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This paper investigates the problem of chaos control and synchronization for new chaotic
dynamical system and proposes a simple adaptive feedback control method for chaos control
and synchronization under a reasonable assumption. In comparison with previous methods,
the present control technique is simple both in the form of the controller and its application.
Based on Lyapunov’s stability theory, adaptive control law is derived such that the trajectory of
the new system with unknown parameters is globally stabilized to the origin. In addition, an
adaptive control approach is proposed to make the states of two identical systems with unknown
parameters asymptotically synchronized. Numerical simulations are shown to verify the analytical
results.

1. Introduction

Chaos control and synchronization methods were first addressed by Ott et al. [1] and Pecora
and Carroll [2] in the beginning of the decade of 1990. Along with these concepts came the
idea of chaotic encryption.

Nowadays, different techniques and methods have been proposed to achieve chaos
control and chaos synchronization such as linear and nonlinear feedback control [3–10]. Most
of them are based on exactly knowing the system structure and parameters. But in practical
situations, some or all of the system’s parameters are unknown. Moreover, these parameters
change from time to time. Therefore, the derivation of an adaptive controller for the control
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Figure 1: The chaotic attractor of new dynamical system at a = 10, b = 16 and c = −1.

and synchronization of chaotic systems in the presence of unknown system parameters is an
important issue [11–21].

In recent years, chaos synchronization has received special interests due to its potential
applications in secure communications [22–25], biological systems [26], circuits [27], lasers
[28], and so forth. In operation, a chaotic system exhibits irregular behavior and produces
broadband, noise-like signals, thus, it is thought to use in secure communications.

In this work we investigate the problem of chaos control and synchronization for new
chaotic dynamical system and propose a simple adaptive feedback control method for chaos
control and synchronization under a reasonable assumption. In comparison with previous
methods, the present control technique is simple both in the form of the controller and its
application. Based on Lyapunov’s stability theory, adaptive control law is derived such that
the trajectory of the new systemwith unknown parameters is globally stabilized to the origin.
In addition, an adaptive control approach is proposed to make the states of two identical
systems with unknown parameters asymptotically synchronized. Numerical simulations are
shown to verify the analytical results.

The object of this work is chaos control and synchronization of two identical new
chaotic dynamical systems [29] with adaptive feedback and application in secure commu-
nication. The new system [29] is described by

ẋ = a
(
y − x

)
,

ẏ = bx − xz,

ż = xy + cz,

(1.1)

where a, b, and c are three unknown parameters. This system exhibits a chaotic attractor at
the parameter values a = 10, b = 16, and c = −1 (see Figure 1).

The paper is organized as follows. In Section 2, we propose the main results of this
paper. In Section 3, the adaptive feedback control method is applied to control of new
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attractor with unknown parameters and numerical simulations are presented to show the
effectiveness of the proposed method. In Section 4, the adaptive feedback control method
is applied to synchronization of two identical new attractor and numerical simulations are
presented for verifying the effectiveness of the proposed method. We conclude the paper in
Section 5.

2. Main Results

In this section, we investigate the problem of chaos control bymodifying the previousmethod
[30] and propose the main results of this paper.

Let a chaotic system be given as

ẋ = f(x), (2.1)

where x = (x1,x2, . . . ,xn)
T ∈ Rn, f(x) = (f1(x), f2(x), . . . , fn(x))

T : Rn → Rn is a smooth
nonlinear vector function. Without loss of the generality, let xe = 0 is an equilibrium point
of the system (2.1). To describe the new design and analysis, the following assumption is
needed.

Assumption 2.1. There exists a nonsingular coordinate transformation y = Tx, such that
system (2.1) can be rewritten as

ż1 = g1(z1, z2)

ż2 = g2(z1, z2),
(2.2)

where z1 = (y1,y2, . . . ,yr)
T ∈ Rr, z2 = (yr+1,yr+2, . . . ,yn)

T ∈ Rn−r , the second equation
satisfies ż2 = g2(0, z2), with the vector function g2(z1, z2) being smooth in a neighborhood
of z1 = 0, and the subsystem ż2 = g2(0, z2) is uniformly exponentially stable about the origin
z2 = 0 for all z.

