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The paper we present here introduces a new priority mechanism in discrete-time queueing
systems. It is a milder form of priority when compared to HoL priority, but it favors customers
of one type over the other when compared to regular FCFS. It also provides an answer to the
starvation problem that occurs in HoL priority systems. In this new priority mechanism, customers
of different priority classes entering the system during the same time slot are served in order of
their respective priority class—hence the name slot-bound priority. Customers entering during
different slots are served on an FCFS basis. We consider two customer classes (pertaining to two
levels of priority) such that type-1 customers are served before type-2 customers that enter the
system during the same slot. A general independent arrival process and generally distributed
service times are assumed. Expressions for the probability generating function (PGF) of the system
content (number of type-j customers, j = 1, 2) in regime are obtained using a slot-to-slot analysis.
The first moments are calculated, as well as an approximation for the probability mass functions
associated with the found PGFs. Lastly, some examples allow us some deeper insight into the inner
workings of the slot-bound priority mechanism.

1. Introduction

Multiclass queueing systems, or queueing systems buffering multiple types of customers,
have been widely adopted in queueing theory, since they enable the modelling of non-
identical behaviour of different types of customers that enter the same system. In a multiclass
environment, virtually any combination of features with respect to the arrival characteristics,
service requirements, buffer management rules that pertain to the individual classes (Fiems
et al. [1]) could be considered.
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In this paper we study a 2-class discrete-time queueing system with infinite waiting
room and one server, under the so-called slot-bound priority service rule (SBP) (which is based
on the work in De Clercq et al. [2]). That is to say, class-1 customers receive preferential
treatment over class-2 customers that have arrived during the same slot. In addition,
customers that enter the system during consecutive slots are served on a first-come-first-
served (FCFS) basis, regardless of the class they belong to. Slot-bound priority can be used to
model any system inwhich batches of, for example, customers, packets, or tasks, arrive which
have to be addressed or serviced in a specific order for whatever reason, while the batches
themselves need to be served FCFS. For instance, a batch of customers may be the traffic that
accumulates before a traffic light. When the light turns green, the faster drivers (high priority
customers)will gain an edge and arrive at the next lights sooner, where they will be “served”
once those lights turn green. Moreover SBP can be seen as a polling mechanism in which,
during each slot, a gate is placed after each of the two queues (see f.i. Takagi [3], Boxma et al.
[4]). Whenever the server encounters a gate it discards this gate, and starts service on the
other queue, hence preserving the FCFS order across different arrival slots. The lower priority
customer’s service times may be seen as server vacations for the high priority customers
and as we will see the type-1 (and even type-2) population of the queue has the so-called
decomposition property. Fuhrmann and Cooper [5] and Shantikumar [6] show this property
in continuous time and Ishizaki [7] shows a decomposition property in discrete time.

The complexity of the analysis of this type of multiclass queueing system is, among
others, highly dependent on the service-time distributions. It is often found that deterministic
service times are used in order to ease the analysis (e.g., in Fiems et al. [1] or Stavrakakis
[8]) while still being widely applicable, since, for instance, the ATM transport paradigm
employs fixed-size packages. Another service-time distribution that is frequently adopted is
the geometric distribution, which reduces the analysis’s complexity due to its memoryless
nature (e.g., in Ndreca and Scoppola [9]). Nevertheless, as will be demonstrated in the
subsequent sections, the approach that is proposed in this paper allows us to obtain results
for generally distributed service times that are independent of one another; however, note
that their probability distribution may be dependent on the class of the customer being
served. On the other hand, the numbers of arrivals during consecutive slots are assumed to
be mutually independent as well, albeit that the numbers of arrivals of customers of different
types during the same slot can be correlated in our setting. Discrete-time queueing systems
with independent and identically distributed (i.i.d.) customer arrivals have been studied
mostly under a general arrival distribution (Bruneel [10], Walraevens et al. [11], Stavrakakis
[8], and Ndreca and Scoppola [9]), since the exact nature of the arrival process has, apart
from some pathological cases, little or no impact on the complexity of the analysis. The
ultimate purpose of this contribution is to analyze the joint probability distribution of the
system content at random slot marks as contributed by all types of customers, following a
slot-to-slot approach. We refer to De Clercq et al. [12] for the delay analysis for this model.

In the related literature, multiclass systems may be looked upon as having multiple
arrival streams with different characteristics, (e.g., Masuyama and Takine [13], Takine [14])
or servicing multiple types of customers/fluids (e.g., He [15], Kulkarni and Glazebrook
[16]). Masuyama analysed a system much like the one considered here, in a continuous-time
setting with multiple batch Markovian arrival streams and batches consisting of customers
of the same type, whereas our discrete time model allows batches containing customers
of different types. The references indicated above assume a continuous-time setting. A
number of contributions have also been made regarding multiclass systems in discrete-time,
mostly in combination with some sort of priority rule, for example, nonpreemptive priority
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(e.g., Walraevens et al. [11], Fiems et al. [1], Ndreca and Scoppola [9]), or gated priority (e.g.,
Stavrakakis [8], Ishizaki et al. [17]). There are some results for discrete-time FCFS-based
systems with multiple types of customers as well, as can be seen, for instance, in Van Houdt
and Blondia [18], where the customer delay distributions are studied for the specific case
of MMAP[K]/PH[K]/1 and where the arrival process is generalised to include batch arrivals.
Note however that the delay analysis in Van Houdt and Blondia [18] is based on the total
amount of work in the system at a random slot mark, while we are interested in studying
the numbers of customers of both types in the system, which is a much more difficult task.
In addition, as far as the service-time distributions are concerned, our model is more general
as well.

