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Hand gesture recognition is a topic in artificial intelligence and computer vision with the goal to
automatically interpret human hand gestures via some algorithms. Notice that it is a difficult classi-
fication task for which only one simple classifier cannot achieve satisfactory performance; several
classifier combination techniques are employed in this paper to handle this specific problem. Based
on some related data at hand, AdaBoost and rotation forest are seen to behave significantly better
than all the other considered algorithms, especially a classification tree. By investigating the bias-
variance decompositions of error for all the compared algorithms, the success of AdaBoost and ro-
tation forest can be attributed to the fact that each of them simultaneously reduces the bias and var-
iance terms of a SingleTree’s error to a large extent. Meanwhile, kappa-error diagrams are utilized
to study the diversity-accuracy patterns of the constructed ensemble classifiers in a visual manner.

1. Introduction

Hand gesture language, being one type of sign languages, originates from deaf people com-
municating with each other. In order to convey a meaning, a person generally needs to simul-
taneously combine the shape, orientation, and movement of his hands. The complex spatial
grammars of hand gesture language aremarkedly different from the grammars of spoken lan-
guages.

Apart from facilitating deaf people to express their thoughts more conveniently, hand
gestures are also a very natural part of human communications for common people. In some
special situations such as very noisy environments where speech is not possible, they can be-
come the primary communication medium. With the rapid development of hand gesture lan-
guage, it nowadays has been applied in many fields such as human-computer interaction,
visual surveillance, and so on [1–3]. Thus, hand gesture recognition becomes a hot topic in ar-
tificial intelligence and computer vision with the goal to automatically interpret human hand
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gestures via some algorithms. Nevertheless, the great variability in spatial and temporal fea-
tures of a hand gesture, such as that in time, size, and position, as well as interpersonal differ-
ences, makes the recognition problem be very difficult. For instance, different subjects have
different hand appearance and may sign gesture in different pace.

Recent works in hand gesture recognition tend to handle the spatial and temporal vari-
ations separately and therefore lead to two smaller areas, namely, static posture recognition
[4–10] and dynamic action recognition [2, 3, 11, 12]. In static posture recognition, the pose or
the configuration of hands should be recognized using texture or some other features. By con-
trast, hand action recognition tries to interpret the meaning of the movement using dynamic
features such as the trajectory of hands and so on. In the current study, we will focus on hand
posture classification and recognition.

As for hand posture recognition, Bedregal et al. [4] introduced a fuzzy rule-based
method for recognizing the hand gestures of LIBRAS (the Brazilian Sign Language). The
method utilizes the set of angles of finger joints for classifying hand configurations and clas-
sifications of segments of hand gestures for recognizing gestures based on the concept of
monotonic gesture segment. Just et al. [5] applied an approach that has been successfully
used for face recognition to the hand posture recognition. The used features are based on
the modified census transform and are illumination invariant. To achieve the classification
and recognition processes, a simple linear classifier is trained using a set of feature look-up
tables. Kim and Cipolla [7] attempted to address gesture recognition under small sample
size where direct use of traditional classifiers is inappropriate due to high dimensionality of
input space. Through combining canonical correlation analysis with the discriminative func-
tions and scale-invariant feature transform (SIFT), they developed a pairwise feature
extraction method for robust gesture recognition. In the experiments using 900 videos of 9
hand gesture classes, the proposed procedure was seen to notably outperform support vec-
tor classifier and relevance vector classifier. Based on a hand gesture fitting procedure via a
new self-growing and self-organized neural gas (SGONG) network, a new method for hand
gesture recognition was proposed by Stergiopoulou and Papamarkos [8]. The main idea of
this method is as follows. Initially, the region of the hand is detected by applying a color
segmentation technique based on a skin color filtering procedure in the YCbCr color space.
Then, the SGONG network is applied on the hand area so as to approach its shape. Based
on the output grid of neurons produced by the neural network, palm morphologic character-
istics are extracted. These characteristics, in accordance with powerful finger features, allow
the identification of the raised fingers. Finally, the hand gesture recognition is accom-
plished through a likelihood-based classification technique. The proposed system has been
extensively tested with success. Furthermore, Flasiński and Myśliński [9] presented a novel
method for recognizing hand postures of the Polish sign language based on a synthetic
pattern recognition paradigm. The main objective is to construct algorithms for generating
a structural graph description of hand postures that can be analyzed with the ETPL(k) graph
grammar parsing model. The structural description generated with the designed algorithms
is unique and unambiguous, which results in good discriminative properties of the method.

In recent years, classifier combination strategies are rapidly growing and enjoying a
lot of attention from pattern recognition as well as many other various domains due to their
potential to greatly increase the prediction accuracy of a learning system. So far, these tech-
niques have been proven to be quite versatile in a broad field of real applications such as face
recognition, sentiment classification, and so forth [13–15]. Compared with one single clas-
sifier, an ensemble classifier has advantages to handle a classification task which is diffi-
cult for traditional methods, to achieve much higher prediction accuracy, and so forth.



