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The emerging theory of compressive sensing (CS) provides a new sparse signal processing
paradigm for reconstructing sparse signals from the undersampled linear measurements. Recently,
numerous algorithms have been developed to solve convex optimization problems for CS sparse
signal recovery. However, in some certain circumstances, greedy algorithms exhibit superior
performance than convex methods. This paper is a followup to the recent paper of Wang and Yin
(2010), who refine BP reconstructions via iterative support detection (ISD). The heuristic idea of
ISD was applied to greedy algorithms. We developed two approaches for accelerating the ECME
iteration. The described algorithms, named ECME thresholding pursuits (EMTP), introduced two
greedy strategies that each iteration detects a support set I by thresholding the result of the ECME
iteration and estimates the reconstructed signal by solving a truncated least-squares problem on
the support set I. Two effective support detection strategies are devised for the sparse signals
with components having a fast decaying distribution of nonzero components. The experimental
studies are presented to demonstrate that EMTP offers an appealing alternative to state-of-the-art
algorithms for sparse signal recovery.

1. Introduction

Sparsity exploiting has recently received a great amount of attention in the applied
mathematics and signal processing community. Sparse signal processing algorithms have
been developed for various applications. A recent Proceedings of the IEEE special issue
on applications of sparse representation and compressive sensing devoted to this topic.
Some of the exciting developments addressed in [1–7]. Compressed sensing, also known as
compressive sensing, compressive sampling (CS) [8, 9], has been the subject of significant
activity in sparse signal processing where one seeks to recover efficiently a sparse unknown
signal vector of dimension n via a much smaller number (m) of undersampled linear
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measurements. For k-sparse unknown signal x0 ∈ R
n, the sparse signal recovery is intimately

related to solving an underdetermined system of linear equations y = Ax0 with sparseness
constraint

(P�0):min
x

‖x‖�0 s.t. Ax = y, (1.1)

where x is true signal to be recovered, ‖x‖�0 is used to denote the number of nonzero
components of x, A ∈ R

m×n is the measurement matrix, and y ∈ R
m is the measurement

vector. The key insight in the pioneering work on CS [8, 9] is to replace �0 by �1 for the (P�0)
problem due to nonconvexity and combinatorial effect. In [10], it is the basis pursuit problem

(BP):min
x0

‖x0‖�1 s.t. Ax = y. (1.2)

Hereafter, numerous researchers developed various computational algorithms for sparse
signal recovery [11, 12]. Generally, there are three major classes of computational algorithms:
convex relaxation, bayesian inference, and greedy pursuit. Convex relaxation replaces the
combinatorial problem (P�0) with a convex optimization problem (BP), such as basis pursuit
[10], basis pursuit denoising [13], the least absolute shrinkage and selection operator
(LASSO) [14], and least angle regression (LARS) [15]. Bayesian inference derives the
maximum a posteriori estimator from a sparse prior model, such as sparse bayesian learning
(SBL) [16, 17] and bayesian compressive sensing (BCS) [18, 19]. Another popular approach
is to use greedy algorithms which iteratively refine a sparse solution by successively
selecting one or more elements. These algorithms include matching pursuit (MP) [20],
orthogonal matching pursuit (OMP) [21–23], subspace pursuit (SP) [24], compressive
sampling matching pursuit (CoSaMP) [25], and iterative thresholding algorithms [26, 27].

Iterative hard thresholding (IHT) [27] is a simple and powerful approach for sparse
recovery. Recently, an alternative algorithm has been present to alleviate the convergence
speed issue of IHT in [28, 29]. Qiu and Dogandzic [28, 29] derived an expectation conditional
maximization either (ECME) iteration from a probabilistic framework based on the Gaussian-
distributed signals with unknown variance and proposed an acceleration method, termed
double overrelaxation (DORE) thresholding scheme, to improve the convergence speed of
the ECME algorithm. In addition, Qiu and Dogandzic [28, 29] further proposed an automatic
double overrelaxation (ADORE) thresholding method for conditions that the underlying
sparsity level is not available. As in study [30], Wang and Yin presented an iterative support
detection (ISD) algorithm to refine the failed reconstructions by thresholding the solution of
a truncated (BP) problem.