Interestingly, when studying the SBP policy described previously in a discrete-time
multiclass system, one encounters the same intricate problem as Takine [14] (page 349)
mentioned having in his analysis of a multiclass FIFO systemwith class-dependent nonexpo-
nential interarrival times: “It is widely recognized that the queue length distribution in a FIFO
queue with multiple non-Poissonian arrival streams having different service-time distribu-
tions is very hard to analyze, sincewe have to keep track of the complete order of customers in
the queue to describe the queue length dynamics.”Wewill see that under certain assumptions
concerning the arrival process, our approach will suffice to deliver a discrete time solution to
this problem. A first assumption is the general independent nature of the arrival process
(batch Bernoulli process). When we demand that during a slot only customers pertaining to
one class can enter the system, a pure multiclass FCFS policy in discrete-time is the result.

The remainder of the paper is organised as follows. In the next section we present the
mathematical model of the system. Next, we detect a 4-dimensional Markov chain which we
can analyze and derive a steady-state expression for the joint probability generating function
(PGF) of the system occupancies of both types of customers. From this main result, we
subsequently derive expressions for the mean values of these random variables, determine
their tail probabilities, and for some specific examples compare them to the mean system
occupancies in a system governed by the nonpreemptive head-of-line (np-HoL) priority rule,
before concluding this paper.

2. Mathematical Model

In a discrete-time setting, consider a queue with infinite waiting room and a single server
serving 2 types of customers in FCFS order. When customers of different types enter the
system during the same slot (i.e., simultaneously), the type-1 customers among them are
served first. This principle is known as slot-bound priority (De Clercq et al. [2]). The number
of type-j customers (j = 1, 2) entering the system during slot n is denoted by aj,n. We will
adopt the notationAn(z1, z2) � E[za1,n1 z

a2,n
2 ] for the joint pgf of a1,n and a2,n. Hence, our model

is not limited to uncorrelated a1,n and a2,n. However, we will consider i.i.d. arrivals, meaning
(a1,n, a2,n) and (a1,m, a2,m) are i.i.d. random vectors for n/=m. Therefore, wewill omit the index
and useA(z1, z2) instead. The first-order partial derivatives of this function taken in (1, 1) are
the arrival rates of each separate type of customer:

λj � ∂A(z1, z2)
∂zj

∣
∣
∣
∣
∣
(z1,z2)=(1,1)

= E
[

aj

]

, j = 1, 2. (2.1)
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We consider a single-server system, where all service times are modelled as being
independent and generally distributed. Furthermore all service times of type-j customers
are i.i.d. discrete random variables (DRVs). The earliest a customer’s service time can start is
the slot following its arrival slot. Let sj (with pgf Sj(z) � E[zsj ]) denote the service time of a
random type-j customer.

Additionally we define the auxiliary DRVs bj , ag , and sg . bj will denote the number of
type-j customers entering the system during a random slot given that at least one customer of
any type enters the system during the slot. Consequently b1 + b2 > 0 by definition. Secondly,
ag is an indicator which is 1 if at least one customer enters the system during a slot and
0 otherwise. If ag = 1, we aggregate the arriving customers and call this set of customers
a group (of customers) for short (hence the index g). In such a setting, ag is the number
of groups (of customers) entering the system during a slot. sg is the service time of such a
group, meaning the combined service time of all customers making up such a group. Based
on these definitions, we may write

B(z1, z2) � E
[

zb11 z
b2
2

]

=
A(z1, z2) −A(0, 0)

1 −A(0, 0)
, (2.2)

Ag(z) � E[zag ] = A(0, 0) + (1 −A(0, 0))z, (2.3)

Sg(z) � E[zsg ] = B(S1(z), S2(z)). (2.4)

Note thatAg(B(z1, z2)) = A(z1, z2), a relation that will be fully exploited further in this paper.
In this paper we are interested in the queue content, meaning the number of customers

of each type in the system at typical slot marks. With vj,n we denote the number of type-j
customers in the queue at the beginning of slot n. Pr[vj,n = k] is in general a function of n,
the slot index. To avoid having to specify the slot index, we assume that the system reaches
stochastic equilibrium and as such let n approach infinity. A sufficient condition in our model
would be that the arrival rate of customers multiplied by the average service time of each of
said customers is less than 1. Formally let ρj � λjE[sj]. Then ρj can be interpreted as being the
average number of slots it takes the server to serve all type-j customers that enter the system
during a single slot. We can then say that stochastic equilibrium is reached if ρ � ρ1 + ρ2 < 1.
We hold this inequality for true in the rest of this paper.

In general, v1,n and v2,n are correlated. We will focus our efforts towards finding an
expression for

V (z1, z2) � lim
n→∞

Vn(z1, z2) � lim
n→∞

E
[

z
v1,n

1 z
v2,n

2

]

, (2.5)

the steady-state joint pgf for v1 and v2.

3. Queue Content Analysis

We already introduced the concept of groups. The reason why we group customers that
enter the system during the same slot is that we know that customers of different groups
are served in FCFS order, while those that are part of the same group are subject to the slot-
bound priority rule (type-1 customers are served before type-2 customers). On top of that, we
know that each group’s content, that is, the number of customers of each type in it, is an i.i.d.
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process described by (b1, b2). Let wn denote the number of groups in the queueing system at
the beginning of slot n. If there is only a part of a certain group in the system at the beginning
of that slot because some customers of that group have already been served, we still include
this group in wn. As such wn = 0 means the system is empty.

If the system is not empty, then the server must be serving a customer. The group that
customer belongs to (called the active group)might already have had some customers served
and might house more customers than just the one in service. Therefore, let hj,n denote the
number of type-j customers in the active group that are still in the system at the beginning of
slot n. By convention, we will set h1,n = h2,n = 0 if the queueing system is empty.