Mathematical Problems in Engineering 3

In the research works of hand gesture recognition, however, there is very little literature
about the applications of ensemble classifier methods. Dinh et al. [6] proposed a hand
gesture classification systemwhich is able to efficiently recognize 24 basic signs of the Ameri-
can sign language. In the system, computational performance is achieved through the use of a
boosted cascade of classifiers that are trained by AdaBoost and informative Harr wavelet fea-
tures. To adapt to complex representation of hand gestures, a new type of feature was sug-
gested. Some experimental results show that the proposed approach is promising. Burger
et al. [10] suggested to apply a belief-basedmethod for SVM (support vector machine) fusion
to recognize hand shapes. Moreover, the method was integrated into a wider classification
scheme which allows taking into account other sources of information, by expressing them
in the belief theories’ formalism. The experimental results have shown that the proposed
method was better than the classical methods in avoiding more than 1/5 of the mistakes.
In this paper, we will employ several classifier combination techniques to deal with this
specific classification problem. On the basis of some hand gesture data at hand, the methods
AdaBoost and rotation forest are seen to behave significantly better than all the other
considered algorithms, especially a classification tree. The reasons for the success of AdaBoost
and rotation forest are then investigated by analyzing the bias-variance decompositions of
error for all the compared algorithms. Moreover, the diversity-accuracy patterns of each en-
semble classifier are studied via kappa-error diagrams in a visual manner and some promis-
ing results are obtained.

The rest of the paper is organized as follows. In Section 2, some commonly used clas-
sifier combination methods are reviewed in brief. Section 3 describes our used hand gesture
recognition data set. Some experiments are conducted in Section 4 to find out the best method
to solve this specific classification task. In the meantime, the reasons for the better perform-
ance of some algorithms are also investigated. Finally, the conclusions of the paper are offered
in Section 5.

2. Brief Review of Ensemble Methods

In this section, we will give a brief review of our later used classifier combination techniques.
In an ensemble classifier, multiple classifiers which are generally referred to as base classifiers
should be first generated by means of applying a base learning algorithm (also called base
learner) to different distributions of the training data, and then the outputs from each
ensemble member are combined with a classifier fusion rule to classify a new example. In
order to construct an ensemble classifier having better prediction capability, its constituent
members should be accurate which at the same time should disagree as much as possible.
In other words, the diversity between base classifiers and their individual accuracy are
two essential factors for building a good ensemble classifier. However, these two factors
are contradictory in practice. Generally speaking, there is a tradeoff between diversity and
accuracy: as the classifiers become more diverse, they must become less accurate; conversely,
as they becomemore accurate, the diversity between themmust turn to be lower.With respect
to different ensemble classifier generation strategies, the difference between themmainly lies
in how to achieve a better tradeoff between diversity and accuracy of their base classifiers.

In order to facilitate the following discussions, we first introduce some notations
here. Denote by L = {xi, yi}Ni=1 a training set consisting of N observations, where xi =
(xi,1, xi,2, . . . , xi,p)

T is a p-dimensional feature vector and yi is a class label coming from the
set Φ = {φ1, φ2, . . . , φJ}. Meanwhile, let X = (x1, x2, . . . , xN)T be an N × p matrix containing
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• Input
A training set L = {(xi, yi)}Ni=1; A base learnerW; Number of iterations T ; A new data point x
to be classified.

• Training Phase
For t = 1, . . . , T
(1) Utilize the corresponding technique (i.e., bootstrap sampling or randomly selecting

features) to get a training set Lt.
(2) Provide Lt as the input ofW (random forest has an additional randomness injection

operation) to train base classifier Ct.
EndFor

• Output
– The class label for x predicted by the ensemble classifier C∗ as

C∗(x) = arg max
y∈Φ

T∑

t=1
I(Ct(x) = y),

where I(·) denotes the indicator function which takes value 1 or 0 depending on
whether the condition of it is true or false.

Algorithm 1: The general algorithmic framework for bagging, random subspace, and random forest
methods.

the training features and Y = (y1, y2, . . . , yN)T be an N-dimensional vector containing the
class labels for the training data. Put in another way, the training set L can be expressed as
concatenating X and Y horizontally; that is, L = [X Y]. Furthermore, let T be the number of
base classifiers, and let C1, C2, . . . , CT be the T classifiers to construct an ensemble classifier,
say, C∗. Denote byW the given base learning algorithm to train each base classifier.

