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Coordination optimization of directional overcurrent relays (DOCRs) is an important part of an
efficient distribution system. This optimization problem involves obtaining the time dial setting
(TDS) and pickup current (Ip) values of each DOCR. The optimal results should have the shortest
primary relay operating time for all fault lines. Recently, the particle swarm optimization (PSO)
algorithm has been considered an effective tool for linear/nonlinear optimization problems with
application in the protection and coordination of power systems. With a limited runtime period,
the conventional PSO considers the optimal solution as the final solution, and an early convergence
of PSO results in decreased overall performance and an increase in the risk of mistaking local
optima for global optima. Therefore, this study proposes a new hybrid Nelder-Mead simplex
search method and particle swarm optimization (proposed NM-PSO) algorithm to solve the
DOCR coordination optimization problem. PSO is the main optimizer, and the Nelder-Mead sim-
plex search method is used to improve the efficiency of PSO due to its potential for rapid conver-
gence. To validate the proposal, this study compared the performance of the proposed algorithm
with that of PSO and original NM-PSO. The findings demonstrate the outstanding performance of
the proposed NM-PSO in terms of computation speed, rate of convergence, and feasibility.

1. Introduction

Transmission lines are exposed to the environment and stretch long distances, which
increases the probability of failure far beyond that of other components of the network,
including generators, transformers, and switchgear equipment.
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A transmission network is usually divided according to function: (1) transmission
lines between various major substations forming the backbone of the network; (2) subtrans-
mission lines connecting substations to load centers or major users; (3) distribution lines
between load centers and end users.

Lines from substations or load centers are often distributed in the form of radial
feeders. Radial feeders only require the installation of relays and breakers at the ends of the
various lines from which the power is sent. When a fault occurs in most radial feeders, the
fault current will be greater than the load current with no reverse fault current. As a result,
these types of radial feeders can be protected using nondirectional overcurrent relays.

If the protected line is installed with power supplies at both ends, such as in the case
of loop networks, the fault current may be fed from the left or right in the event of reverse
external failure. In this case, relay malfunctions may occur only if nondirectional overcurrent
relays are used for protection, as these relays cannot be coordinated. Directional overcurrent
relay (DOCR) is a method to improve protection. DOCR is designed to function only in the
event of a unidirectional fault current.

The study of coordination problems in electrical power systems has become increas-
ingly important in recent years. Economic considerations have propelled DOCR into
widespread use as the primary protection for distribution systems and as the backup protec-
tion for transmission systems. When working with a DOCR system, operators must set time
dial setting (TDS) and pick up current (Ip) values according to the coordination relationship
of the primary/backup (P/B) pairs to fully secure protection for the entire system.

In recent years, several optimization techniques have been proposed for the optimal
coordination of DOCRs. Urdaneta et al. applied a minima optimization approach to deter-
mine the TDS values for preset Ip values for fixed and multiple power system network
configurations [1]. Abyaneh et al. obtained optimum coordination by considering linear
and nonlinear models of relay characteristics and changes in network configuration [2].
Birla et al. demonstrated the simultaneous optimization of all DOCR settings with nonlinear
relay characteristics using a sequential quadratic programming method [3]. In [4], a
genetic algorithm was selected as the tool to solve the DOCR coordination problem, which
included nonlinear constraints. The results of [5] reveal that the advantage of the proposed
interval method for the DOCR coordination problem provides robust support against
uncertainty in the topology of the network. Bedekar and Bhide used a genetic algorithm and
nonlinear programming method to systematically determine initial and final values of the
time multiplier and plug settings for optimal DOCR coordination [6].

In general, PSO algorithms are not easily trapped in local optima; however, the
convergence rate is slow, and optimization problems with constraints cannot be effectively
solved. Zeineldin et al. proposed an approach using a modified particle swarm optimization
(PSO) algorithm to calculate the optimal relay settings, formulating the coordination problem
as a mixed-integer nonlinear programming problem [7]. In [8], the problem of setting
the DOCR was formulated and solved as a linear programming problem; a modified
PSO was also applied. The major goal of this study was to investigate the feasibility of
applying a Nelder-Mead simplex search method and a particle swarm optimization (NM-
PSO) methodology to address the coordination optimization of a DOCR distribution system.