Lastly, whenever the server is serving a customer, we define rn to be its remaining
service time at the beginning of slot n. In the other case, we set rn = 0, once again implying
that the system is empty. Summarizing, we find that

wn = 0 ⇐⇒ h1,n = h2,n = 0 ⇐⇒ rn = 0 ⇐⇒ v1,n = v2,n = 0. (3.1)

The purpose of introducing these new DRVs is twofold. For one, together they
constitute a discrete-time Markov chain. Secondly and most importantly, we can determine
the number of customers of each type using these drv’s. The number of type-j customers in
the queue at the beginning of slot n is the sum of those present in the active group, hj,n, and
those in the (wn − 1)+ queued groups, that have not yet been served (we adopt the notation
(·)+ ≡ max(·, 0)). The number of type-j customers in these latter groups is all i.i.d. drv’s with
distribution equal to that of bj (see Section 2). And so we find

vj,n =
(wn−1)+∑

i=1

bj,i + hj,n, j = 1, 2. (3.2)

The index i in bj,i was added as an enumeration index for the unserved groups that are
queued in the system. Technically you do not need rn in this equation. However, we do need
rn to form aMarkov chain together withwn and both hj,n, given the service-time distributions
and arrival process. The renewal period for thisMarkov chain equals one slot, sowewill focus
on a slot-to-slot analysis to determine the joint pgf of h1,n, h2,n, rn, and wn in regime.

First notice that (h1,n, h2,n, rn,wn) = (0, 0, 0, 0), (1, 0, 1, 1) or (0, 1, 1, 1) are similar cases,
in the sense that the corresponding transition probabilities of the system’s state at the
beginning of slot n + 1 are same for these three cases. In the first we have an empty system,
and in the latter two cases we have a system with only one customer sitting out its last slot
of service. The state at the beginning of the next slot is in either case going to be dependent
solely on the arrival process during slot n. In view of the SBP service paradigm we find that

hj,n+1 = aj,n, j = 1, 2,

rn+1 =

⎧

⎪⎪
⎨

⎪⎪⎩

s1, if a1,n > 0,
s2, if a1,n = 0, a2,n > 0,
0, if a1,n = a2,n = 0,

wn+1 = ag.

(3.3)
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When h1,n +h2,n = 1 and rn = 1, the active group will leave the system at the end of slot
n. In the above we saw what the system state evolves to when this group was the only group
in the system at the start of slot n. When wn > 1, the next group in line will be served at the
beginning of slot n + 1. It consists of bj type-j customers and hence our state evolves to

hj,n+1 = bj , j = 1, 2,

rn+1 =

{

s1, if b1 > 0,
s2, if b1 = 0

(

implying b2 > 0
)

,

wn+1 = wn − 1 + ag.

(3.4)

If rn = 1, thenwe know that a customer will finish service at the end of slot n. Moreover
when h1,n + h2,n > 1, the leaving customer will not be the last of the active group and hence
this group will still be in the system at the beginning of slot n + 1.

(i) Assume h1,n > 1. In this case the customer leaving the system was of type 1 and the
active group contains at least one additional type-1 customer. Hence the following
customer selected for service will be again of type 1, leading to the following set of
system equations:

h1,n+1 = h1,n − 1,

h2,n+1 = h2,n,

rn+1 = s1,

wn+1 = wn + ag.

(3.5)

(ii) Second, assume h1,n = 1 and h2,n > 0. This case covers what happens if the customer
leaving the system was of type-1, but contrary to the above case, the active group
does not contain any additional type-1 customers. It does however contain a type-2
customer. In such a case, our state evolves into

h1,n+1 = 0,

h2,n+1 = h2,n,

rn+1 = s2,

wn+1 = wn + ag.

(3.6)

(iii) Third, when h1,n = 0 and h2,n > 1, we know that the served customer was of type-2
and the active group contains at least one additional type-2 customer. Hence the
following customer selected for service will again be of type-2:

h1,n+1 = 0,

h2,n+1 = h2,n − 1,
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rn+1 = s2,

wn+1 = wn + ag.

(3.7)

This covers the cases where the active group does not leave the system although a
customer does at the end of slot n.

When rn > 1, no customer will leave the system, and hence, the system state evolves
to

hj,n+1 = hj,n, j = 1, 2,

rn+1 = rn − 1,

wn+1 = wn + ag.

(3.8)

Equations (3.3)–(3.8) cover the possible evolution of the state description (h1,n, h2,n,
rn,wn). We define the distribution function pn(i1, i2, j, k) and joint pgf Pn(x1, x2, y, z) of these
drv’s as

pn
(

i1, i2, j, k
)

= Pr
[

h1,n = i1, h2,n = i2, rn = j,wn = k
]

,

Pn

(

x1, x2, y, z
)

� E
[

x
h1,n

1 x
h2,n

2 yrnzwn

]

=
∞∑

i1,i2,j,k=0

xi1
1 x

i2
2 y

jzkpn
(

i1, i2, j, k
)

.

(3.9)

Using the system equations in (3.3) and (3.4)we can deduce an expression for Pn+1(x1,
x2, y, z), the joint pgf of the system’s state at the start of slot n + 1, as follows:

Pn+1
(

x1, x2, y, z
)

= E
[

x
h1,n+1

1 x
h2,n+1

2 yrn+1zwn+1
]

= E
[

x
a1,n
1 x

a2,n
2 yrn+1zag{h1,n + h2,n = rn = wn ≤ 1}

]

+ E
[

xb1
1 xb2

2 yrn+1zwn−1+ag{h1,n + h2,n = rn = 1, wn > 1}
]

+ E
[

x
h1,n−1
1 x

h2,n

2 ys1zwn+ag{h1,n > 1, rn = 1}
]

+ E
[

x0
1x

h2,n

2 ys2zwn+ag{h1,n = 1, h2,n > 0, rn = 1}
]

+ E
[

x0
1x

h2,n−1
2 ys2zwn+ag{h1,n = 0, h2,n > 1, rn = 1}

]

