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Spacecraft maneuvers is a very important topic in aerospace engineering activities today. In a more
generic way, a spacecraft maneuver has the objective of transferring a spacecraft from one orbit to
another, taking into account some restrictions. In the present paper, the problem of rendezvous
is considered. In this type of problem, it is necessary to transfer a spacecraft from one orbit to
another, but with the extra constraint of meeting another spacecraft when reaching the final orbit.
In particular, the present paper aims to analyze rendezvous maneuvers between two coplanar
circular orbits, seeking to perform this transfer with lowest possible fuel consumption, assuming
that this problem is time-free and using four burns during the process. The assumption of four
burns is used to represent a constraint posed by a real mission. Then, a genetic algorithm is used
to solve the problem. After that, a study is made for a maneuver that will make a spacecraft
to encounter a planet, in order to make a close approach that will change its energy. Several
simulations are presented.

1. Introduction

This paper aims to analyze optimal rendezvous maneuvers between two spacecrafts that are
initially in circular coplanar orbits around the Earth. The main goal is to perform this transfer
having the fuel consumption as a penalty function, so the minimization of this quantity is
searched during the process of finding the solutions. The approach used here is to assume
that the problem is time-free, which means that the time of the transfer is not important. The
control assumed to perform this task is an engine that can deliver four burns. This assumption
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is used to represent a common constraint posed by real missions. In the present paper, we are
considering a generic problem, not a specific mission, but this type of constraint appears very
often in space activities.

Then, a genetic algorithm is used in order to solve the problem. This type of
approach represents a new alternative to solve this problem and can be used for comparisons
with results obtained by standard procedures available in the literature, as shown in [1–
28]. Preliminary studies showed that, in some situations, this algorithm can be faster in
convergence and more accurate, while in some others, it is slower and presents less accuracy.
A detailed comparison still has to be made to evaluate under which circumstances this
algorithm can be more efficient. In any case, several kinds of missions can use the benefits
of the techniques based on the genetic algorithm showed in this work. The main types are
transference with free time (to change the orbit of the space vehicle without restrictions in the
time required by the execution of the maneuver), “rendezvous” (when one desires that the
space vehicle stands alongside another spacecraft), “flyby” (a mission to intercept another
body, however without the objective to remain next to it), “swing-by” (a close approach
to a celestial body to gain or lose energy), and so forth. But, in the present paper, only the
rendezvous maneuver is considered.

2. Description of the Problem

The problem of orbital maneuvers has been studied in several published papers. Some of
them are shown in [1–28]. The different approaches to solve this problem can be appreciated
in those references. Some authors assumed that a low magnitude force is applied to the
spacecraft during a finite time. This is the so-called continuous thrust approach. References
[7, 10, 17, 28] have some details on this topic. As an alternative approach, the idea of an
impulsive maneuver is also studied. In this situation, a high magnitude force is applied
during a time that can be considered negligible. References [3, 5, 8, 27] used this important
approach. More recently, two more ideas appeared in the literature to perform orbital
maneuvers. The first one is the use of a close approach with a celestial body to change the
orbit of a spacecraft. It is the swing-by maneuver. References that used this approach are
[2, 13]. The second recent approach is the gravitational capture, where the force generated
by the perturbation of a third body [14] can be used to decrease the fuel expenditure of a
space maneuver. References [11, 12] have some details of this idea. Some publications cover
all those topics in more details, like [6, 9, 15]. Studies more related to the research shown in
the present paper are the ones considering the Lambert’s problem ([1, 16]), the rendezvous
maneuver ([20–26]), and genetic algorithms itself ([18, 19]).

In the present research, in order to solve the transfer proposed here, the Lambert’s
problem is used, in the way described below. The Lambert’s problem can be formulated
as follows: “Find an unperturbed orbit, under the mathematical model given by a law that
works with the inverse square of the distance (Newtonian formulation), that connects two
given points P1 and P2, with the transfer time (Δt) specified.” In the literature, several
researchers have solved this problem by using distinct formulations. Reference [1] shows
several of them. In this way, the parameters of the transfer orbit can be defined by

(1) ν1 is the true anomaly of the departure point P1 on the initial orbit. ν1 ∈ [0, 2π],

(2) Δν is the angular length of the transfer. Δν ∈ [0, 2π],
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Figure 1: Instantaneous scenario of the problem.