Bagging [16], random subspace [17], and random forest [18] may be the three most
intuitive and simplest ensemble learning methods to implement. These three methods share
the same combination rule, that is, simply majority voting scheme, to combine the decisions
of their base classifiers. They only differ in how to use the given training set to generate a
diverse set of base classifiers. Breiman’s bagging, an acronym of bootstrap aggregating, trains
its base classifiers by applying a base learning algorithm to some bootstrap samples [19] of
the given training set L. Each bootstrap sample is generated by performing N extractions
with replacement from L. As a result, in each of the resulted training sets for constructing
base classifiers, many of the original training examples may appear several times whereas
others may never occur. The random subspace method [17] obtains different versions of the
original training set by performingmodifications in the feature space (i.e., randomly selecting
some features) rather than in the example space like bagging. The different training sets
are then provided as the input of the given learning algorithm to build its base classifiers.
As for random forest [18], it is an ensemble technique by taking a decision tree algorithm
[20] as its base leaner. Beside utilizing bootstrap sampling to obtain different training sets
like bagging, random forest tries to produce additional diversity between base classifiers
by adding a randomization principle in the tree induction process, which randomly selects
a feature subset of size K (a hyperparameter of random forest) at each nonterminal node
and then chooses the best split among it. In Algorithm 1, we present the general algorithmic
framework for these three ensemble methods.

Nowadays, boosting can be deemed as the largest algorithmic family in the domain of
ensemble learning. Unlike bagging, whose base classifiers can be trained in parallel, boosting
is a sequential algorithm in which each new classifier is built by taking into account the
performance of the previously generated classifiers. AdaBoost [21, 22], due to its simplicity
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• Input
A training set L = {(xi, yi)}Ni=1; A base learnerW; Number of iterations T ; A new data point x
to be classified.

• Training Phase
Initialization: Set the weight distribution over L as D1(i) = 1/N (i = 1, 2, . . . ,N).
For t = 1, . . . , T
(1) According to the distribution Dt, drawN training instances at random from L with

replacement to compose a new set Lt = {(x(t)i , y
(t)
i )}Ni=1.

(2) Provide Lt as the input ofW to train a classifier Ct, and then compute the weighted
training error of Ct as

εt = Pri∼Dt
(Ct(xi)/=yi) =

N∑

i=1

I(Ct(xi)/=yi)Dt(i), (1)

where I(·) takes value 1 or 0 depending on whether the ith training instance is
misclassified or by Ct or not.

(3) If εt > 0.5 or εt = 0, then set T = t − 1 and abort loop.
(4) Let αt = (1/2) ln((1 − εt)/εt).
(5) Update the weight distribution Dt over L as

Dt+1(i) =
Dt(i)
Zt

×
{

e−αt , if Ct(xi) = yi

eαt , if Ct(xi)/=yi,
(2)

where Zt is a normalization factor being chosen so that Dt+1 is a probability
distribution over L.

Endfor
• Output

– The class label for x predicted by the ensemble classifier C∗ as

C∗(x) = arg max
y∈Φ

T∑

t=1

αtI(Ct(x) = y).

Algorithm 2: The main steps for the AdaBoost algorithm.

and adaptability, has become the most prominent member in boosting family. AdaBoost
works by constructing an ensemble of subsidiary classifiers by applying a base learner to suc-
cessive derived training sets that are formed by either resampling from the original training
set [21] or reweighting the original training set [22] according to a set of weights maintained
over the training set. Initially, the weights assigned to each training example are set to be
equal, and, in subsequent iterations, these weights are adjusted so that the weight of the in-
stances misclassified by the previously trained classifiers is increased whereas that of the cor-
rectly ones is decreased. Thus, AdaBoost attempts to produce new classifiers that are able to
better predict the “hard” examples for the previous ensemble members. After a sequence of
classifiers is trained, which is then combined by weighted majority voting in the final deci-
sion. Algorithm 2 lists themain steps for the resampling version of AdaBoost which is utilized
in our later experiments.

Based on principal component analysis (PCA), Rodrı́guez et al. [23] developed a novel
ensemble classifier creation technique rotation forest and demonstrated that it outperforms
several other ensemble methods on some benchmark classification data sets from the UCI
repository [24]. With the aim to create training data for a base classifier, the feature set of
L is randomly split into many subsets, and PCA is applied to each subset. All principal
components are retained in order to preserve the variability information in the data. Thus,
some axis rotations take place to form new features for training a base classifier. Themain idea
of rotation forest is to simultaneously encourage diversity and individual accuracy within
an ensemble classifier. Specifically, diversity is promoted by using PCA to do feature axis
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• Input
A training set L = {(xi, yi)}Ni=1 = [X Y]; Number of input featuresM contained in each feature
subset; A base learnerW; Number of iterations T ; A new data point x to be classified.

• Training Phase
For t = 1, 2, . . . , T
– Calculate the rotation matrix Ra

t for the tth classifier Ct

(1) Randomly split the feature set F = {X1, X2, . . . , Xp} into K subsets Ft,k (k = 1, 2, . . . , K).
(2) For k = 1, 2, . . . , K

(a) Select the columns of X that correspond to the attributes in Ft,k to compose a
submatrix Xt,k .