Inspired by the theoretical and empirical evidence of favorable recovery performance
of ECME [29] and ISD [30], we combine ECME [29] and ISD [30] to devise novel sparse
signal recovery methods, dubbed as ECME thresholding pursuits (EMTP). EMTP detects a
support set I using an ECME iteration and estimates the reconstructed signal by solving a
truncated least-squares problem on the support set I, and it iterates these two steps for a small
number of times. We present two effective support detection strategies (hard thresholding
and dynamic thresholding) for the sparse signals with components having a fast-decaying
distribution of nonzeros (called fast decaying signals in [30]), which include sparse Gaussian
signals, sparse Laplacian signals, and certain power-law decaying signals.

This paper considers the iterative greedy algorithms and abstracts them into two types
[31], One-Stage Thresholding (OST) and Two-Stage Thresholding (TST), as discussed in
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Sections 2.1 and 2.2. Then, we review the initial work of Iterative Support Detection (ISD)
in Section 2.3. In Section 3, we describe the proposed approaches. After that, Section 4 details
the experimental results. Finally, we conclude this paper in Section 5.

1.1. Notation

We introduce the notation used in this paper.

(i) x(t): the algorithms described in this paper are iterative and the reconstructed signal
x in current iteration t is denoted as x(t). The same convention is used for other
vectors and matrices.

(ii) I, AI : index set I, the matrix AI denotes the submatrix of A containing only those
columns of Awith indexes in I. The same convention is used for vectors.

(iii) [1, n] \ I: the complement of set I in set {1, 2, . . . , n}.
(iv) supp(x): the support set of a vector x, that is, the index set corresponding to the

nonzeros of x, supp(x) = {i : xi /= 0}.
(v) Hk(x): the hard thresholding that sets all but the largest in magnitude k elements

of a vector x to zero.

(vi) |x|, ‖x‖�p , xT : the absolute value, �p norm, and transpose of a vector x, respectively.

(vii) A†: the Moore-Penrose pseudoinverse of matrix A ∈ R
m×n. A† = AT (AAT )−1 for

m ≤ n; A† = (ATA)−1AT for m ≥ n.

2. Related Works

2.1. One-Stage Thresholding

Qiu andDogandzic derived an expectation conditional maximization either (ECME) iteration
based on a probabilistic framework [29]

x(t) = Hk

(
x(t−1) +AT

(
AAT

)−1(
y −Ax(t−1)

))
. (2.1)

Note that ECME iteration reduces to IHT step when the measurement matrix A has
orthonormal rows (i.e., (AAT ) is the identity matrix). These one-stage thresholding
algorithms (e.g., IHT [27] and ECME [29]) are guaranteed to recover sparse signals and
converge with limited iterations. However, OST is not the empirical choice for practical
applications due to slow convergence. To this end, Qiu and Dogandzic proposed an
acceleration method, termed double overrelaxation (DORE) thresholding scheme [28, 29],
to improve the convergence speed of the ECME algorithm. DORE utilizes two overrelaxation
steps:

x
(t)
1 = x(t) + α1

(
x(t) − x(t−1)

)
,

x
(t)
2 = x

(t)
1 + α2

(
x
(t)
1 − x(t−2)

)
,

(2.2)
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where α1, α2 are the line search parameters. Finally, an additional hard thresholding step

x(t) = Hk

(
x
(t)
2

)
(2.3)

ensures that the resulting signal is guaranteed to be k-sparse. In addition, Qiu and Dogandzic
further presented an automatic double overrelaxation (ADORE) thresholding method for
conditions that the underlying sparsity level is not available.

2.2. Two-Stage Thresholding

The algorithms described in this paper fall into the category of a general family of iterative
greedy pursuit algorithms. Following [31], we adopt the name “Two-Stage Thresholding”
(TST). Considering a CS recovery problem, the sparse recovery algorithms aim to detect the
support set I and approximate y using

y = AIxI. (2.4)

Starting with initial solution x = 0, TST iterates between 2 main steps:

Step 1 (support detection). Detect the support set I of the signal x, that is, select atoms of
measurement matrixAwhich have been used to generate y; in other words, determine active
atoms in sparse representation of a signal x. In some literature, this step also is called basis
selection or atom selection.