Remark 2.2. It should be pointed out that not all the finite dimensional chaotic systems are
given as (2.2) in their original forms. Therefore, we should make a nonsingular coordinate
transformation T , which can adjust the array order of the variables (x1,x2, . . . ,xn) to make the
original systems (in the new form) have the form of (2.2). Thus, Assumption 2.1 is reasonable,
and system (2.2) is very general, which contains most well-known finite dimensional chaotic
systems.

Remark 2.3. The vector function g2(z1, z2) being smooth in a neighborhood of z1 = 0, that is,
there is a positive constant λ0 (locally) such that ||g2(z1, z2) − g2(0, z2)|| ≤ λ0||z1||. And the
subsystem ż2 = g2(0, z2) is uniformly exponentially stable about the origin z2 = 0 for all z,
which implies that there are a Lyapunov function V0(z2) and two positive numbers λ1, λ2
such that

V̇0(z2) =
∂V0(z2)
∂z2

g2(0, z2) ≤ −λ1‖z2‖2,
∥∥∥∥
∂V0(z2)
∂z2

∥∥∥∥ ≤ λ2‖z2‖, (2.3)
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respectively. Since the system (2.1) is chaotic and g2(z1, z2) is smooth function, there exists a
positive number λ3, such that ‖g1(z1, z2)‖ ≤ λ3‖z1‖.

In order to stabilize the chaotic orbits in (2.1) to its equilibrium point xe = 0, we add
the following adaptive feedback controller to system (2.1) and the controlled system (2.1) is
as follows:

ż1 = g1(z1, z2) + u1 = g1(z1, z2) + k1z1,

ż2 = g2(z1, z2) + u2 = g2(z1, z2),
(2.4)

where the controller u = (u1, u2)
T = k1z = (k1z1, 0)

T . The feedback gain k1 is adapted
according to the following update law:

k̇1 = −γ‖z1‖2, (2.5)

where γ is an arbitrary positive constant, in general, we select γ = 1.
Let the systems (2.2) and (2.4) be the augment systems, and introduce a Lyapunov

function

V =
1
2
zT1z1 + V0(z2) +

1
2γ

(k1 + L)2, (2.6)

where L = (λ3 + α), α ≥ λ20λ1/4. Next, we give the following main result.

Theorem 2.4. Starting from any initial values of the augment system, the orbits of the augment
system (x(t), k1(t))

T converge to (xe, k0)
T as t → ∞, where k0 is a negative constant depending

on the initial value. That is to say, the adaptive feedback controller stabilizes the chaotic orbits to its
equilibrium point xe = 0.

Proof. Differentiating the function V along the trajectories of the augment system, we obtain

V̇ = zT1 ż1 +
∂V0(z2)
∂z2

g2(z1, z2) +
1
γ
(k1 + L)k̇1

= zT1
(
g1(z1, z2) + k1z1

)
+
∂V0(z2)
∂z2

g2(z1, z2) − (k1 + L)zT1z1

= zT1g1(z1, z2) − LzT1z1 +
∂V0(z2)
∂z2

(
g2(z1, z2) − g(0, z2)

)
+
∂V0(z2)
∂z2

g(0, z2)

≤ λ3z
T
1z1 − (λ3 + α)zT1z1 + λ0λ2‖z1‖‖z2‖ − λ1‖z1‖2

≤ − αzT1z1 + λ0λ2‖z1z2‖ − λ1‖z2‖2 ≤ 0.

(2.7)

Obviously, V̇ = 0 if and only if zi = 0, i = 1, 2, then the setE = {(z, k1) | V̇ (z) = 0} = {0}
is the largest invariant set for the augment system. According to the well-known LaSalle
invariance principle, zi = 0, i = 1, 2, which implies that xi = 0, i = 1, 2, . . . , n, thus, Theorem 2.4
is obtained.
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Remark 2.5. In general, n− r ≥ 1, where n− r is the dimension of the variable z2. One the other
hand, we stabilize the first subsystem ż1 = g1(z1, z2) by applying the previous method [30].
Therefore, the controllers obtained in this paper are simpler than those controllers obtained by
the previous method in general case or the same to those controllers obtained by the previous
method even in the worst case n− r = 0. Accordingly, the present method is a modification of
the previous method.

Remark 2.6. If xe /= 0 is an equilibrium point of the chaotic system (1.1), then we make the
coordinate transformation y = x − xe, which make the original chaotic system (1.1)with new
variable y = (y1,y2, . . . ,yn) has the equilibrium point ye = 0. That is to say, this method can
be also easily utilized whatever xe is origin or not.