(b) Draw a bootstrap sample X′
t,k

(with sample size smaller than that of Xt,k ,
generally taken to be 75%) from Xt,k .

(c) Apply PCA to X′
t,k

to obtain a matrix Dt,k whose ith column consists of the
coefficients of the ith principal component.

(3) EndFor
(4) Arrange the matricesDt,k (k = 1, 2, . . . , K) into a block diagonal matrix Rt.
(5) Construct the rotation matrix Ra

t by rearranging the rows of Rt so that
they correspond to the original features in F.

– Provide [XRa
t Y] as the input of W to build a classifier Ct.

EndFor
•Output

– The class label for x predicted by the ensemble classifier C∗ as

C∗(x) = arg max
y∈Φ

T∑

t=1

I(Ct(xRa
t ) = y).

Algorithm 3: The detailed steps of rotation forest method.

rotation for each base classifier while accuracy is sought by keeping all principal components
and also using the whole data set to train each base classifier. Here, we summarize the
detailed steps of rotation forest in Algorithm 3. Note that in this algorithm, there is another
parameter, namely, the number of featuresM contained in each feature subset, which should
be specified in advance. For simplicity, suppose thatM is a factor of p so that the features are
distributed into K subsets with each of them containing M features. Otherwise, the Kth fea-
ture subset will have p − (K − 1)M features. According to the results reported by Rodrı́guez
et al. [23], rotation forest with M = 3 performs satisfactorily, and it thus provides users a di-
rective advice to choose suitable value forM.

Furthermore, Melville and Mooney [25] proposed a new meta-learner DECORATE
(diverse ensemble creation by oppositional relabeling of artificial training examples) that can
use any “strong” learner (one that provides high accuracy on the training data) to build a
diverse ensemble. This algorithm is accomplished by adding different randomly constructed
instances to the training set when building new ensemble members. The artificial constructed
instances are given category labels that disagree with the prediction of the current ensemble,
thereby directly increasing diversity when a new learner is trained on the augmented data
and added to the ensemble. Based on the experimental results using the J48 (an open
source Java implementation of the C4.5 algorithm in the Weka data mining tool) decision-
tree induction as a base learner and the analysis of the cross-validated learning curves for
DECORATE as well as some other ensemble methods, Melville and Mooney [25] found that
DECORATE produces highly accurate ensembles that outperform bagging, AdaBoost, and
random forest low on the learning curve. In order to make this paper self-sufficient, we list
the pseudocodes of DECORATE in Algorithm 4 as follows.



Mathematical Problems in Engineering 7

• Input:
L: training set consisting of N instances;
W: base learner whose output is assumed to be a class probability distribution;
Csize: desired ensemble size;
Imax: maximum number of iterations to construct an ensemble classifier;
Rsize: a factor to determine number of artificial instances to generate.

• Training phase
– Initialization:
Let i = 1 and trials = 1;
Provide the given training set L as the input of base learnerW to get a classifier Ci;
Initialize ensemble set C∗ = {Ci};

– Compute ensemble error as

ε =
1
N

N∑

i=1

I(C∗(xi)/=yi). (3)

– While i < Csize and trials < Imax
(1) Generate �Rsize ×N� training instances, R, according to the distribution of training data;
(2) Label each instance in R with probabilities that each class label is selected

being inversely proportional to those predicted by C∗;
(3) Combine L with R to get a new training set L′;
(4) Apply base learnerW to L′ to obtain a new classifier C′;
(5) Add C′ to ensemble set C∗, namely, let C∗ = C∗ ∪ {C′};
(6) Based on the training set L, compute the ensemble error of C∗, say, ε′, as

that done in equation (3);
(7) If ε′ ≤ ε, let i = i + 1 and update ensemble error as ε = ε′; Otherwise,

delete C′ from the ensemble set C∗, that is, C∗ = C∗ − {C′};
(8) trials = trials + 1;

– EndWhile
• Prediction phase

– Let pi,j(x) be the probability that x comes from class j supported by the classifier Ci.
Calculate the confidence for each class by the mean combination rule, that is,

dj(x) =
1
L

L∑

i=1

pi,j(x), j = 1, 2, . . . , J , (4)

where L stands for the real ensemble size.
– Assign x to the class with the largest confidence.

Algorithm 4: The pseudocodes for DECORATE ensemble method.