(3) at is the semimajor axis of the transfer orbit. Note that, for each pair of departure
and arrival points, a minimum value amin exists for at. Two transfer orbits can be
found for the same value of at, depending on the sense of the transfer.

The parameter at is usually replaced by a different parameter y. The advantage of this
substitution is that the new variable has values between 0 and 1. The relationship is shown
below [19]

at =
amin

4y
(
1 − y

) . (2.1)

The parameters ν1 and Δν determine the position of the points P1 and P2 that can be
related to the radius vectors �r1 and �r2. Any permitted value of the parameter y determines
univocally one transfer orbit. These parameters are, from the point of view of the genetic
optimizer, the genes of the members of the population.

The genetic algorithm searches for the best solution among a number of possible
solutions, represented by vectors in the solution space. To find a solution is to look for some
extreme value (minimum or maximum) in the solution space. The fitness of each individual
is represented by the total velocity impulse ΔV required to perform the orbital transfer. The
total impulse is given by the sum of the single impulses ΔVi provided in each thrust point in
order to pass from an orbital arc to the following one. It corresponds to the velocity difference
at the relevant thrust point.

The positions of the thrust points and the parameters of the transfer orbit are obtained
using as input the three genes, that is, the parameters previously chosen. The velocities at
the thrust points, before and after firing the engine, are easily computed, and it provides the
total velocity impulse, which is the measurement of the individual fitness. The evolutionary
process will select individuals with the genes corresponding to the optimal maneuver.
Figure 1 shows an instantaneous scenario of the problem.

Note that ν1 is the true anomaly of the point P1 on the initial orbit; ν2 is the true
anomaly of the point P2 on the final orbit; Δν is the angular length of the transfer; the
orientation of the transfer orbit is defined by the angle ω between its axis and the axis of
the initial orbit; c is the distance between P1 and P2 (2.4); Fi are the focus of the ellipse.
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Figure 2: The genetic algorithm.

2.1. The Genetic Algorithm

The procedure starts with a random population of up to 800 individuals. The initial
population is generated randomly, and consider its characteristics distance and angles
according to the constrains of each variable. The vectors �x are assembled according to the
allowed boundary condition. Then, the fitness of each individual is verified, following the
criteria of the objective function, which is to minimize the fuel consumption (measured by
the ΔV ) found by solving the Lambert’s problem. So, the best individuals are selected to go
to the next generation, parents, and children. The procedure of crossover is then applied, as
well as a mutation to insert diversity in the population (Figure 2).

The random variables used for the implementation of the algorithm are �x =
(Δθ1, Δθ2, R1, R2, y1, y3). Those symbols have the meaning that θi = νi − ω is the true
anomaly of the Pi points that determine the transfer orbit, as shown in Figure 3; Ri determines
the radius vector (position) in each thrust; the y (2.7) are the angles between ̂(F1, P1, P2) (see
Figure 3 again).

Eventually, there are epidemics, with the goal of inserting diversity and reducing the
elitism. After that, a new population is created, and the procedure is started again, finishing
after n attempts. The block diagram of the genetic algorithm (Figure 2) shows the procedures
followed to solve the problem. More details of the genetic algorithm can be obtained in [18,
19].

2.2. Selecting the Next Generation and Performing
the Crossover and the Epidemic Process

The selection of the new generation is made after the analysis of each individual by
measuring its objective function (Fitness). The ones with better values for this measurement
are selected to undergo a process of crossing or reproduction (crossover), where parents are
selected, and the children of this intersection are raised (Figure 2). When the population is too
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uniform, measured by the values of their objective functions, part of the population suffers
an epidemic process, where many individuals are killed and replaced by others using again a
random process, to insert diversity in the population and to prevent premature convergence
to local optimal values. The crossover starts by separating the chromosomes of the parents
in two parts. After this separation, the first part of the parent 1 is combined with the second
part of the parent 2, and the first part of the parent 2 is combined with the second part of the
parent 1. In this way, a second generation is created. See [18, 19] for more details.