We have divided the remainder of this paper into three sections. The first provides
an introduction to the theoretical foundations of the research, involving the modeling of
DOCR coordination problems. The proposed optimization algorithm includes a constraint
handling method, an NM simplex search method, a PSO algorithm, and an NM-PSO method.
We utilized IEEE 8- and 14-bus test systems to verify the feasibility of the proposed algorithm.
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The results show that the proposed method, comprising a linear programming (LP) problem
and a mixed-integer nonlinear programming (MINLP) problem, is capable of overcoming the
relay coordination problem of a power system. The combined approach effectively increases
the convergence rate of calculation and enhances the capability of the PSO when processing
under constraints. Finally, we discuss the results and draw conclusions.

2. DOCR Coordination Problem

The main purpose of the DOCR coordination problem is to determine the TDS and Ip values
of each relay in a power system. The optimal operating times of the primary relays are
then minimized, and coordination pairs of the P/B relays and coordination constraints are
obtained. The DOCR coordination optimization problem in a power system can be described
as follows:

min J =
n∑

i=1

witik, (2.1)

where n is the number of relays in zone k of a power network, and wi is a coefficient
indicating the probability of a fault occurring on the ith line in zone k of a power network. In
general, the value of wi is either 1 or 0. The variable tik indicates the operating time of relay i
for a close-in fault in zone k.

The coordination constraints between the primary relay i and the backup relay(s) j are
as follows:

tjk − tik ≥ CTI, (2.2)

where tjk reveals the operating time of relay j, and the relay is the backup relay of relay i. CTI
is the minimum coordination time interval; its value ranges from 0.2 to 0.5 s. In this study, a
CTI of 0.2 s was chosen.

The function for the nonlinear relay characteristics is based on IEEE standard C37.112-
1996 and is represented as follows:

ti = TDSi ×
(

28.2
(
Ifi/Ipi

)2 − 1
+ 0.1217

)
, (2.3)

where TDSi and Ipi are the time dial setting and the pickup current setting of the ith relay,
respectively. Ifi is the short-circuit fault current passing through the ith relay.

The constants and exponent in (2.3) define the shape of the extremely inverse trip
characteristics.

The results of this research not only describe the methodology of DOCR coordination
optimization but also demonstrate the feasibility of the TDS and Ip settings of the relays. In
general, DOCR allows for a continuous TDS value, but a discrete Ip setting. To satisfy this
requirement, this study explored both linear and nonlinear programming for DOCR coor-
dination optimization. The variable TDS is optimized according to a predefined Ip for each
DOCR, and this optimization problem can be viewed as a linear programming (LP) problem.
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For the nonlinear programming (NLP) problem, variables TDS and Ip are optimized for each
DOCR. In the LP or NLP problem of the DOCR coordination optimization, the TDS values
can range continuously from 0.1000 to 1.1000, and the Ip values can range discretely between
10 and 1000 with a step size of 1, depending on the close-in fault current for each relay.

3. Proposed Optimization Algorithm

PSO is a random optimization technology developed by Eberhart and Kennedy in 1995 [9],
who were inspired by simulating the intelligence of swarming bird flocks. PSO shares many
similarities with evolutionary computation techniques such as genetic algorithms (GAs) [6].
The problem is initialized with a population of feasible random solutions; however, PSO
contains no genetic operations, such as crossover or mutation.

Another important feature of PSO is that each particle has memory. PSO’s information
sharing mechanism differs greatly from that of GAs. In GAs, chromosomes mutually share
information, and therefore, the movement of the population as it approaches the best area
is relatively even. In PSO, the possible individual elements of PSO algorithms are called
particles. The global best particle gives information to other particles and updates the
movement direction and speed of each particle.

Based on the PSO method, we propose the NM-PSO method for solving the con-
strained optimization problem. The following section introduces the basic principles of NM-
PSO, including constraint-handling methods, Nelder-Mead (NM) simplex search, and PSO.

3.1. Constraint-Handling Methods

Constraint handling is a major concern when applying PSO algorithms to solve constrained
optimization problems. This is because the traditional search operators of PSO algorithms are
blind to constraints. Thus far, the most commonly used constraint handling methods for PSO
are the penalty and repair methods.

The gradient-based repair method was addressed by [10, 11]. This method adopts
gradient information derived from the constraint set to gradually repair an infeasible
solution by directing the infeasible solution toward a feasible area. Because the constraints
of the DOCR coordination optimization are not complicated, this method is highly suitable.
Furthermore, because DOCR coordination optimization has no equality constraints, equality
constraint equations can be ignored. This method is described below.