+ E
[

x
h1,n

1 x
h2,n

2 yrn−1zwn+ag{rn > 1}
]

,

(3.10)
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inwhichwe used the notation E[A{B}] forE[A | B]Pr[B]. Conditioning further on the arrival
process to remove rn+1 from the first two terms in (3.10) yields the following:

Pn+1
(

x1, x2, y, z
)

= Ag

(

z
(

B(x1, x2)S1
(

y
)

+ B(0, x2)
(

S2
(

y
) − S1

(

y
))))

× (Pn(0, 0, 0, 0) + pn(1, 0, 1, 1) + pn(0, 1, 1, 1)
)

+Ag(z)
(

B(x1, x2)S1
(

y
)

+ B(0, x2)
(

S2
(

y
) − S1

(

y
)))

×
( ∞∑

k=1

zk−1
(

pn(1, 0, 1, k) + pn(0, 1, 1, k)
) − pn(1, 0, 1, 1) − pn(0, 1, 1, 1)

)

+
Ag(z)S1

(

y
)

x1

∞∑

i1=2

∞∑

i2=0

∞∑

k=1

xi1
1 x

i2
2 z

kpn(i1, i2, 1, k)

+Ag(z)S2
(

y
)

∞∑

i2,k=1

xi2
2 z

kpn(1, i2, 1, k)

+
Ag(z)S2

(

y
)

x2

∞∑

i2=2

∞∑

k=1

xi2
2 z

kpn(0, i2, 1, k)

+
Ag(z)

y

(

Pn

(

x1, x2, y, z
) − Pn(0, 0, 0, 0) −

∞∑

i1,i2,k=0

xi1
1 x

i2
2 z

kpn(i1, i2, 1, k)

)

.

(3.11)

In order to tackle this elaborate expression, we introduce some short-hand notation

Rn(x1, x2, z) �
∞∑

i1=1

∞∑

i2=0

∞∑

k=1

xi1−1
1 xi2

2 z
k−1pn(i1, i2, 1, k),

Qn(x2, z) �
∞∑

i2=1

∞∑

k=1

xi2−1
2 zk−1pn(0, i2, 1, k).

(3.12)

As we agreed in the previous section, we assume a system in stochastic equilibrium.
Concretely we define

P
(

x1, x2, y, z
)

� lim
n→∞

Pn

(

x1, x2, y, z
)

,

R(x1, x2, z) � lim
n→∞

Rn(x1, x2, z),

Q(x1, x2, z) � lim
n→∞

Qn(x1, x2, z).

(3.13)

We are interested in the steady-state joint pgf P(x1, x2, y, z), since Pn(x1, x2, y, z) will
resemble P(x1, x2, y, z) for large enough values of n given any starting conditions. Taking
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the limit of both sides of (3.11) while using the previous definitions yields after rearranging
the terms

P
(

x1, x2, y, z
)
(

1 − Ag(z)
y

)

= Ag(z)z
(

S1
(

y
) − x1

)

R(x1, x2, z)

+Ag(z)z
(

S2
(

y
) − S1

(

y
))

R(0, x2, z)

+Ag(z)z
(

S2
(

y
) − x2

)

Q(x2, z)

− P0
Ag(z)

y
−Ag(z)zS2

(

y
)

(R(0, 0, z) +Q(0, z))

+Ag(z)
(

S1
(

y
)

B(x1, x2) +
(

S2
(

y
) − S1

(

y
))

B(0, x2)
)

× (R(0, 0, z) +Q(0, z) − R(0, 0, 0) −Q(0, 0))

+Ag

(

z
(

S1
(

y
)

B(x1, x2) +
(

S2
(

y
) − S1

(

y
))

B(0, x2)
))

× (P0 + R(0, 0, 0) +Q(0, 0)),

(3.14)

where we wrote P0 � P(0, 0, 0, 0) for short. Since pn(i1, i2, l, 0) = 0 if (l, i1, i2)/= (0, 0, 0), the
equivalence

P
(

x1, x2, y, 0
) ≡ P0 (3.15)

holds by definition. Considering the left-hand side and the right-hand side of (3.14) for
z = 0, and taking into account that Ag(0) = A(0, 0), gives us the following relation between
R(0, 0, 0) +Q(0, 0) and P0

P0 = A(0, 0)(P0 + R(0, 0, 0) +Q(0, 0)). (3.16)

The equation in (3.14) still contains the unknown functions R(x1, x2, z) and Q(x2, z).
To solve for them, notice that (3.14) holds for all values x1, x2, y, and zwithmoduli less than 1
(i.e., in the complex unit disk) since the (partial) probability generating functions that appear
in (3.14) are then analytic functions. Because |Ag(z)| < 1 when |z| < 1, (3.14) holds when
we substitute y by Ag(z). For the same reason we can substitute x1 by 0 therein. To keep the
resulting expression and all following expressions a tad bit more tidy, we omit the function
parentheses and write XY (z) where we mean X(Y (z)), in which X is a function with only
one variable. Thus we write

Ag(z)zS2Ag(z)R(0, x2, z) = Ag(z)z
(

x2 − S2Ag(z)
)

Q(x2, z)

−Ag(z)S2Ag(z)(B(0, x2) − z)(R(0, 0, z) +Q(0, z))

− S2Ag(z)B(0, x2)(z − 1)(1 −A(0, 0))P0.