3. Adaptive Feedback Control Method for Controling New Attractor

In this section, we apply the above technique to control the new chaotic system [29]. Now,
we rewrite system (1.1) as the following:

ẋ1 = a(x2 − x1),

ẋ2 = bx1 − x1x3,

ẋ3 = x1x2 + cx3.

(3.1)

It is easy to know the fact that if x2 = 0 the following two dimensional subsystem of
the system (3.1):

ẋ1 = −ax1

ẋ3 = cx3,
(3.2)

which is uniformly exponentially stable about the origin x1 = 0, x3 = 0 for all x1,x3, then
there exists a nonsingular coordinate transformation y = Tx, that is, y1 = x2, y2 = x1, y3 = x3,
which can make system (3.1) with new variable y has the form of system (2.2), and the new
system with controller u = k1y = (k1y1, 0, 0)

T is

ẏ1 = by2 − y2y3 + k1y1,

ẏ2 = a
(
y1 − y2

)
,

ẏ3 = y1y2 + cy3,

k̇1 = − γ
∥∥y1

∥∥2
.

(3.3)
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Now, we define a Lyapunov function as

V =
1
2

(
y2
1 + y2

2 + y2
3

)
+

1
2γ

(k1 + L)2, (3.4)

where L is a sufficiently big constant. It is clear that the Lyapunov function V (e) is a positive
definite function. Now, taking the time derivative of (3.4), then we get

dV (e)
dt

= y1ẏ1 + y2ẏ2 + y3ẏ3 +
1
γ
(k1 + L)K̇1

= y1
(
by2 − y2y3 + k1y1

)
+ y2

(
ay1 − ay2

)
+ y3

(
y1y2 + cy3

) − (k1 + L)y2
1

= by2y1 − y1y2y3 + k1y
2
1 + ay1y2 − ay2

2 + y3y1y2 + cy2
3 − k1y

2
1 − Ly2

1

= (a + b)y2y1 − ay2
2 + cy2

3 − Ly2
1

= −
(
ay2

2 − (a + b)y2y1 + Ly2
1

)
+ cy2

3

≤ −
(
ay2

2 − (a + b)
∥∥y2

∥∥∥∥y1
∥∥ + Ly2

1

)
+ cy2

3 ≤ −eTPe < 0,

(3.5)

where e = [|y1|, |y2|, |y3|]T is the states vector, and

P =

⎡

⎢⎢⎢
⎣

L
a + b

2
0

a + b

2
a 0

0 0 c

⎤

⎥⎥⎥
⎦
. (3.6)

Obviously, to ensure that the origin of the system (3.1) is asymptotically stable, the
matrix P should be positive definite, which implies that V̇ is negative definite under the
condition L ≥ (a + b)2/4a then dV (e)/dt ≤ 0. According to Theorem 2.4, the origin of system
(3.3) is asymptotically stable.

3.1. Numerical Results

By using Maple 13 to solve the systems of differential equation (3.1) with the parameters are
chosen to a = 10, b = 16, and c = −1 in all simulations so that the new system exhibits a
chaotic behavior if no control is applied (see Figure 1). The initial states of system (3.1) are
y1(0) = 1.5, y2(0) = −2, and y3(0) = 3.2 and the initial value of the controller k1(0) = −1.
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Figure 2: The new dynamical system (3.1) is driven to its stable equilibrium (0, 0, 0) asymptotically as
t → ∞.
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Figure 3: The feedback gain k1 tends to a negative constant as t → ∞.

When γ = 1, the new system is driven to its stable equilibrium (0, 0, 0) asymptotically as
t → ∞ are shown in Figure 2. The feedback gain k1 tends to a negative constant as shown in
Figure 3.
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4. Adaptive Feedback Control Method for Synchronization of Two
Identical New Attractors

In this section, we apply the adaptive feedback control technique for synchronization of two
identical new chaotic systems [29]. For the new system (1.1), the master (or drive) and slave
(or response) systems are defined below, respectively,

ẋ1 = a
(
y1 − x1

)
,

ẏ1 = bx1 − x1z1,

ż1 = x1y1 + cz1,

(4.1)

ẋ2 = a
(
y2 − x2

)

ẏ2 = bx2 − x2z2

ż2 = x2y2 + cz2.