(1) For a random solution, determine the degree of constraint violation ΔV using the
following equation:

V =
[
g
]
m×1 ⇒ ΔV =

[−gj(x)
]
k×1 when gj(x) > 0, j = 1, . . . , m, (3.1)

where V is the vector of inequality constraints (g), and k is the degree of constraint
violation ΔV .

(2) Compute Δxg, where Δxg are the derivatives of these constraints with respect to
the solution vector (n decision variables)

ΔxV =
[
Δxg

]
k×n, x = 1, . . . , k. (3.2)
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Figure 1: Illustration of the Nelder-Mead simplex method.

(3) The relationship between changes in the constraint violation ΔV and the solution
vector Δx is expressed as

ΔV = ΔxV ×Δx =⇒ Δx = ΔxV
−1 ×ΔV. (3.3)

(4) Compute the pseudoinverse ΔxV
−1.

(5) Update the solution vector by

xt+1 = xt + Δx = xt + ΔxV
−1 ×ΔV. (3.4)

The degree of constraint violation is adjusted according to the above procedure. In
this algorithm, a “repair method” rapidly revises infeasible solutions to move them toward
a feasible region. The number of constraint violations decreases and quickly vanishes with
each iteration. Finally, a solution in the feasible region will be obtained.

3.2. The Nelder-Mead Simplex Search Method

When the search space is n-dimensional, the simplex consists of n+1 solutions [12]. As shown
in Figure 1(a), in a two-dimensional search plane, a simplex is a triangle. The fitness of each
solution is considered at each step of the Nelder-Mead method, and the worst solution Pworst

is identified. The centroid, Pcent, of the remaining n points is computed, and the reflection
of Pworst is determined. This reflection yields a new solution, Prefl, which replaces Pworst, as
shown in Figure 1(b). If the solution Prefl produced by this reflection has a higher fitness than
any other solution in the simplex, the simplex is further expanded in the direction of Prefl, and
Pworst is replaced with Pexp, as shown in Figure 1(c).
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On the other hand, if Prefl has a comparatively low fitness, the simplex is contracted.
Contraction can either be outward or inward, depending upon whether Prefl is better or worse
than Pworst, respectively. The contraction operations (i.e., Pworst is replaced with Pcont) are
shown in Figures 1(d) and 1(e). If neither contraction improves the worst solution in the
simplex, the best point in the simplex is computed, and a shrinkage is then performed; all the
points of the simplex are moved a little closer towards the best solution (Pbest), as shown in
Figure 1(f).

3.3. Particle Swarm Optimization

In the past several years, PSO has been successfully applied in many fields [13, 14]. It has
been demonstrated that the results of PSO are superior to other methods. The PSO procedure
is reviewed below.

(1) Initialization. It randomly generates a swarm of potential solutions called “particles”
and assigns a random velocity to each.

(2) Velocity Update. The particles are then “flown” through hyperspace by updating
their own velocity. The velocity update of a particle is dynamically adjusted, subject
to its own past flight and those of its companions. The velocity and position of the
particles are updated by the following equations:

V new
id (t + 1) = co × V old

id (t) + c1 × rand( ) ×
(
pid(t) − xold

id (t)
)
+ c2 × rand( ) ×

(
pgd(t) − xold

gd (t)
)
,

(3.5)

xnew
id (t + 1) = xold

id (t) + V new
id (t + 1), (3.6)

co = 0.5 +
rand( )

3
, (3.7)

where c1 and c2 are two positive constants; c0 is an inertia weight, and rand( ) is a random
value between (0, 1). Zahara and Hu suggested c1 = c2 = 2 and c0 = [0.5 + (rand( )/2)] [15].
However, many experiments have shown that using c0 = [0.5 + (rand( )/3)] provides better
results. Equation (3.5) illustrates the calculation of a new velocity for each individual. The
velocity of each particle is updated according to its previous velocity (Vid), the particle’s
previous best location (pid), and the global best location (pgd). Particle velocities for each
dimension are clamped to a maximum velocity Vmax. Equation (3.6) shows how each
particle’s position is updated in the search space.

3.4. NM-PSO Method

The NM-PSO optimization method [16] integrates the constraint-handling methods, the
Nelder-Mead simplex search method (traditional algorithm), and the PSO algorithm
(evolutionary algorithm) [17]. The PSO optimal method resists easily falling into the local
best solution, but it requires many particles in an optimal process, which reduces the speed
of computation. The Nelder-Mead simplex search method improves the efficiency of PSO
due to its capacity for rapid convergence. However, the drawback of this method is that
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it easily falls into a local best solution. This drawback is improved by integrating the two
algorithms. Combining the two algorithms and the gradient-based repair methods enables
feasible optimal solutions to be found that satisfy the constraint conditions [18].