(3.17)
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This is a first equation in R(0, x2, z),Q(x2, z), and R(0, 0, z)+Q(0, z), all three of which
are at this point unknown. If we substitute y by Ag(z) and x1 by S1Ag(z) in (3.14) we can
find a second equation in those same three unknown functions. This second equation reads

Ag(z)z
(

S2Ag(z) − S1Ag(z)
)

R(0, x2, z)

= Ag(z)z
(

x2 − S2Ag(z)
)

Q(x2, z) +Ag(z)zS2Ag(z)(R(0, 0, z) +Q(0, z))

+
(

S1Ag(z)B
(

S1Ag(z), x2
)

+
(

S2Ag(z) − S1Ag(z)
)

B(0, x2)
)

· (P0
(

1 −Ag(z)
) −Ag(z)(R(0, 0, z) +Q(0, z))

)

.

(3.18)

Notice that in both of the above-described substitutions we aimed to remove P(x1,
x2, y, z) and R(x1, x2, z) from the equation. Following this same strategy, we eliminate
Q(x2, z) from the equation by substituting x2 by S2Ag(z) in both (3.17) and (3.18), granting
us a system of two equations in R(0, S2Ag(z), z) and R(0, 0, z) + Q(0, z). Solving it for the
latter function eventually leads to

Ag(z)(R(0, 0, z) +Q(0, z)) = P0(1 −A(0, 0))
(z − 1)SgAg(z)
z − SgAg(z)

. (3.19)

Note that (3.19) for z = 0 implies (3.16). We can now invoke the system of equations
in (3.17) and (3.18) to obtain R(0, x2, z) and Q(x2, z), now that R(0, 0, z) + Q(0, z) is known
explicitly. This produces the following expressions:

Ag(z)R(0, x2, z) = P0(1 −A(0, 0))(z − 1)
B
(

S1Ag(z), x2
) − B(0, x2)

z − SgAg(z)
, (3.20)

Ag(z)Q(x2, z)
x2 − S2Ag(z)

S2Ag(z)
= P0(1 −A(0, 0))(z − 1)

B
(

S1Ag(z), x2
) − SgAg(z)

z − SgAg(z)
. (3.21)

Notice that (3.19) can be checked using (3.20) and (3.21) setting x2 = 0. Substituting
y by Ag(z) in (3.14) removes only P(x1, x2, y, z) from the equation and thus we are able to
calculate R(x1, x2, z), resulting in

Ag(z)
(

x1 − S1Ag(z)
)

R(x1, x2, z)

= P0(1 −A(0, 0))(z − 1)
S1Ag(z)

(

B(x1, x2) − B
(

S1Ag(z), x2
))

z − SgAg(z)
,

(3.22)
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which can again be checked by means of (3.20). The unknown functions now known, we
substitute them in (3.14) and rework the resulting formula, in order to obtain the moderately
presentable final result hereafter:

P
(

x1, x2, y, z
)

P0

= 1 + x1yz

(

Ag(z) − 1
y −Ag(z)

)(

S1
(

y
) − S1Ag(z)

x1 − S1Ag(z)

)(

B(x1, x2) − B
(

S1Ag(z), x2
)

z − SgAg(z)

)

+ x2yz

(

Ag(z) − 1
y −Ag(z)

)(

S2
(

y
) − S2Ag(z)

x2 − S2Ag(z)

)(

B
(

S1Ag(z), x2
) − SgAg(z)

z − SgAg(z)

)

.

(3.23)

Using the normalisation property of pgf’s we find the constant P0 to be 1 − ρ. The
above formula is pretty symmetric with respect to the last two terms of the right-hand side,
the only exception being their last factor. This pgf actually harbors much more information
than we intended to obtain in the first place, but for sake of continuity, we show our results
for V (z1, z2). Substituting both vj , j = 1, 2 in V (z1, z2) by the system equation found in (3.2)
and taking the limit n → ∞, we obtain

V (z1, z2) =
(

1 − ρ
)
(

1 − 1
B(z1, z2)

)

+
P(z1, z2, 1, B(z1, z2))

B(z1, z2)
. (3.24)

Substituting the expression in (3.23) in this equation gives our main result, which is a
closed-form expression for the joint pgf V (z1, z2).

3.1. Main Result

The joint pgf of type-1 and type-2 customers in a single-server discrete-time queueing system
under the slot-bound priority rule, where the arrival process of the two types of customers
is batch Bernoulli with joint pgf A(z1, z2) and independent class-specific service times with
pgf’s S1(z) and S2(z), is given by

V (z1, z2) =
(

1 − ρ
)

(

1 + z1
S1A(z1, z2) − 1
z1 − S1A(z1, z2)

B(z1, z2) − B(S1A(z1, z2), z2)
B(z1, z2) − SgA(z1, z2)

+ z2
S2A(z1, z2) − 1
z2 − S2A(z1, z2)

B(S1A(z1, z2), z2) − SgA(z1, z2)
B(z1, z2) − SgA(z1, z2)

)

.

(3.25)

From this pgf it is easy to obtain the steady-state pgf of the number of type-1 or type-
2 customers or even the total amount of customers in the queue at random slot bounds
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(V (z, 1), V (1, z), and V (z, z), resp.). The first two generating functions—which we will
denote by V1(z) and V2(z)—are given by the following concise expressions:

V1(z) =
(

1 − ρ
)
(

1 + z
S1A1(z) − 1
z − S1A1(z)

)
B(z, 1) − B(S1A1(z), 1)
B(z, 1) − SgA(z, 1)

, (3.26)

V2(z) =
(

1 − ρ
)
(

1 + z
S2A2(z) − 1
z − S2A2(z)

)
B(S1A2(z), z) − SgA2(z)

B(1, z) − SgA2(z)
, (3.27)

where we adopt the notations A1(z) � A(z, 1) and A2(z) � A(1, z).
We can check our results by considering the case whereA(z1, z2) = A(z1, 1) holds (i.e.,

no type-2 customer arrivals are generated). V (z1, z2) is then equal to the pgf of the number
of customers in a simple single-class queueing system at random slot bounds (see f.i. [10]).
The same goes forA(z1, z2) = A(1, z2). Furthermore, if S1(z) = S2(z), then V (z, z) once again
reduces to the result found in [10], as expected.