Step 2 (signal estimation). Update the signal x using the least-squares solution on the
detected support set I. xI = argminz{‖y −AIz‖22, supp(z) ⊆ I}, x[1,n]\I = 0.

Many algorithms (e.g., Orthogonal Matching Pursuit (OMP) [23], Subapace Pursuit
(SP) [24], Compressed SensingMatching Pursuit (CoSaMP) [25], and Gradient Pursuits (GP)
[32]) developed various approaches for Step 1 or Step 2.

2.3. Iterative Support Detection

Considering the failed reconstructions of BP, Wang and Yin [30] proposed an algorithmic
framework to refine the BP constructions, called iterative support detection (ISD). ISD
alternates between two steps: support detection and signal reconstruction. Initialize the
detected support I = ∅ and set the iteration number t = 0; ISD iteratively calls the following
steps:

(1) signal reconstruction:

solve the truncated BP with T = IC:

x(t) = argmin
x

‖xT‖1 s.t. y = Ax; (2.5)

(2) support detection:

detect support set I using x(t) as the reference.
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The reliability of ISD relies on the support detection. Wang and Yin devised serval detection
strategies for the sparse signals with components having a fast decaying distribution of
nonzero components (called fast decaying signals [30]). One of the detection strategies is
based on thresholding (we use ISD defined by (2.6) to refer the implementation algorithm in
the following context):

I(t) =
{
i :

∣∣∣x(t)
i

∣∣∣ > βt max
∣∣∣x(t)

∣∣∣}, β ∈ (0, 1). (2.6)

3. ECME Thresholding Pursuits

In this section, we describe our proposed approaches, named ECME Thresholding Pursuits
(EMTP), that combine OST and TST using the heuristic idea of ISD. The detailed description
of the proposed algorithms are presented as follows

Step 1 (initialization). We have the following.

Initialize the reconstruction signal x(0) = 0,

initialize residual signal r = y,

initialize support set I(0) = ∅,
set the iteration counter t = 1.

Step 2 (support detection). We have the following.

Update signal approximation:

x(t) = x(t−1) +A†r(t−1). (3.1)

Detect the support set I:

strategy 1: hard thresholding I(t) = supp(Hk(x(t)));

strategy 2: dynamic thresholding I(t) = {i : |x(t)
i | > βt max |x(t)|}.

Step 3 (signal estimation). We have the following.

Estimate the signal:

x
(t)
I(t)

= A†
I(t)

y,

x
(t)
[1,n]\I(t) = 0.

(3.2)

Update the residual:

r(t) = y −Ax(t). (3.3)
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Input:Measurement matrix A, measurements y, sparsity level k
Output: The reconstructed signal x
(1) Initialization:
(2) t = 1 //iteration number
(3) x(0) = 0 //initial signal
(4) r(0) = y //initial residual
(5) I(0) = ∅ //initial support set
(6) while halting criterion false do
(7) x(t) = Hk(x(t−1) +A†r(t−1))
(8) I(t) = {i : x(t)

i /= 0}
(9) x

(t)
I(t)

= A†
I(t)

y

(10) x
(t)
[1,n]\I(t) = 0

(11) r(t) = y −Ax(t)

(12) t = t + 1
(13) end while
(14) return x

Algorithm 1: EMTP-k algorithm.

Input:Measurement matrix A, measurements y, thresholding parameter β
Output: The reconstructed signal x
(1) Initialization:
(2) t = 1 //iteration number
(3) x(0) = 0 //initial signal
(4) r(0) = y //initial residual
(5) I(0) = ∅ //initial support set
(6) while halting criterion false do
(7) x(t) = x(t−1) +A†r(t−1)

(8) I(t) = {i : |x(t)
i | > βt max |x|}

(9) x
(t)
I(t)

= A†
I(t)

y

(10) x
(t)
[1,n]\I(t) = 0

(11) r(t) = y −Ax(t)

(12) t = t + 1
(13) end while
(14) return x

Algorithm 2: EMTP-β algorithm.

Step 4 (halting). Check the stopping condition and, if it is not yet time to stop, increment
t = t+ 1 and return to Step 2. If it is time to stop, the recovered signal x has nonzero entries in
support set I(t) and corresponding support vector lies in x

(t)
I(t)

.