Using the advantages mentioned above, the NM-PSO method clearly overcomes the
drawbacks of low convergence speed, the need for more particles, and the inability to deal
with constraint conditions to accurately find optimal solutions.

3.5. Implementation of Proposed Method

The following section introduces the NM-PSO algorithm procedure. Assume the problem to
be solved is n-dimensional. First produce N (N � 2n+1) particles to form a swarm. For every
particle that violates the constraints, use the gradient repair method to direct the infeasible
solution toward the feasible region. In most cases, the repair method does move the solution
to the feasible region. Arrange the results of the objective function in order of good to bad and
divide the N particles into n particles, the (n+1)th particle, and N − (n+1) particles and then
create three groups. First calculate the top n particles and the (n + 1)th particle using the NM
simplex method. The updated best particle is obtained and the result saved. The PSO method
adjusts the N particles by taking into account the position of the (n+1) best particle. Through
the calculation of a simple NM algorithm, the probability of finding the optimal solution was
increased. This procedure for adjusting the N particles involves selection of the global best
particle, the selection of the neighboring best particles, and finally the velocity updates. The
global best particle of the population is determined according to the sorted fitness values.

Unlike the original PSO calculation method proposed by [15], which updates the
remaining particles (N − (n + 1)), we use the PSO algorithm to update all of the N particles.
These two PSO algorithms combination NM methods are referred to in this paper as the
original NM-PSO method and the proposed NM-PSO method, respectively. Repeat the entire
NM-PSO optimization process until the condition is fulfilled. Figure 2 depicts the schematic
representation of the proposed NM-PSO. Algorithm 1 shows the pseudocode of the NM-PSO
algorithm embedded within the constraint-handling methods.

4. Case Study

The appearance and parameters of the relevant line equipment of two typical test systems
are introduced. We discuss the fault current and the corresponding DOCR relationship of the
coordination pairs of P/B when a close-in three-phase short fault occurs in transmission lines.

Taking the above two test systems as examples, this study validated the feasibility
of the proposed NM-PSO optimization algorithm to solve the DOCR optimal coordination
problem. The results were compared with PSO and original NM-PSO algorithm. The results
of the comparison demonstrate that the proposed NM-PSO algorithm is clearly better than
PSO and original NM-PSO in terms of the objective function, the rate of convergence, and
computation speed.

In this study, the multiples 2 × n + 1, 5 × n + 1, 10 × n + 1, and 20 × n + 1 were adopted
as the number of populations to demonstrate the influence of the number of particles on
the proposed algorithm. To observe the process and changes of convergence in the objective
function, the number of iterations was set at 300, to highlight the superior performance of the
proposed system.
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Figure 2: Flow chart of the proposed NM-PSO algorithm.

1. Initialization. Generate a population of size N (N > (n + 1)).
Repeat
2. Constraint handling method

2.1 The Gradient Repair Method. Repair particles that violate the constraints by
directing the infeasible solution toward the feasible region.

2.2 Identify solutions (that fulfill the constraint conditions) and arrange them in the
order of good to bad.

3. Nelder-Mead Method. Apply NM operator to the top n + 1 particles and update the
(n + 1)th particle.

4. PSOMethod. Apply PSO operator for updating the N particles.
4.1 Selection. Select the global best particle and the neighborhood best particle from

the population.
4.2 Velocity Update. Apply velocity updates to the N particles

until the condition is fulfilled.

Algorithm 1: Pseudocode of the proposed hybrid NM-PSO algorithm.
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4.1. IEEE 8-Bus Test System

As shown in Figure 3, the 8-bus test system consists of 9 lines, 2 transformers, and 14 DOCRs.
All the DOCRs have the IEEE standard inverse-time characteristics mentioned in (2.3) above.
The system parameters are the same as in [6]. At bus 4, there is a link to another network
modeled by a short-circuit capacity of 400 MVA. The DOCR coordination problem can be
formulated as an LP problem or an MINLP problem. Additionally, there are 20 inequality
constraints corresponding to each relay pair.