4. Decomposition Property

The expressions we found for V1(z) and V2(z) bear a great resemblance to the results found
for the single class system in f.i. Bruneel [10], be it for the last factor which incorporates the
effects of SBP. If we were only interested in the pgfs of v1 and v2 and not their joint pgf, the
above observation suggests a shortcut in the analysis. In this section we will demonstrate
that the decomposition property introduced by Fuhrmann and Cooper [5] for a generalized
vacation model in continuous time can be used to determine V1(z) (and V2(z)) in discrete
time as well (see, e.g., page 91 in Takagi [3]). In essence, the decomposition property states
that for a generalized vacation system, the number of customers present in the system
at the beginning of a random slot is distributed as the sum of two independent random
variables. The slot-bound priority rule can be seen as such a vacation system; we can consider
service times of type-2 customers as vacations for type-1 customers, and vice versa. The two
independent random variables then are the stationary number of type-j customers in the
system at the beginning of a random slot when no customers pertaining to other types enter
the system (v∗

j with pgf V ∗
j (z)) and the stationary number of type-j customers in the system

at the beginning of a random slot during a vacation period (xj with pgfXj(z)). The vacations
then cover all slots during which no type-j customer is being served.

For the remainder of this section we will concentrate on finding an expression for
V1(z) using this method, as V2(z) is largely obtained in a similar fashion. The first of the two
random variables discussed previously is the stationary number of type-1 customers at the
beginning of a random slot, given that there are no arrivals of customers of other types. This
drv has a known pgf (see, e.g., Bruneel [10]) and is given by

V ∗
1 (z) =

(

1 − ρ1
)
(

1 + z
S1A1(z) − 1
z − S1A1(z)

)

. (4.1)

Note that this expression—up to a normalization constant—equals the first factor in
the right-hand side of (3.26).

Since vacations cover all slots during which no type-1 customer is being served, two
scenarios may occur for the second drv. A first is that the randomly chosen slot is an idle
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w

Customer c

w− = (w − 1)+

t1 = w− + r1

r1
Slot I

Type-1 services Type-2 servicesCustomer c

Figure 1: The type-1 customers in the system at the beginning of slot I are accumulated in the queue during
the t1 time slots that it takes customer c to leave the system. Notice that t1 is stochastically not identical to
the delay of a random type-2 customer.

slot, in which case no type-1 customers occupy the system. The second possibility is that
the server is serving a type-2 customer, in which case there are x∗

1 (with pgf X∗
1(z)) type-1

customers occupying the system—that is, x∗
1 represents the number of type-1 customers in

the system at the beginning of a random slot during which a type-2 customer is being served.
Summarizing, the decomposition property leads to the following result:

V1(z) = V ∗
1 (z)X1(z),

X1(z) =
1 − ρ

1 − ρ1
+

ρ2
1 − ρ1

X∗
1(z).

(4.2)

Note that up until now no features of SBP were used, and hence the remaining
unknown pgf X∗

1(z) will characterize SBP. Let slot I be a randomly chosen slot during which
a type-2 customer is being served (hereafter called customer c). Then the number of type-1
customers at the beginning of slot I is defined as x∗

1 (see Figure 1). Because of the SBP rule, the
group being served during slot I does not contain any unserved type-1 customers, and hence
x∗
1 only contains type-1 customers of groups that have not started their service yet. Since the

type-1 customers in the system at the start of slot I entered the system after the arrival of
customer c, and none of those customers leaves the system before slot I (since groups are
served FCFS), x∗

1 can be written as the sum of the number of type-1 customers that arrived
during consecutive slots following the arrival slot of customer c (whichwe know to be a set of
i.i.d. drv’s). With t1 representing the time (expressed in slots) ranging from the slot following
the arrival of customer c to slot I itself (excluding slot I), and T1(z) its pgf, we find that

x∗
1 =

t1∑

n=1

a1,n =⇒ X∗
1(z) = T1A1(z). (4.3)

The time t1 is the sum of two drv’s, namely, the time it takes for the work pertaining to
customers of both types in the system at the beginning of customer c’s arrival slot to leave the
system (represented by w− with pgf W−(z)) and the interval starting from the initiation of
the service of the group customer c belongs to, until the beginning of slot I (represented by r1
with pgf R1(z)) (see Figure 1). Since these drv’s are mutually independent of one another,
T1(z) is the product of their pgfs (i.e., T1(z) = W−(z)R1(z)). First, thanks to the BASTA
property (see f.i. Halfin [19]), w− has the same distribution as the work in the system at
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the beginning of a random slot minus one (because we do not count customer c’s arrival
slot), unless customer c arrives in an empty system. Therefore its pgf is given by

W−(z) �
(

1 − ρ
)

(z − 1)
z −A(S1(z), S2(z))

. (4.4)

Notice that W−(z) is independent of the type of customer c (a consequence of the
BASTA property) and that we therefore neglected adding a type subscript to w− and W−(z).

Secondly, obtaining the pgf of r1 requires a renewal type argument (see f.i. Kleinrock
[20]), and it can be checked that the pgf of the number of slots between the service initiation
of the group customer c belongs to and slot I is given by

R1(z) � A(S1(z), S2(z)) −A1S1(z)
ρ2(z − 1)

. (4.5)

From T1(z) = W−(z)R1(z), one can find X∗
1(z) using (4.3), which can then be applied

to obtain X1(z) using (4.2). The decomposition result (4.2) then yields expression (3.26) for
V1(z) (in view of the definitions (2.2) and (2.4)).