We present two thresholding proposals and corresponding algorithm EMTP-k (shown
as Algorithm 1) and EMTP-β (shown as Algorithm 2), where β ∈ (0, 1) is the thresholding
parameter.

Remarks. (1) EMTP updates the leading elements of x(t) using a least-squares solution on the
support set I. However, DORE updates all the elements of x(t) using double overrelaxation
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Figure 1: An EMTP-β demo that recovers a Gaussian-distributed sparse vector with n = 200,m = 80, k =
20, β = 0.5.
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Figure 2: Influence of thresholding parameter β for sparse Gaussian signals with n = 400, k = 20:
comparisons in terms of SNR (dB) and number of iterations.

steps. Finally, DORE needs a hard thresholding to ensure the new approximation is k-sparse.
EMTP-β demands no prior knowledge about the underlying sparsity level k.

(2) EMTP is a special case of TST and utilizes OST in the support detection stage. It is
different from OMP, SP, and CoSaMP. When the ECME iteration reduces to IHT step, that is,
the reference for support detection x(t) = x(t−1) +ATr(t−1) is the gradient descent step for least-
squares, OMP, SP and CoSaMP use the correlation between the residual signal and the atoms
of the measurement matrix A (i.e., ATr(t−1)) to detect support set. ATr(t−1) is the negative
gradient for least squares. It is clear that ECME iteration provides the estimation for the
underlying sparse signal. We can employ the heuristic idea of ISD to devise various support
detection strategies depending on the underlying sparse signal distribution. The dynamic
thresholding method can be performed without the sparsity level k. EMTP directly detects
the support of the underlying sparse signal by referencing the ECME iteration while OMP, SP,
and CoSaMP augment the support by picking out the leading values of the negative gradient.
OMP each step spots one index into the support, so it requires more iterations than EMTP.
SP and CoSaMP spot several indexes into the support, so they need an additional step (i.e.,
orthogonal projection) to make sure the recovered signal is k-sparse. Like ISD, EMTP has an
appealing self-correction capacity. An EMTP demo is presented in Figure 1.

(3) Like other greedy pursuits such as Subapace Pursuit [24] and CoSaMP [25],
EMTP-k fixes the cardinality of support set I and removes previous false detections.
However, EMTP-β refines the support set I which is not necessarily increasing and nested
over the iterations.
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Figure 3: Influence of thresholding parameter β for sparse Gaussian signals with n = 400, m = 80:
comparisons in terms of SNR (dB) and number of iterations.

(4) The dynamic thresholding strategy used in EMTP-β is inspired by ISD [30]. It finds
significant nonzeros by comparing a threshold rather than maintaining fixed number (k) of
items. It is appealing for the conditions that the underlying sparsity level k is not available.

(5) EMTP resembles ISD [30]. EMTP and ISD have the same idea in support detection
step with iterative behavior. However, the support detection step is based on different sparse
recovery methods, ECME and BP, respectively. EMTP updates the reconstruction signal using
a least-squares solution on the detected support set I. However, ISD iteratively refines the BP
solution on the complement of the detected support set I.

(6) EMTP-β with large β obtains high-quality reconstruction from a small number of
measurements. However, because support set I grows slowly, EMTP-β takes a larger number
of iterations (to be discussed in Section 4). EMTP-k wrongly detected elements can often be
pruned out in later iterations.

(7) Like ISD (as discussed in [30]), EMTP-β only performs well for fast decaying
signals. It does not work on sparse signals that decay slowly or have no decay at all (e.g.,
trinary and binary sparse signals). EMTP-k performs worse for the sparse signals that
nonzero elements have similar magnitude [31, 33]. However, we can apply EMTP to non-
fast-decaying signals via linear or nonlinear premapping [34, 35].
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Figure 4: Influence of thresholding parameter β for sparse Gaussian signals with n = 2000, k = 100:
comparisons in terms of SNR (dB) and number of iterations.