Table 1 illustrates the fault currents of the DOCR coordination pairs of P/B of each
phase in the event of a close-in three-phase short fault of the system. If a DOCR coordination
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Table 1: P/B relays and the close-in fault currents for an IEEE 8-bus test system.

Primary relay Backup relay
No. Current No. Current
1 3230 6 3230
8 6080 9 1160
8 6080 7 1880
2 5910 1 993
9 2480 10 2480
2 5910 7 1880
3 3550 2 3550
10 3880 11 2340
6 6100 5 1200
6 6100 14 1870
13 2980 8 2980
14 5190 9 1160
7 5210 5 1200
14 5190 1 993
7 5210 13 985
4 3780 3 2240
11 3700 12 3700
5 2400 4 2400
12 5890 13 985
12 5890 14 1870
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Figure 5: Convergence of the NM-PSO for five different random initial populations for an IEEE 8-bus test
system (LP problem).

optimization problem with known Ip values is assumed to be an LP problem, the results
obtained using PSO, original NM-PSO, and proposed NM-PSO for the case of 300 iterations
and a population size of 141 (10 × n + 1, where n is the number of variables TDS of the 14
relays) are illustrated in Table 2. The results are also compared to those of Linprog (linear
programming) obtained using the MATLAB optimization toolbox.

To validate the feasibility of the proposed method, the obtained TDS values and
known Ip values were entered as constraints to obtain the results shown in Table 3. Since
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Table 2: Optimal settings of the relays for an IEEE 8-bus test system (LP problem).

Algorithm Linprog PSO Original NM-PSO Proposed NM-PSO
Relay Ip TDS TDS TDS TDS
1 600 0.1007 0.1000 0.1000 0.1000
2 800 0.2485 0.2191 0.2260 0.2178
3 500 0.2294 0.2272 0.2369 0.2240
4 800 0.1115 0.1104 0.1234 0.1097
5 600 0.1003 0.1000 0.1075 0.1000
6 500 0.3858 0.3844 0.3882 0.3850
7 600 0.1103 0.1030 0.1233 0.1028
8 500 0.3575 0.3645 0.3587 0.3537
9 600 0.1001 0.1000 0.1007 0.1000
10 500 0.2947 0.3476 0.2963 0.2943
11 600 0.1794 0.2102 0.1958 0.1786
12 500 0.5591 0.6000 0.6194 0.5954
13 600 0.1007 0.1000 0.1000 0.1000
14 800 0.1094 0.1000 0.1030 0.1000

Obj-Fun 1.9640 2.0468 2.0278 1.9783

Table 3: Operating time of P/B relays for an IEEE 8-bus test system (LP problem).

Proposed NM-PSO method

Backup relay Primary relay Constraint value
No. Operating time No. Operating time

6 0.3134 1 0.1130 0.2004

9 1.0422 8 0.1110 0.9312

7 0.3413 8 0.1110 0.2303

1 1.6338 2 0.1412 1.4926

10 0.3875 9 0.1875 0.2000

7 0.3413 2 0.1412 0.2001

2 0.3551 3 0.1551 0.2000

11 0.3762 10 0.1760 0.2002

5 0.9522 6 0.1203 0.8319

14 0.6439 6 0.1203 0.5236

8 0.3320 13 0.1313 0.2007

9 1.0422 14 0.0808 0.9614

5 0.9522 7 0.0515 0.9007

1 1.6338 14 0.0808 1.5530

13 1.6758 7 0.0515 1.6243

3 0.3585 4 0.1584 0.2001

12 0.3848 11 0.1578 0.2270

4 0.4000 5 0.2000 0.2000

13 1.6758 12 0.1943 1.4815

14 0.6439 12 0.1943 0.4496
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Figure 6: One-line diagram for an IEEE 14-bus test system.

the proposed method satisfies all constraints (i.e., CTI � 0.2), the best coordination setting for
DOCR can be efficiently completed.

As expected, the proposed NM-PSO yields better objective function results than PSO
and original NM-PSO. Figure 4 shows that proposed NM-PSO nearly reached the global
optimum after 189 iterations. The results of this proposed NM-PSO algorithm reveal better
convergence.

To analyze the convergence consistency of the proposed NM-PSO algorithm when
solving the LP problem in the case of different initial values, this study randomly performed
the proposed method five times. As seen in Figure 5, the proposed NM-PSO algorithm can
reduce the objective function to the same value after nearly 200 iterations. The convergence
of the proposed NM-PSO is evidently not affected by different initial values.