As can be seen in Algorithm 4, DECORATE builds an ensemble classifier iteratively
like all the other ensemble methods. Initially, a classifier is trained on the basis of the
given training data L. In each successive iteration, one classifier is created by applying a
base learner W to L combined with some artificial data. In each iteration, some artificial
training instances are generated according to the data distribution that the given training
data (only consider the input variables now) come from, where the number of instances
to be generated is specified as a fraction, Rsize, of the training set size N. As for the
labels for each artificially generated training instance xk, first utilize the current ensemble
to predict the class membership probabilities P̂(xk) = (P̂1(xk), P̂2(xk), . . . , P̂J(xk))

T that this
instance belongs to each class. Then, replace zero probabilities with a small nonzero value
and normalize the probabilities to make them form a probability distribution P̃(xk) =
(P̃1(xk), P̃2(xk), . . . , P̃J(xk))

T . The label yk of the instance xk can then be determined such
that the probability for each class i being selected is inversely proportional to the ensemble’s
prediction; namely, P̃ ′

i (xk) = (1/P̃i(xk))/
∑J

j=1(1/P̃j(xk)). The main purpose in doing so is
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to make the labels for the artificially generated instances differ maximally from the cur-
rent ensemble’s predictions in order to promote the diversity in the constructed ensemble
classifier. Thus, the labeled artificially created training set is called diversity data. On the other
hand, DECORATE tries to maintain the accuracy of each ensemble member while forcing
diversity through rejecting a new classifier if adding it to the existing ensemble decreases its
accuracy. The above whole process is repeated until the desired ensemble size is reached or
the maximum number of iterations is exceeded.

It is worth to mention that, in DECORATE, the artificially generated training data
are randomly picked from an approximation of the training-data distribution. For a numeric
feature, the values of it are created from a Gaussian distribution whose mean and standard
deviation are computed from the corresponding data in the training set. As for a nominal
feature, the probability of occurrence of each distinct value in its domain should be first
calculated in which the Laplace smoothing needs to be employed so that nominal feature
values not represented in the training set still have a nonzero probability of occurrence. Then,
some values can be generated based on this distribution. Another issue that should be pointed
out is that we can only specify a desired ensemble size Csize when using DECORATE to deal
with a classification task. The size L of the finally obtained ensemble may be smaller than
Csize because the algorithm will terminate if the number of iterations exceeds the maximum
limit even if Csize is not reached. As for Rsize, it can take any value in theory. Nevertheless,
the experiments done by Melville and Mooney [25] have shown that Rsize lower than 0.5
adversely affect the performance of DECORATE, and the results with Rsize chosen in range
0.5∼1 do not vary much.

3. Data Set

For a hand gesture recognition problem, the task is to design a classifier to recognize differ-
ent hand gestures where each gesture has a meaning of one simple or compound word. Our
used data set contains 120 different signs of the Dutch sign language, each performed by
75 different persons. The images were captured at 640 × 480 pixels and 25 frames per sec-
ond. Most sign examples include partial occlusions of hands of each other or with the
face/neck. For the detailed process to obtain the experimental data, the readers can refer to
[3, 26]. The supplementary video can be found on the Computer Society Digital Library at
http://www.computer.org/portal/web/csdl/doi/10.1109/TPAMI.2008.123. We briefly in-
troduce the process to collect the experimental data as follows. When a person is making a
hand gesture, two cameras are used to independently record the continuous activity of his left
and right hands. Because the gesture is made continuously and we would like to obtain some
features, three images (frames) which, respectively, denote the beginning, middle, and end-
ing of the gesture were extracted from the video recorded by one camera, and they were de-
noted as image 1, 2, and 3 here. Based on each obtained image, some segmentation algor-
ithm was first used to segment two hands from the background, and then 7 invariant
moments were computed for each hand. This process was repeated for the video of the other
camera. Finally, we obtained 84 features in total through collecting the computed moments
corresponding to two hands, three images, and two cameras together. In the original data set,
there are totally 120 different gestures among which 29 ones denote compound words and 91
ones indicate simple words. For each gesture, there are 75 objects made by different persons,
and every object is described by 84 features which were extracted in the above-mentioned
way.
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Unfortunately, we encountered a problem during segmenting two hands from one
image. Sometimes there may occur an overlap between head, left hand, or right hand,
which make it impossible to compute meaningful moments for each hand. Therefore, some
corresponding features cannot be obtained in the general manner, and they are indicated
as missing. In our experiments, we only considered the objects without missing features.
Meanwhile, we tried to select the classes consisting of approximately equal number of objects.
Through preprocessing the experimental data in this way, we finally obtained a set having 11
classes with about 70 objects in each class. The data set contains 793 objects in total, and each
object is described by 84 features.

4. Experimental Study

4.1. Experimental Setting

In this section, we did some experiments by applying six commonly used classifier combina-
tionmethods to the hand gesture recognition data set that is described previously. The consid-
ered ensemble methods include bagging [16], random forest [18], random subspace [17],
AdaBoost [22], rotation forest [23], and DECORATE [25].

The experimental settings were as follows. In all the ensemble methods, a decision tree
[20]was always adopted as the base learning algorithm because it is sensitive to the changes
in its training data and can still be very accurate. The following experiments were all con-
ducted in Matlab software with version 7.7. The decision tree algorithm was realized by the
“Treefit” algorithm contained in the “Stats” package of Matlab. The parameters involved in
this algorithm, such as the minimum number of training instances that impure nodes to be
split should have, were all set to the default values. The implementations of the considered
ensemble methods were realized in Matlab by writing programs according to their respective
pseudocodes.