3.1. Complexity Analysis

Like DORE algorithm, the basic operation is matrix-vector multiplication and sorting
operation. Assume that the pseudoinverse matrix A† is precomputed (with the cost of
O(m2n+mn)). Line 7 in Algorithms 1 and 2 for updating the ECME iteration requiresO(mn).
The computation complexity of thresholding operation (line 8 in Algorithms 1 and 2) is
O(n log k). Line 9 involves the partial least-square solver, costing O(k2m + km). The step
for updating residual requires an additional matrix-vector operation, costing O(km). To
summarize, one EMTP iteration costs O(mn + n log k + k2m + 2km), which is significantly
less than the complexity of one DORE step (with the cost of O(2n log k + 2m2n + 3mn)).

4. Experimental Results

To assess the performance of the proposed approaches, we conduct numerical
experiments on computer simulations. All algorithms were implemented and tested
in MATLAB v7.6 running on Windows XP with 2.53GHz Intel Celeron CPU and
2GB of memory. We compared the proposed approaches with the accelerated
ADORE/DORE approaches. The code of ADORE/DORE is available on the authors
homepage (http://home.eng.iastate.edu/∼ald/DORE.htm). We initialized x with zero
sparse signal. The search length of ADORE was set to 1. All results were averaged
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Figure 5: Influence of thresholding parameter β for sparse Gaussian signals with n = 2000, m = 400:
comparisons in terms of SNR (dB) and number of iterations.
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Figure 7: Number of iterations as a function of problem size with fixed ratios of m/n = 0.3, k/m = 0.3, n =
200 : 400 : 2200.

over 100 times Monte Carlo problem instances. We used our unoptimized code
(http://cs-notes.googlecode.com/files/EMTP.zip). The least-squares solution x =
argmin‖y−Ax‖22 was implemented usingMATLAB pseudoinverse function by x = pinv(A)∗
y. The MATLAB code was partially adapted from [30, 33, 36]. In all the experiments, the mea-
surement matrixAwas generated by uniform spherical ensemble (USE), that is, we generate
the measurement matrix by sampling each entry independently from the standard norm dis-
tribution and then normalize each column to have unit norm. The MATLAB code is given by

A = randn(m, n); A = A./repmat(sqrt(sum(A.∧2)), [m 1]).
The underlying k-sparse vectors were generated by randomly selecting a support set

of size k and each entry in the support set is sampled uniformly from a specific distribution.
The sparse signals were generated in MATLAB by

x = zeros(n, 1); support = randperm(n); x(support(1 : k)) = v;
and the nonzeros v generated by following code.
The sparse Gaussian signals were generated in MATLAB by
v = randn(k, 1);
The sparse Laplacian signals were generated by
z = rand([k, 1]);
v = zeros([k, 1]);
in = z <= 0.5;
ip = z > 0.5;

v(in) =
1

lambda
∗ log(2 ∗ z(in));

v(ip) = − 1
lambda

∗ log(2 ∗ (1 − z(ip))).

The power-law decaying signals were generated by
v = sign(randn(k, 1)). ∗ ((1 : k). \∧(−1/lambda))′.
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Figure 8: Sparse Gaussian signals with n = 400, k = 20: comparisons in terms of SNR (dB) and number of
iterations.

The variable lambda controls the rate of decay. We set lambda = 10 and lambda = 0.5
for sparse Laplacian signals and power-law decaying signals, respectively.

For fair comparison, we stopped iterations once the relative error fell below a certain
convergence tolerance or the number of iterations is greater than 100. The convergence
tolerance is given by

∥∥y − r(t)
∥∥
2∥∥y∥∥2

≤ 10−6. (4.1)

We empirically evaluate reconstruction performance in terms of signal-to-noise ratio (SNR)
and number of iterations. The SNR is defined as

SNR(dB) = −20log10
‖x0 − x‖2
‖x0‖2

, (4.2)

where x0 is the true signal and x is the recovered signal.
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Figure 9: Sparse Gaussian signals with n = 400, m = 80: comparisons in terms of SNR (dB) and number of
iterations.