4.2. IEEE 14-Bus Test System

The IEEE 14-bus test system consists of 5 generators, 2 power transformers, 20 transmission
lines, and 40 DOCRs, as shown in Figure 6. The system parameters are given in [19]. The
voltage level and the power base of this system are 138 kV and 100 MVA, respectively.

It is assumed that the DOCRs all have the standard IEEE inverse-time characteristics
as an IEEE 8-bus test system. Table 4 reveals the P/B relay pairs and the corresponding fault
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Table 4: P/B relays and the close-in fault currents for an IEEE 14-bus test system.

Primary relay Backup relay Primary relay Backup relay Primary relay Backup relay
No. Current No. Current No. Current No. Current No. Current No. Current
1 11650 6 654 8 3880 30 188 19 955 17 955
5 12400 2 1980 29 4720 7 1220 18 725 20 725
2 4260 4 750 29 4720 9 1990 22 1930 29 499
2 4260 12 875 29 4720 13 1070 22 1930 24 1160
2 4260 8 723 29 4720 25 449 22 1930 32 280
3 7310 1 3920 6 3830 3 1280 23 1200 21 434
3 7310 12 848 6 3830 10 1990 23 1200 29 499
3 7310 8 689 6 3830 16 560 23 1200 32 281
11 7180 4 725 4 3920 5 1370 30 1810 21 424
11 7180 1 3920 4 3920 16 562 30 1810 24 1130
11 7180 8 695 4 3920 10 1990 30 1810 32 275
7 7330 1 3920 15 4610 5 1360 31 2060 21 428
7 7330 4 716 15 4610 3 1280 31 2060 24 1150
7 7330 12 845 15 4610 10 1970 31 2060 29 494
13 3280 11 1380 9 3260 5 1390 27 2030 26 1230
12 3130 14 1250 9 3260 3 1310 27 2030 23 808
26 4640 9 2080 9 3260 16 569 25 1430 28 633
26 4640 13 1120 16 1490 40 201 25 1430 23 806
26 4640 7 1270 16 1490 18 388 24 1870 26 1230
26 4640 30 179 16 1490 37 51 24 1870 28 634
10 3110 13 1140 17 2210 15 1110 37 572 35 572
10 3110 7 1290 17 2210 37 51 36 781 38 781
10 3110 25 495 17 2210 40 199 35 1480 33 368
10 3110 30 190 39 2400 15 1120 35 1480 39 1110
14 4030 9 2090 39 2400 18 389 34 1390 36 284
14 4030 7 1270 39 2400 37 47 34 1390 39 1110
14 4030 25 489 38 2530 15 1110 40 654 36 285
14 4030 30 188 38 2530 40 191 40 654 33 370
8 3880 9 2090 38 2530 18 386 32 547 34 547
8 3880 25 489 21 564 19 564 33 783 31 783
8 3880 13 1120 20 1310 22 1310 x x x x

currents passing through them for a close-in fault in this network. There are 92 inequality
constraints corresponding to each relay pair.

This study also used PSO, original NM-PSO, and proposed NM-PSO to solve the
DOCR coordination optimization of the MINLP problem, which required obtaining the TDS
and Ip values of each DOCR. The results after 300 iterations with a population size of 1601
(20 × n + 1, where n is the number of TDS and Ip variables of the 40 relays) are shown in
Table 5. The integer Ip can be directly applied in the current intelligent electronic device (IED)
settings.

Figure 7 shows the results of the comparison demonstrate that the proposed NM-PSO
algorithm is clearly better than PSO and original NM-PSO in terms of the objective function,
the rate of convergence, and computation speed.
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Table 5: Optimal settings of the relays for an IEEE 14-bus test system (MINLP problem).