2.3. Chromosome

The chromosome representation is vital for a genetic algorithm (GA), because it is the
way that we translate the information from the problem to a format that can be handled
by the computer. This representation is completely arbitrary, so it varies according to the
choice made by each developer, without any kind of obligation to adopt any representation
available in the literature. This is a very important point to emphasize. The vast majority
of researchers use the binary representation for this problem because it is the simplest
one. In fact, many people, when they imagine a GA, quickly make an association with
binary chromosomes (used to facilitate the crossing). However, other formulations using real
chromosomes, modifying the way of performing crossover, get satisfactory results [18]. In
this paper, each gene is chosen to be a real number between 0 and 1, being generated in a
binary form and then converted in a real number. The value of the corresponding parameter
is Xi = Xmin

i + ui(Xmax
i −Xmin

i ), where Xmin
i and Xmax

i are the minimum and maximum values
of those variables, which means that they are the boundary conditions. The main reason to
use the binary approach is to validate this usual approach, in GA problems, in the particular
type of problem considered here. References [18, 19], that studied this same problem using
GA, used different approaches, so the validation of the binary approach was considered
important.

2.4. Objective Function

Most of the selection techniques used in this procedure require comparisons of the fitness to
decide which solutions should be propagated to the next generation. Normally, the fitness
has a direct relation with the value of the objective function, according to the rule that
better values of the objective function generate higher values of the fitness parameter. When
the genetic algorithm calls the objective function, it transfers an array of parameters that
specify the selected solution. This selection parameter must not be changed in any way
by the objective function. Genetic algorithms are based on biological evolution, and they
are able to identify and explore environmental factors to converge to optimal solutions, or
approximately optimal global levels. Then, the fitness of each individual can be computed by
using the five data that define the problem (a1, e1, a2, e2,Δω, the first one being unit because
of the normalization of the variables) and the three genes (ν1,Δν, y) that characterize the
individual. Then, we can obtain several important parameters [15]. The true anomaly of the
arrival point is given by

νi = νi−1 + Δν. (2.2)
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Figure 3: Geometry of the problem and the angles involved in the problem.

The radii of the departure and arrival point are given by

r1 =
a1
(
1 − e2

1

)

1 + e1 cos ν1
,

r2 =
a2
(
1 − e2

2

)

1 + e2 cos ν2
.

(2.3)

The distance between P1 and P2 is

c =
√
r2

1 + r2
2 − 2r1r2 cosΔν. (2.4)

The semimajor axis of the transfer orbit is

amin =
r1 + r2 + c

4
. (2.5)

The distances c1 and c2 of P1 and P2 from the vacant focus F2 can be specified by the equations

ci = 2a − ri. (2.6)

Figure 3 shows a description of several important variables.
The angles can be calculated by (y = y1 + y2),

y = arcos

(
r2

1 − r2
2 + c2

2r1c

)

,

y1 = arcos

(
c2

1 − c2
2 + c2

2c1c

)

.

(2.7)

The eccentricity of the transfer orbit is given by

et =

√
c2

1 + r2
1 − 2c1r1 cos γ2

2at
. (2.8)
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The true anomaly θ1 of the P1 on the transfer orbit is

r1 =
at

(
1 − e2

t

)

1 + et cos θ1
,

θ1 = arcos

(
at

(
1 − e2

t

) − r1

r1et

)

.

(2.9)

The argument of perigee for the transfer orbit is

ω = ν1 − θ1, (2.10)

which is the angle between the perigees of the transfer and the initial orbits.
Now that the geometry of the maneuver has been shown, it is possible to calculate

the radial and the tangential components of the spacecraft velocity before and after both
impulses, what permits the computation of the total ΔV , which has been assumed to be the
measurement of the individual fitness.

2.5. Normalization

Nondimensional variables are used in the procedure. They are shown below

r =
r̃

ã1
,

v =
ṽ

√
μ/ã1

.
(2.11)

The distance and velocity units for the normalized variables are the semimajor axis of
the initial orbit and the velocity on a circular orbit with the same energy as the initial one. So,

the reference time is Δt =
√
ã3

1/μ.