Notice that X∗
1(z) is a function of A1(z) and not of z directly. This property however

does not hold forX∗
2(z), the pgf of the stationary number of type-2 customers at the beginning

of a vacation—where a vacation in this context would be a slot during which no type-2
customer is being served—when searching for V2(z). Because of the SBP rule, the group
customer c (which now represents a random type-1 customer that is being served) belongs
to will still have all its type-2 customers. These need to be added to the type-2 customers
that entered the system during the t2 slots following customer c’s arrival. Because the former
drv is not independent of the latter when correlation exists in the arrival process (i.e., when
A(z1, z2)/=A1(z1)A2(z2)), X2(z)

∗ cannot be written merely as a function of A2(z).
Finally we would like to call attention to the fact that this method of analysis could

also be applied if instead of two priority classes, customers pertaining to more than two
priority classes entered the queue. Naturally only the marginal pgf’s could be determined.
To calculate the joint pgf of these different types of customers in the queue, the previous slot-
to-slot analysis would quickly get cluttered, and other methods should be employed which
are not within the scope of this paper (see also De Clercq et al. [2]).

In the next section, among other things that we will observe the tail probabilities will
not be dependent on the dominant singularity of V ∗

1 (z) (or V
∗
2 (z)), but solely on the dominant

singularity of X1(z) and (X2(z), respectively.

5. Moments and Tail Probabilities

Now that we obtained the joint pgf V (z1, z2), we can derive some interesting performance
measures concerning v1 and v2. First, all moments are derivable from V (z1, z2) using
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themoment generating property of pgf’s. As an illustrationwe show the first moments below.
The second derivatives of the arrival process are defined as λij = E[aiaj]:

E[v1] = S′′
g(1)

λ1(1 −A(0, 0))
2
(

1 − ρ
) + S′

1(1)
λ11 + λ1

2
,

E[v2] = S′′
g(1)

λ2(1 −A(0, 0))
2
(

1 − ρ
) + S′

2(1)
λ22 + λ2

2
+ λ12S

′
1(1).

(5.1)

The first equation, for example, is comparable to the first moment found for the
number of customers in a single-class system (e.g., when A(z1, z2) = A(z1, 1)), although the
concept of group service times comes across somewhat strange in this setting. Also, the third
term in the second equation reflects the effect of SBP on the low-priority customers.

Furthermore, we derive the tail probabilities of v1, v2, and even v1 + v2 using the
dominant pole approximation technique (see f.i. VanMieghem [21]). Therefore, suppose that
the dominant singularities of A(z1, z2), S1(z), and S2(z) are all poles (in contrast to branch
points). Then from Vivanti’s theorem ([22] page 1254) we know they are real and positive.
Furthermore, because pgfs are always analytic inside and well defined on the unit disk, these
singularities must have a modulus larger than 1. Since V (z1, z2) is a rational function of
A(z1, z2) and both Sj(z), its dominant singularities zv1 , zv2 , and zvT (singularities of V (z, 1),
V (1, z), and V (z, z), resp.) are poles as well. Hence, for high enough kwe can very accurately
approximate, for example, Pr[v1 = k] calculating only zv1 and its residue as shown in [21].
We start by determining zv1 , dominant pole of V1(z).

Clearly, zv1 will either be the dominant pole of B(z, 1), S1A(z, 1), B(S1A(z, 1), 1), or
SgA(z, 1) ≡ B(S1A(z, 1), S2A(z, 1)) or be a zero of z − S1A(z), or B(z, 1) − SgA(z, 1) with
modulus larger than 1—whichever has lowest modulus.

Let RAj be the radius of convergence of SjA(z, 1), and RA � min(RA1 , RA2). Since
SjA(z, 1) > A(z, 1) > z for z ∈]1, RA[, one can easily deduce that, of the functions B(z, 1),
SjA(z, 1), B(S1A(z, 1), 1), and SgA(z, 1), SgA(z, 1) is the one with the smallest radius of
convergence, which will be represented by RB. In particular, if we denote by Ra1 the radius of
convergence of A(z, 1) (and of B(z, 1)), the inequality RB ≤ Ra1 must hold.

As for the zeros of the denominators in (3.26), note that all zeros of z − S1A(z) are
zeros of B(z, 1)−B(S1A(z, 1), 1) in the numerator as well. Hence we only focus on the zeros of
B(z, 1)−SgA(z, 1). As a result of RB ≤ Ra1 and the equilibrium condition we find that this last
denominator has exactly one zero in the region ]1, RB[ as shown in [23]. Therefore this zero is
our dominant pole zv1 we have been searching. Calculating zv1 comes down to finding a solu-
tion to the equation y0 = A(S1(y0), S2(y0))—other than y0 = 1—and solving y0 = A(zv1 , 1).

The dominant pole approximation then becomes

Pr[v1 = n] ≈ −θ1z−n−1v1
, (5.2)

where θ1 is the residue of V1(z) at z = zv1 (= limz→ zv1
(z − zv1)V1(z)).

Analogous to the previous result we can derive that zv2 is the zero of B(1, z)−SgA(1, z),
and this zero can be calculated from y0 = A(1, zv2). Finally zvT is found in a similar way as it
satisfies y0 = A(zvT , zvT ).

When one or more of the dominant singularities in either A(z1, z2), S1(z), or S2(z) is
a branch point, we face a different story. It is no longer certain that B(z, 1) − SgA(z, 1) has a
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zero in ]1, RC[ in the case that the smallest singularity of SgA(z, 1) is a branch point. We can
use the following criterium (see f.i. Steyaert [23]) to determine whether there is a zero, which
can be used in the dominant pole approximation discussed previously:

lim
z→R−

C

SgA(z, 1)
B(z, 1)

> 1. (5.3)

If the above is true, then the dominant pole approximation holds. Otherwise no zero
is found in the interval ]1, RC[ and hence the dominant singularity is a branch point at RC,
which calls for a case-by-case analysis of the tail behaviour and falls outside the scope of the
current paper.