The ensemble size was set to 25 since the largest error reduction achieved by ensemble
methods generally occurs at the first several iterations. Although larger ensemble size may
result in better performance, the improvement achieved at the cost of additional computa-
tional complexity is trivial in comparison with that obtained with just a few iterations. As
for the hyperparameter K in random forest, which specifies how many features should be
firstly selected at each nonterminal node in the process of building a decision tree, the value
of it was taken to be �log2(p) + 1� since some experiments [18] have proven that this choice
makes random forest achieve good performance very often. When using random subspace
technique to construct an ensemble classifier, one half of features were randomly selected to
train its each constituent member. With respect to the parameterMwhich indicates the num-
ber of features contained in each feature subset in rotation forest, we set it to be 3 just like
Rodrı́guez et al. [23] did because they have found that this value was almost always the best
choice in their experiments. In DECORATE algorithm, the used parameters except for the
ensemble size were all identical to those utilized by Melville and Mooney [25]; namely, the
maximum number of iterations Imax to build an ensemble classifier was set to 50, and the
factor Rsize to determine number of artificial examples to generate was chosen to be 1. Here, it
should be noted that we can only specify a desired ensemble size for DECORATE algorithm
while it may terminate if the number of iterations exceeds the maximum limit even if the
desired ensemble size is not reached.
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Table 1: The means and standard deviations (std.) of prediction errors, as well as scores for each classifi-
cation method on the considered data set.

Statistic SingleTree Bagging RandForest RandSubspace AdaBoost DECORATE RotForest
Mean error 45.85 32.09 32.80 32.31 29.21 40.39 27.55
Std. 1.19 1.03 1.03 0.95 1.01 2.73 1.10
Score −6 0 0 0 4 −4 6

4.2. Results and Discussion

4.2.1. Comparison of Prediction Error

Because there have not been separate training and testing data to use, we employed the 10-
fold cross-validation method to investigate the performance of the considered classification
methods. Specifically, the data was first split into ten subsets with approximately equal sizes,
and then nine of them were utilized as a training set to construct a forest while the other one
was used to estimate the prediction error of the forest. The experiment was conducted ten
times through alternating the role of ten subsets until each of them was used for testing once.
We repeated the above process ten times with different random number generating seeds to
split the data in order to eliminate the impact of random factor to the performance of each
algorithm.

Before utilizing each obtained training set to carry out experiments, we preprocessed
the data based on one normalization technique. Given a training set L = {(xi, yi)}Ni=1, the nor-
malization of the values corresponding to each feature Xj(j = 1, 2, . . . , p) can be expressed as

xc
j =

Nc∑

i=1

xij , scj =
1

Nc − 1

Nc∑

i=1

(
xij − xc

j

)2
,

s =
m∑

c=1

P(ωc)scj , x′
ij =

xij − xc
j√

s
, i = 1, 2, . . . ,Nc,

(4.1)

where xc
j and scj , respectively, denote the mean and variance for classωc and s is the weighted

sum of the variances for each class with weights equal to class prior probabilities. After ob-
taining xc

j and s, the same mapping was applied to the test set.
Table 1 reported themean as well as the standard deviation of the computed test errors

for each algorithm. In order to make a complete comparison, the results calculated with a
classification tree were also taken into account. In Table 1, the best results were highlighted in
bold face to facilitate the comparison. With the aim to make clear whether there is significant
difference between the performance of our evaluated ensemble methods on this specific data
set, we adopted a one-tailed paired t-test with significance level α = 0.01 to carry out some
statistical tests between each pair of algorithms. If an algorithm is found to be significantly
better than its competitor, we assigned score 1 to the former and −1 to the latter. If there is no
significant difference between the two compared methods, they both score 0. Obviously, the
higher the score of an approach, the better its performance. In the third row of Table 1, we
listed the scores that each classification method gets according to the number of times that it
has been significantly better or worse than the other algorithms.

From the obtained mean test errors and scores for each classification method, it can
be observed that the prediction error of a single decision tree has been improved greatly by
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each classifier combination technique, especially by AdaBoost and rotation forest. Among
the ensemble algorithms, DECORATE was seen to perform much worse than the other en-
semble learning strategies; the reason may be that its main advantage is to deal with classifi-
cation problems with small training set size while the sample size of the current hand ges-
ture recognition data set is medium. Based on the scores calculated from the statistical tests
between each pair of algorithms, rotation forest is seen to be the best method to solve this
specific problem, and it performs significantly better than all the other algorithms at signif-
icance level α = 0.01. Meanwhile, AdaBoost is the second best approach since it was only
beaten by rotation forest. However, a single decision tree and DECORATE behave very
badly and they should not be selected to deal with this problem. As for the other three en-
semble methods, the performance of them is almost equivalent even though their working
mechanism is different as described in Section 2.