4.1. Influence of Thresholding Parameter

We evaluated the influence of thresholding parameter β by varying β from 0.4 to 0.7. First, we
fixed signal dimension n = 400, the underlying sparsity level k = 20, and varied the number
of measurements. The plot of influence of thresholding parameter β for sparse Gaussian
signals was presented in Figure 2. It is clear that larger thresholding parameter achieves
better recovery performance with fewer measurements. However, the cost is more iterations.
Large β is particularly competitive when the number of measurements is fairly small. It is
worth noting that the number of iterations is smaller than the underlying sparsity level k for
exact recovery, especially for large k. As shown in Figure 2, EMTP-β achieves the SNR (dB)
around 300, that is, the relative error is almost as low as the double precision. Second, we
tested the comparisons by fixing the number of measurements m = 80, as shown in Figure 3,
respectively. Finally, we enlarged the dimension of signals (n = 2000), as shown in Figures 4
and 5. The latter tests come to similar conclusions as the first test.

We fixed the ratios of m/n, k/m and present plots cases for the number of iterations
as a function of problem size n. Given sufficient measurements, as shown in Figure 6 with
m/n = 0.4, k/m = 0.2, n = 200 : 400 : 2200, EMTP-k requires significantly fewest iterations
and EMTP-β requires relatively more iterations than DORE. It is clear that the number of
iterations for EMTP-k and DORE is stable to the problem size, and EMTP-β needs acceptably
a fewmore iterations with increasing the problem size. For another case, as shown in Figure 7
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Figure 10: Sparse Gaussian signals with n = 2000, k = 100: comparisons in terms of SNR (dB) and number
of iterations.

with m/n = 0.3, k/m = 0.3, n = 200 : 400 : 2200, DORE requires more iterations, EMTP-k
needs significantly fewer iterations with increasing the problem size, and EMTP-β requires
relatively stable iterations.

4.2. Comparisons with the Accelerated OST

We present comparisons in terms of SNR (dB) and number of iterations. We omit the
comparisons with �1 minimization methods and some other OST/TST methods, as they
have already been investigated in [31, 33]. First, we fixed signal dimension n = 400, the
underlying sparsity level k = 20, and varied the number of measurements. The result was
plotted in Figure 8. Next, we tested the comparisons by fixing the number of measurements
m = 80, as shown in Figure 9. Finally, the test set used larger dimension signals (n = 2000).
The corresponding results were depicted in Figures 10 and 11. Figures 10, and 11 show
the average SNR (dB) (a) and number of iterations (b) for each indeterminacy level m/n.
EMTP achieves significantly larger SNR (dB) than ADORE/DORE. For exact recovery, EMTP
obtains the relative error almost as low as the double precision. EMTP-β constantly needs
small number of iterations and EMTP-k needs the smallest number of iterations for exact
recovery. However, ADORE needs hundreds of iterations. Figure 8 was zoomed in for better
illustration. Figures 8, 9, 10 and 11 show the average SNR (dB) and number of iterations for
each sparsity level k/m. For larger-dimension signals (n = 2000), the results are depicted in
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Figure 11: Sparse Gaussian signals with n = 2000,m = 400: comparisons in terms of SNR (dB) and number
of iterations.

Figures 15 and 16. The latter tests come to similar conclusions as the first test. These figures
do not fully capture the performance of EMTP-β since we only set β = 0.5; however EMTP-β
achieved almost superior performance than ADORE/DORE.

4.3. Performance for Other Fast-Decaying Signals

As discussed in [30, 33], thresholding-based sparse recovery methods achieve superior
performance only if the nonzero elements of signals have a fast-decaying distribution. We
present empirical studies on other fast-decaying signals. Sparse Laplacian signals containing
k = 20 nonzero elements for dimension n = 400 were tested and the corresponding result
was plotted in Figure 12. For larger dimension signals (n = 2000), the results are shown in
Figure 13. Power-law decaying signals containing k = 20 nonzero elements for dimension
n = 400 were tested and the corresponding result was plotted in Figure 14. For larger-
dimension signals (n = 2000), the results are depicted in Figure 15. ADORE/DORE were
derived from a probabilistic framework based on Gaussian distribution. Surprisingly, they
can also work for fast-decaying signals, as depicted in Figures 12, 13, 14, and 15. The
conclusions for sparse Gaussian signals also can be generalized for sparse Laplacian signals
and power-law decaying signals. Power-law decaying signals for low indeterminacy level
m/nmake an exception that EMTP-β achieves inferior performance.
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Figure 12: Sparse Laplacian signals with n = 400, k = 20: comparisons in terms of SNR (dB) and number
of iterations.