6. Numerical Examples

There are a lot of different parameters incorporated in this model. To get some insight on how
v1 and v2 will react for various arrival and service-time distributions, we propose an example
with a limited number of parameters that appeal to our intuition. We therefore consider

A(z1, z2) = eα(pz1+qz2+rz1z2−1),

Sj(z) =
z

z − E
[

sj
]

(z − 1)
.

(6.1)

We choose service times with a geometric distribution and a Poisson arrival process
(parameter α), in which each arrival instance generates a type-1 customer with probability
p, a type-2 customer with probability q, and customers of both types with probability r.
Needless to say p + q + r = 1. A useful comparison of our proposed priority rule will include
that of total priority or HoL priority (e.g., studied in Walraevens et al. [11]).

In a first graph we choose p = q = 0 (and consequently r = 1), and E[s1] =
E[s2] = 2. This concretely means that both customer types are indifferentiable concerning
their respective service times and always enter the system in pairs. We increase the workload
ρ by increasing α and observe its effect on the average buffer content E[v1] and E[v2]. The
resulting graphs can be found in Figure 2 together with those for nonpreemptive HoL priority
(abbreviated E[v1,HoL] and E[v2,HoL]).

Even though we have chosen a symmetric arrival process (i.e., A(z1, z2) = A(z2, z1))
there seems to be a difference between E[v1] and E[v2], one that can only be attributed to
the presence of priority. By comparing with HoL priority we observe that for low loads,
E[vj] ≈ E[vj,HoL], while for high loads the difference E[v2]−E[v1] becomes almost negligible
compared to their respective absolute values. The former is a consequence of the fact that for
low loads the queue content is largely dominated by the active group’s content, since hardly
any additional groups get queued up. The latter we can clarify by pointing out that the
probability that the server is busy when a random group arrives is ρ. The higher ρ, the more
queueing of different groups occurs, and thus the queue content will be dominated by the
content of the successive groups that are queued. In case each group counts on average the
same amount of type-1 customers as type-2 ones, (due to λ1 = λ2) the difference E[v2]−E[v1]
will be solely the result of the active group’s content—which is actually not the same as a
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Figure 2: E[vj] and E[vj,HoL] versus ρ with r = 1, E[sj] = 2 and α variable.
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Figure 3: (a) E[vj] and E[vj,HoL] versus ρ1/ρ with r = 0, E[sj] = 1 and ρ = α = 2/3, p and q being variable.
(b) E[vj] and E[vj,HoL] versus ρ1/ρ with p = q = 0.5, E[s1] + E[s2] = 10 and ρ = 5α = 2/3, both E[sj] being
variable (E[sj] ≥ 1).

random group’s content. Lastly, and not surprisingly ρ = 1 is an asymptote, in which case
the queue content will evolve to infinity in steady state.

Next, we examine what happens to the average type-1 and type-2 population for a
fixed load ρ, whenwe increase ρ1 (and hence decrease ρ2 because ρ1+ρ2 = ρ). We can do this in
two ways: by varying the class-specific arrival rates (i.e., by adjusting p and q) or by varying
E[s1] and E[s2]. The parameters used to plot the graphs in Figure 3 are displayed in its
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Figure 4: Dominant pole approximation of the probability distribution of both vj and vj,HoL on a loga-
rithmic scale with p = 0.2, q = 0.6 and r = 0.2 so that twice as many type-2 customers enter the system as
type-1 customers. E[sj] = 2 and ρ = 9/10.

caption. Even though the graphs are very different from one another, we point out that in both
graphs, when ρ1 = ρ2, E[v1] < E[v2] because of the SBP priority, more so even for absolute
priority. In the first graph we vary the arrival rates, and as the customer composition rises
in favor of type-1 customers, we observe that E[v1] > E[v2] for values of ρ1 for which still
E[v1,HoL] < E[v2,HoL]. This is an illustration of the more moderate form of priority assignment
by SBP. In the second figure in Figure 3(b), the class specific arrival rates are kept constant
and equal to one another. The graph plots the average type-1 and type-2 customers versus
ρ1/ρ, by increasing the type-1 service times (and reducing type-2 service times). As E[s1]
increases, the average type-2 customer population increases as well for HoL priority, even
though their service time decreases. This is caused by type-1 service times. As such SBP is
clearly the better option: type-2 customers do get served before some type-1 customers.

Lastly Figure 4 shows an approximation of Pr[vj = n] on a logarithmic scale
together with some dots representing simulation results. Approximations that were found
for Pr[vj,HoL] in Walraevens et al. [24] were used to compare against HoL priority. The num-
ber of type-1 and type-2 customers entering the system during the same slot is slightly cor-
related, and twice as many type-2 customers enter the system as type-1 customers on aver-
age. The exact parameters can be found in the figures caption. Clearly, the dominant-pole
approximation described in Section 4 constitutes an efficient and accurate method to calculate
the queue content distribution of both types of customers.

7. Conclusion

In a dual-class queueing system in discrete time under stochastic equilibrium, we derived
expressions for the joint pgf of the number of type-1 and type-2 customers in the queue when
the SBP rule is used as a server discipline. We obtained this after a slot-to-slot analysis using
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a carefully chosen Markov chain. More concretely we introduced the notion of a “group” of
customers, which could be looked upon as classless entities entering and leaving our system,
on basis of which we could more easily carry out the analysis. The first moments and tail
probabilities were explicitly calculated as well. Moreover, some examples made the effect of
SBP clear, comparing it to HoL priority, in which the most important result stated that SBP
behaves as FCFS (no difference between the ways customers of different classes are treated)
for high workloads while it behaves more as HoL priority for lower loads. Also, our results
show that a dominant pole approximation for calculating the queue content distribution of
both types of customers is both efficient and accurate.
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