4.2.2. Bias-Variance Decomposition of Error

In order to investigate the reasons for the better performance of an ensemble classifier than
its constituent members, to decompose its error into bias and variance terms is a good choice,
and this method has been used bymany researchers [27–29]. The decomposition of a learning
machine’s error into bias and variance terms originates from analyzing learning models
with numeric outputs in regression problems. Given a fixed target and training set size, the
conventional formulation of the decomposition breaks the expected error into the sum of
three nonnegative quantities.

(i) Intrinsic “target noise” (σ2). This quantity is a lower bound on the expected error of
any learning algorithm. It is the expected error of the Bayes optimal classifier.

(ii) Squared “bias” (bias2). This quantity measures how closely the learning algorithm’s
average guess (over all possible training sets of the given size) matches the target.

(iii) “Variance” (variance). This quantity measures how much the learning algorithm’s
guess fluctuates from the target for the different training sets of the given size.

Notice that the above decomposition cannot be directly translated to contexts where
the value to be predicted is categorical; a number of ways to decompose error into bias and
variance terms in the field of classification prediction tasks have been proposed [30–33]. Each
of these definitions is able to provide some valuable insight into different aspects of a learning
machine’s performance. In order to gain more insight into the performance of the considered
ensemble methods on the hand gesture recognition data set, we utilized the bias-variance
definition developed by Kohavi and Wolpert [30] in the current research, and they were,
respectively, denoted by Bias and Var in the following discussions.

If denote by YH and YF the random variables, respectively, representing the evaluated
and true labels of an instance, Bias and Var defined for a testing instance (x, y) can be
expressed as

Bias(x) =
1
2

∑

y′∈Φ

[
Pr
(
YF = y′ | x) − Pr

(
YL
H = y′ | x

)]2
,

Var(x) =
1
2

⎧
⎨

⎩
1 −
∑

y′∈Φ

[
Pr
(
YL
H = y′ | x

)]2
⎫
⎬

⎭
.

(4.2)
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Table 2: The bias-variance decompositions for each classification method on the considered data set.

Statistic SingleTree Bagging RandForest RandSubspace AdaBoost DECORATE RotForest
Mean error 45.85 32.09 32.80 32.31 29.21 40.39 27.55
Bias 26.01 22.17 21.38 22.47 18.05 22.94 19.23
Var 19.84 9.93 11.41 9.84 11.15 17.45 8.32

Here, the superscript L is used in YL
H to denote that the evaluated class label is predicted by

themachine trained on the setL. The term Pr(·) in the above formulae can be computed as the
frequency that the event included in the parentheses occurs in the trials which are conducted
with different training sets of the given size.

To compute the above two statistics, the distribution of where the training data come
from should be known in advance. Unfortunately, the knowledgewe have in the current hand
gesture recognition situation is only a learning sample with medium size. In consequence,
the Bias and Var terms should be estimated instead. In our experiments, the method similar
to that used by [32], that is, ten trials of 10-fold cross-validation procedure, was utilized
to estimate the bias and variance defined above. Once the cross-validation trials have been
completed, the relevant measures can be estimated directly from the observed distribution of
results. The use of cross-validation in this way has the advantage that every instance in the
available data L is used the same number of times, both for training and for testing.

According to the above approach, the previously defined bias and variance
decompositions of the errors for each classification method were estimated for each instance
in the given data set, and then their values were averaged over that data set. Detailed
decompositions of mean error into Bias and Var for each classification method were provided
in the following Table 2.

As can be seen from Table 2, the order of the considered classification methods
ranked in terms of Bias value from best to worst is AdaBoost, RotForest, RandForest, Bag-
ging, RandSubspace, DECORATE, and SingleTree. With regard to Var, these algorithms
are rated from best to worst as RotForest, RandSubspace, Bagging, AdaBoost, RandForest,
DECORATE, and SingleTree. Therefore, the better performance of RotForest and AdaBoost
can be attributed to the fact that they reduce both bias and variance of the SingleTree’s
error to a large degree. RotForest does a better job to reduce variance term while AdaBoost
has a small advantage on reducing bias. The working mechanism of RandForest is similar
to that of RotForest and AdaBoost, but the reduction achieved by it is not enough. In the
meantime, bagging and RandSubspace are observed to mainly reduce the variance term. As
for DECORATE, it was seen to only decrease the bias and variance of the SingleTree’s error
to a small extent.