Algorithm PSO Original NM-PSO Proposed NM-PSO

relay Ip TDS Ip TDS Ip TDS

1 881 0.1746 807 0.2024 736 0.3038

2 579 0.1000 515 0.1729 540 0.1211

3 408 0.2746 422 0.2108 437 0.1418

4 216 0.1239 261 0.1574 237 0.1184

5 758 0.1059 700 0.1860 700 0.1184

6 296 0.1607 227 0.2694 200 0.1020

7 532 0.2192 435 0.1187 419 0.1718

8 226 0.1335 206 0.1605 270 0.1452

9 444 0.1812 504 0.1454 537 0.1258

10 488 0.3347 528 0.1154 450 0.1523

11 477 0.1717 516 0.2881 550 0.1006

12 352 0.1015 295 0.2357 220 0.1414

13 394 0.1546 355 0.2212 350 0.1307

14 418 0.1000 362 0.2003 358 0.1250

15 333 0.1342 316 0.2404 359 0.1872

16 149 0.1451 126 0.2268 117 0.2302

17 216 0.3880 268 0.2414 177 0.3258

18 110 0.1172 101 0.1418 100 0.1301

19 164 0.2737 168 0.1379 108 0.3402

20 151 0.2322 170 0.1708 211 0.1057

21 100 0.3998 121 0.1308 115 0.1534

22 174 0.6243 339 0.1427 326 0.1473

23 119 0.5556 193 0.1457 150 0.2554

24 147 0.7269 307 0.1543 315 0.1437

25 133 0.2076 127 0.1483 102 0.3358

26 260 0.3107 351 0.1631 399 0.2024

27 150 0.1005 150 0.2364 150 0.1641

28 204 0.1230 127 0.3070 154 0.1779

29 245 0.2288 200 0.2564 200 0.2033

30 150 0.1000 100 0.2557 100 0.2124

31 241 0.1776 247 0.1765 164 0.2053

32 100 0.1066 100 0.1000 100 0.1001

33 177 0.1000 108 0.2252 100 0.1511

34 123 0.2518 100 0.2858 112 0.2285

35 100 0.3861 100 0.2349 100 0.3681

36 146 0.1132 121 0.1311 100 0.1300

37 36 0.1000 10 0.2869 11 0.3143

38 238 0.2182 245 0.1527 249 0.1892

39 268 0.2090 269 0.1850 266 0.1596

40 113 0.1000 100 0.2529 100 0.1485

Obj-Fun 4.2233 3.6362 3.1829
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Figure 7: Convergence of PSO, original NM-PSO, and proposed NM-PSO to the optimal solution for an
IEEE 14-bus test system (MINLP problem).
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Figure 8: Convergence of the proposed NM-PSO for five different random initial populations for an IEEE
14-bus test system (MINLP problem).

To analyze the consistency in convergence of the proposed NM-PSO when solving
MINLP problems, this study randomly executed the proposed method five times. As seen
from Figure 8, the proposed NM-PSO can reduce the objective function to almost the same
value after approximately 220 iterations. Results show that the convergence of the proposed
NM-PSO is not seriously influenced by optimization problems of high complexity.

In addition to convergence rate, we investigated the final convergence values of the
objective function (Obj-Fun). Figures 9(a) and 9(b) show the results of LP coordination
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Figure 9: Objective function values by PSO, original NM-PSO, and proposed NM-PSO algorithms for the
LP problem with n = 40 for four different populations.

problems, for the same number of iterations (300) and for four different populations 2 × n +
1, 5 × n + 1, 10 × n + 1, and 20 ×n +1.

It can clearly be seen that the proposed NM-PSO method results in better Obj-Fun
values than the PSO and original NM-PSO algorithm. For the more complicated MINLP
problem shown in Figures 10(a) and 10(b), the proposed NM-PSO after 300 iterations results
in even better Obj-Fun values in the case of particles 2 ×n + 1 than the Obj-Fun values of PSO
algorithm in the case of particles 20 ×n + 1. Hence, the proposed method produces better
results than the PSO algorithm using fewer particles (less computation time).

5. Conclusions

In this paper, the DOCR coordination problem is formulated as a constrained optimization
problem. It can be concluded that the proposed NM-PSO optimization algorithm is applicable
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Figure 10: Objective function values by PSO, original NM-PSO, and proposed NM-PSO algorithms for the
MINLP problem with n = 80 for four different populations.

to the DOCR coordination optimization of a distribution system. In contrast to other methods
in the literature that only find TDS, the algorithm proposed in this study obtains Ip and TDS
values simultaneously, and the Ip values can be represented by integers for applications in
the IED setting to complete a more comprehensive coordination optimization. The proposed
method makes use of the advantages of both the NM and PSO methods, while overcoming
the drawbacks associated with these methods. Regardless of whether LP or MINLP is used
to solve a coordination optimization problem, we have demonstrated that the proposed
algorithm performs better than PSO and original NM-PSO algorithm in terms of computation
speed, rate of convergence, and objective function value. The reduction in the DOCR
operating time in our results demonstrates that the proposed method can be adopted for
determining the optimum settings of DOCRs.
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