4.4. Phase Transitions

Following [31, 33], we present numerical comparisons in terms of phase transitions. For
the sparse signal recovery from compressed measurements, the indeterminacy δ = m/n
defines the undersampling of a vector in compressed measurements. Let ρ = k/m be a
normalized measure of the sparsity. We fix the problem size n = 400 and test 100 Monte Carlo
realizations of each sparse vector at each pair of (ρ, δ). We test a grid of 16 × 16 linearly
spaced (ρ, δ) combinations with ρ, δ varying from 0.05 to 0.5 in 16 steps. For each sparsity
and indeterminacy pair, then, we find the probability of exact recovery with defining exact
recovery when ‖x0 − x‖2/‖x‖2 < 0.01. For each problem indeterminacy, we interpolate the
results over all sparsities to findwhere successful recovery occurs with a probability of 0.5. As
a result, we obtain a phase transition plot showing the boundary abovewhichmost recoveries
fail and below which most recoveries succeed. Figure 16 presents the recovery rates of
DORE, SP, and EMTP-β for Gaussian-distributed sparse vectors as a function of problem
sparsity and four problem indeterminacies from the thickest to thinnest lines. In Figure 16,
we observe EMTP-β outperforms SP, and DORE in recovery rates. Figure 17 shows the phase
transitions of DORE, SP and EMTP-β for compressively sensed sparse vectors sampled from
Gaussian distribution. Figure 17 indicates that these transitions obey the following hierarchy
in recovery performance: EMTP-β > SP > DORE.
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Figure 13: Sparse Laplacian signals with n = 2000, k = 100: comparisons in terms of SNR (dB) and number
of iterations.

4.5. Summary

To sum up, we have compared EMTPwith ADORE/DORE. EMTP has significant advantages
over the accelerated OST in terms of SNR and number of iterations. EMTP can significantly
reduce the number of iterations required and achieves significantly higher SNR. For low
indeterminacy level m/n, EMTP requires fewer measurements. EMTP-β can work with no
prior knowledge of the underlying sparsity level k yet achieves recovery performance better
than ADORE. Furthermore, we compared EMTP with the state-of-the-art greedy algorithm
SP in terms of phase transitions. Among all methods, EMTP-β appeared to be the best.

5. Conclusions and Future Work

In this paper, we propose ECME thresholding pursuits (EMTP) for sparse signal recovery.
EMTP detects a support set I using the ECME iteration and estimates the reconstructed signal
by solving a truncated least-squares problem on the support set I, and it iterates these two
steps for a small number of times. We present two effective support detection strategies (hard
thresholding and dynamic thresholding) for the sparse signals with components having a
fast-decaying distribution of nonzero components. The experimental studies are presented
to demonstrate that EMTP offers an attractive alternative to state-of-the-art algorithms for
sparse signal recovery. EMTP can significantly reduce the number of iterations required. We
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Figure 14: Power-law decaying signals with n = 400, k = 20: comparisons in terms of SNR (dB) and
number of iterations.

then turn to the problem of reducing the computational cost of each iteration, especially for
large scale applications. Future research includes three directions.

(1) EMTP requires the precomputation and storage of the pseudoinverse matrix A†.
So it is the advisable choice that replacing ECME iteration by IHT step in the
support detection stage. IHT does not require the computation and storage of
the pseudoinverse matrix A†, which leads to significant advantage for large scale
applications.

(2) In signal estimation stage, that is, update reconstructed signal by solving least-
squares problem, EMTP uses the orthogonal projection, that is, by calculating
xI = A†

Iy whereA†
I is the pseudoinverse ofAI . We will approximate the orthogonal

projection efficiently by gradient pursuits [32].

(3) This paper devotes efforts to devise computational algorithms which are exper-
imentally reproducible and provides empirical studies as useful guidelines for
practical applications. Further, future investigations will test other OST methods
as the reference and sophisticated thresholding methods for support detection.
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Figure 15: Power-law decaying signals with n = 2000, k = 100: comparisons in terms of SNR (dB) and
number of iterations.
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