4.2.3. Kappa-Error Diagrams

On the other hand,many researchers [34–36] have pointed out that the success of an ensemble
classifier achieving much lower generalization error than its any constituent member lies
in the fact that the ensemble classifier consists of highly accurate classifiers which at the
same time disagree as much as possible. Put in another way, with the purpose to construct
an ensemble classifier with good performance, we should achieve a good tradeoff between
diversity and accuracy.
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The kappa-error diagrams developed by Margineantu and Dietterich [37] provide us
an effective means to visualize how an ensemble classifier which is constructed by some
ensemble learning technique attempts to reach the tradeoff between the diversities and
accuracies of its constituent members. For each pair of classifiers, the diversity between
them is measured by the statistic kappa (κ) which evaluates the level of agreement between
two classifier outputs while correcting for chance; the accuracy of them is measured by the
average of their error rates estimated on the testing data set. A kappa-error diagram is a
scatter plot in which each point corresponds to a pair of classifiers Ci and Cj . On the x-axis
of the plot is the diversity value κ and on the y-axis of it is the mean error of Ci and Cj , say,
Ei,j = (Ei + Ej)/2.

The statistic κ is defined as follows. Suppose that there are J classes and κ is defined
on the J × J coincidence matrix M of two classifiers Ci and Cj (i, j = 1, 2, . . . , T) where T is
the number of classifiers in an ensemble. The entry mk,s of M is the proportion of the testing
data set, in which classifier Ci labels as ωk and classifier Cj labels as ωs. Then the agreement
between Ci and Cj can be measured as

κi,j =

∑J
k=1mkk −ABC
1 −ABC

, (4.3)

where
∑J

k=1mkk is the observed agreement between the two classifiers Ci and Cj . “ABC,” the
acronym of “agreement-by-chance,” is defined as

ABC =
J∑

k=1

(
J∑

s=1

mk,s

)(
J∑

s=1

ms,k

)

. (4.4)

According to the above definition of κ, low values of it indicate higher diversity. And since
small values of Ei,j indicate better accuracy, the most desirable pairs of classifiers should lie
in the bottom left corner of the scatter plot.

Figure 1 illustrates the kappa-error diagrams of the ensemble classifiers constructed
by each ensemble algorithm on the hand gesture recognition data. All the constructed forests
but the one built by DECORATE consist of 25 trees; therefore there are 300 (C2

25) points
in each plot. Because the data set has no separate training and testing parts, we randomly
took 90% of observations to build the forests and the remaining to compute the kappa-error
diagrams. With regard to each plot, the axes of them were adjusted to be identical so that
the comparisons can be easily carried out. Moreover, on the top of each plot in Figure 1, we
presented the used ensemble method, its prediction error estimated on the testing set, and
the coordinates (shown as the red point in each plot) for the mean of diversities and that of
errors which were averaged over all pairs of base classifiers.

As can be observed in Figure 1, DECORATE gives a very compact cloud of points.
Each point has a low error rate and a high value for κ, which indicates that the base classifiers
are accurate but not very diverse. The shape of the kappa-error diagrams for bagging and
random subspace is similar, but the points for bagging are more diverse while those for
random subspace are slightly more accurate. Although the test error of random forest is
identical to that of AdaBoost, we can find that AdaBoost is more diverse but is not as
accurate as random forest. In the meantime, rotation forest is seen to achieve better diversity
than random subspace and DECORATE, but its accuracy is only worse than DECORATE.
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Figure 1: The kappa-error diagrams for the compared ensemble methods.
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Thus, the final prediction error of rotation forest is a little higher than that of random forest
and AdaBoost in this special situation.

Notice that here we just randomly selected 90% of the data to construct forests and
utilized the remaining 10% to estimate the values of κ and mean error for each pair of base
classifiers. The experiment was only carried out for one trial. If comparing the results ob-
tained herein with those listed in Table 1, we should be cautious to draw conclusions since
the errors for each algorithm as reported in Table 1 were averaged over ten trials of 10-
fold cross-validation in order to eliminate some random factor that may affect the rela-
tive performance of our considered classification methods. However, our aim in this subsec-
tion was just to employ the kappa-error diagrams to study the working mechanism of the
compared ensemble methods more clearly.

5. Conclusions

In this paper, we adopted some widely used classifier fusion methods to solve a hand
gesture recognition problem. Since the data of this classification task are likely coming from
a multi-normal distribution, the ensemble methods are found to be more appropriate to deal
with this problem because the performance of them is much better than that of a single
classification tree. Among the ensemble techniques, AdaBoost and rotation forest behave
significantly better than their rivals and they achieve the lowest generalization error. Through
investigating the bias-variance decompositions of error for the considered classification
algorithms, the success of AdaBoost and rotation forest can be attributed to the fact that each
of them simultaneously reduces the bias and variance terms of the SingleTree’s error to a large
extent. Rotation forest does a better job to reduce variance whereas AdaBoost has a small
advantage on reducing bias. Furthermore, we made use of kappa-error diagrams to visualize
how a classifier combination strategy attempts to reach a good tradeoff between diversity
and accuracy in the process of constructing an ensemble classifier. The experimental results
demonstrate that AdaBoost creates the most diverse base classifiers but with a little higher
error. With respect to rotation forest, it is observed to generate very accurate base classifiers
while the diversity between them is only medium.
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