKF 4343.783162 4.308921 14643.275741 11.712547
UKF 3904.890544 3.633798 10403.528541 10.328902
UPF 3904.747892 3.633460 10401.279139 10.328554

sampling interval during the 600 min period (6 orbits). Tables 1 and 2 present the details of
the simulation results of celestial OD system and geomagnetic OD system under different
sampling intervals, respectively.

The simulations in Figures 4 and 5 suggest that the EKF-based OD system performance
is the worst. In contrast, UPF-based OD system provides the highest OD accuracy. As the
details in Tables 1 and 2, regardless the celestial OD and geomagnetic OD system, the
different sampling intervals can strongly affect the OD accuracy. OD performance is degraded
remarkably with increasing sample interval. However, under the same sampling interval, the
EKF method is the most sensitive to the sampling interval, for the nonlinear error increases
rapidly with the longer sampling interval. In contrast, the UKF and UPF perform distinctly
better.

4.3. Performance under Different Noise Distributions

This subsection reports how different noise distributions affect the OD performances using
three filters. We selected three common noise distributions in navigation, and they are normal
distribution, student’s t distribution, and uniform distribution [33].
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Figure 6: Celestial OD results of three filtering methods under Student’s t noise distributions.
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Figure 7: Geomagnetic OD results of three filtering methods under Student’s t noise distributions.

Figures 6 and 7 show the OD results of celestial OD system and geomagnetic OD
system using three filters under student’s t noise distributions, respectively. All performance
curves were obtained with 15 s sampling interval during the 600 min period (6 orbits). Tables
3 and 4 present the details of the simulation results of celestial OD system and geomagnetic
OD system under three different noise distributions, respectively.

As the results in Figures 6 and 7 showed, the UPF-based geomagnetic OD system
provides the highest OD accuracy. As the details in Tables 3 and 4 demonstrated, OD
performance under different noise distribution is similar. In general, the EKF performance
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Table 3: Performance of celestial OD system under different noise distributions.

RMS (after convergence) Maximum (after convergence)
Noise distribution

Position error/m Velocity error/m/s Position error/m Velocity error/m/s

Normal
distribution

EKF 271.640953 0.287641 703.000581 0.613708

UKF 245.939302 0.219864 593.829098 0.563749

UPF 245.229683 0.219566 593.802048 0.563396

Student’s t
distribution

EKF 387.618044 0.411669 827.358300 0.972190

UKF 257.104360 0.261611 604.325265 0.664447

UPF 246.294197 0.250511 587.154229 0.639735

Uniform
distribution

EKF 385.803609 0.398842 994.714264 0.902353

UKF 350.079516 0.339869 888.790677 0.788940

UPF 349.537325 0.338473 880.417206 0.782641

Table 4: Performance of geomagnetic OD system under different noise distributions.

RMS (after convergence) Maximum (after convergence)
Noise distribution

Position error/m Velocity error/m/s Position error/m Velocity error/m/s

Normal
distribution

EKF 1481.673752 1.358867 2851.660177 2.607626

UKF 705.765450 0.648228 1325.501267 1.276198

UPF 705.161263 0.647876 1323.976107 1.274585

Student’s t
distribution

EKF 1059.874849 0.828895 2900.800178 3.184135

UKF 670.321661 0.604835 1594.060692 1.436411

UPF 669.959004 0.604513 1593.085809 1.436468

Uniform
distribution

EKF 1246.529130 1.207728 4029.187774 3.253167

UKF 776.622486 0.767562 1985.870577 1.781823

UPF 776.526144 0.767452 1985.704699 1.781594

is the worst and the UPF performance is the best, no matter what measurement errors are
chosen.

4.4. Computation Cost of Three Methods

Besides the accuracy, the computation cost is another essential requirement to evaluate the
performance of filtering methods. Table 5 gives the computation cost of the three methods
for the celestial orbit determination system and the geomagnetic orbit determination system,
respectively. As in the theoretical value of computation cost, where Φ is the process Jacobian,
n is the order of the Φ, and in the simulation n equals 6. The simulation results presented
here were run on a 2.66 GHz Inter Core2 Duo CPU with 32-bit Windows 7 system. The
simulation time of celestial OD system in Table 5 demonstrates that the UPF demands the
highest computation time, which is almost twenty times (= sample number) higher than UKF,
and EKF requires almost a quarter of the computation time of UKF. However, the simulation
time of geomagnetic OD system is not the same amount as celestial OD system, and the EKF-
based geomagnetic OD system takes significantly longer time, since the time for computing
measurement Jacobians takes a lot of computer resource.
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Table 5: Comparison of computation cost.

Filter
method

Theoretical value of computation cost Simulation value of computation cost

Φ is full matrix Φ is diagonal matrix

Computation
time per orbit

of celestial
OD system(s)

Computation
time per orbit

of geomagnetic
OD system (s)

EKF CEKF = 3n3 + 3n2 + 4n C′
EKF = 6n2 + 4n 0.3 9.5

UKF CUKF = 2n3 + 12n2 + 14n + 5 C′
UKF = 2n3 + 12n2 + 14n + 5 1.6 11.7

UPF
(sample
num = 20)

CUPF = sample num · CUKF C′
UPF = sample num · C′

UKF 39.5 313.9

5. Conclusion

The problem of choosing a suitable filtering method for the orbit determination application
has been studied here. Three filtering methods for the autonomous orbit determination using
either celestial or geomagnetic measurements have been studied and their performances have
been compared for the estimation problem.

The algorithms are tested with STK satellite orbit data, and the simulation results
demonstrate that UPF yields the best OD accuracy and the EKF yields the worst under the
same condition. The main reason is that the state equations and measurement equations
for autonomous orbit determination system are significantly nonlinear as well as the non-
Gaussian errors.

In addition, the paper analyzed the computation cost of the three filtering methods,
and UPF-based OD system can provide the highest OD accuracy, though it requires the largest
computation time. However, the UPF can finally meet the real-time requirements, as with the
development of computer technology.
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