(4.2)

For this purpose, the error dynamical system between the drive system (4.1) and
response system (4.2) can be expressed by

ẋ3 = a
(
y3 − x3

)

ẏ3 = bx3 − x2z3 − z1x3

ż3 = cz3 + x2y3 + y1x3,

(4.3)

where x3 = x2 − x1, y3 = y2 − y1, z3 = z2 − z1.
In order that two chaotic systems can be synchronized in the sense of PS, the following

condition should be satisfied:

lim
t→∞

‖x2 − x1‖ = lim
t→∞

∥∥y2 − y1
∥∥ = lim

t→∞
‖z2 − z1‖ = 0. (4.4)

It is easy to know the fact that if y3 = 0 the following two-dimensional subsystem of
system (4.3):

ẋ3 = −ax3,

ż3 = cz3 + y1x3,
(4.5)

which is uniformly exponentially stable about the origin x3 = 0, z3 = 0 for all x3, z3, then
there exists a nonsingular coordinate transformation ex = y3, ey = x3, ez = z3, which can
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make system (4.3)with new variable e has the form of system (2.2), and the new system with
controller u = k2e = (k2ex, 0, 0)

T is

ėx = bey − x2ez − z1ey + k2ex,

ėy = a
(
ex − ey

)
,

ėz = cez + x2ex + y1ey,

k̇2 = −γ‖ex‖2.

(4.6)

Let us consider the Lyapunov function V (e)which is defined by

V (e) =
1
2

(
e2x + e2y + e2z +

1
γ
(k2 + L)2

)
, (4.7)

where L is a sufficiently big constant. It is clear that the Lyapunov function V (e) is a positive
definite function. Now, taking the time derivative of (4.7), then we get

dV (e)
dt

= exėx + eyėy + ezėz +
1
γ
(k2 + L)k̇2

= ex
(
bey − x2ez − z1ey + k2ex

)
+ ey

(
aex − aey

)

+ ez
(
cez + x2ex + y1ey

) − (k2 + L)e2x

= bexey − x2exez − z1exey + k2e
2
x + aexey − ae2y

+ ce2z + x2exez + y1eyez − k2e
2
x − Le2x

= − Le2x − ae2y + ce2z + (a + b − z1)exey + y1eyez

= −
[
Le2x + (z1 − a − b)exey + ae2y − ce2z − y1eyez

]

≤ −
[
Le2x + (z1 − a − b)‖ex‖

∥
∥ey

∥∥ + ae2y − ce2z − y1
∥∥ey

∥∥‖ez‖
]
= −etAe ≤ 0,

(4.8)

where e = [|ex|, |ey|, |ez|]T is the states vector, and

A =

⎡

⎢⎢⎢⎢
⎣

−L a + b − z1
2

0
a + b − z1

2
−a −y1

2
0 −y1

2
c

⎤

⎥⎥⎥⎥
⎦
, (4.9)

under the condition L > (z1 − a − b)2/4a, then dV (e)/dt ≤ 0. Based on Lyapunov’s stability
theory, this translates to limt→∞‖e(t)‖ = 0. Thus, the response system and drive systems
are asymptotically synchronized by using adaptive feedback control method. According to
Theorem 2.4, the origin of system (4.6) is asymptotically stable.
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Figure 5: The feedback gain k2 tends to a negative constant as t → ∞.

4.1. Numerical Results

By using Maple 13 to solve the systems of differential (4.1), (4.2), and (4.6) with the
parameters are chosen to a = 10, b = 16 and c = −1 in all simulations, so that the new system
exhibits a chaotic behavior if no control is applied (see Figure 1). The initial states of the drive
system are x1(0) = 1.5, y1(0) = −2, and z1(0) = 3.2, the initial values of the response system
are x2(0) = 1, y2(0) = −1, and z2(0) = 2, and the initial value of the controller k2(0) = −1.
When γ = 1, the new system is driven to asymptotically synchronize as t → ∞ are shown in
Figure 4. The feedback gain k2 tends to a negative constant as shown in Figure 5.
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5. Conclusions

In this paper, we present a simple adaptive feedback control method for chaos control and
synchronization by modifying the previous method. Adaptive feedback control method
is applied to control and synchronization of new chaotic dynamical system with known
parameters. Numerical simulations are also given to validate the proposed synchronization
approach.
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