3. Numerical Solutions

Several maneuvers were simulated with the procedure developed here, using the genetic
algorithm. Then, the equivalent Hohmann maneuvers were calculated to provide a level of
comparison. The idea is not to find a transfer that has a smaller total ΔV , when compared
to the Hohmann transfers, but to try to minimize the difference in costs, assuming that the
engine of the spacecraft has a limitation that does not allow two impulsive maneuvers to
be performed. In theory, for the cases simulated here, the two impulses maneuvers always
have a lower consumption. So, the idea is to find the best maneuver that has four impulses,
in order to compare with other works [18, 19]. The number of impulses is a parameter that
can be modified in the input data of the algorithm to be useful for other applications. The
results shown in the present paper always consider a rendezvous maneuver between two
spacecrafts, where the radius of the orbit of the first spacecraft is ro = 1, and several values
were used for the radius of the spacecraft that is in the final orbit (see Table 1). The genetic
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Table 1: Rendezvous between coplanar circular orbits showing the values of the ΔV for each burn and the
total expenditure (ΔVT ). The results for the Hohmann are included for comparison.

n◦ Simulation Cost using the genetic algorithm Hohmann transfer ΔV T −ΔVHT
(ro = 1) ΔV1 ΔV2 ΔV3 ΔV4 ΔV T =

∑4
i=1 ΔV i ΔVHT =

∑2
i=1 ΔV i

1 rf = 1.2 0.104455 0.118925 0.159234 0.154917 0.537531 0.087000 0.450500
2 rf = 1.5 0.044987 0.118996 0.165893 0.189594 0.519469 0.181600 0.337900
3 rf = 1.6 0.028621 0.120939 0.163349 0.204023 0.516932 0.206600 0.310300
4 rf = 1.8 0.000000 0.131481 0.169234 0.225721 0.526435 0.249300 0.277100
5 rf = 1.9 0.000000 0.127047 0.178111 0.233180 0.538338 0.267700 0.270600
6 rf = 2 0.008136 0.117267 0.185660 0.242748 0.553811 0.284500 0.269300
7 rf = 2.5 0.134621 0.000000 0.222416 0.298130 0.655167 0.349600 0.205300
8 rf = 3 0.171286 0.000000 0.242839 0.369209 0.783334 0.393800 0.271100
9 rf = 5 0.172864 0.310322 0.000000 0.423150 0.906336 0.480000 0.426300
10 rf = 10 0.004673 0.000000 0.372418 0.311566 0.688657 0.499300 0.189400

∆
V
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1.12
1
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Figure 4: Comparison between the ΔVGA and ΔVHohmann.

algorithm provided satisfactory solutions, when compared with the solutions of the literature
[18], as shown in Table 1. The population is composed by 800 individuals, and up to 400
generations of individuals were used.

The results indicated that the maneuvers using the GA with 4 impulses do not provide
savings over the Hohmann transfer for all cases simulated (see Figure 4 and Table 1), as
expected and explained before, but it minimizes the difference in costs for the assumed four
impulsive maneuvers. Figure 4 shows all the details for this comparison.

Figures 5, 6, 7, 8, and 9, as well as Table 1, show a series of maneuvers. In general, an
impulse is applied in the initial orbit (ΔV1), generating the first elliptical transfer arc, and
then, according to the procedure, the second impulse is applied (ΔV2), leading to another
elliptical transfer orbit. The third point of burn will happen (ΔV3) to put the spacecraft in
the last transfer arc, and, finally, the last impulse (ΔV4) is applied to locate the vehicle in
the desired orbit. The total consumption is the sum of all the intermediate impulses, and
it is named ΔVT (Table 1). This total consumption serves as an index of measurement and
comparison between the methods. In other words, the information of the extra cost is due to
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Figure 5: Four-burn orbit transfers for simulation 6.
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Figure 6: The variables of the problem using the method of genetic algorithm and the best fitness for
simulation 6.

the fact that a two-impulse maneuver is not possible and a detailed vision of the best four-
impulse strategy is generated by the GA.

The variables of the problem are �x = (Δθ1,Δθ2, R1, R2, y1, y3) (see Figures 5 and 7). In
each new generation of the population, the individuals are approaching the values suggested
by the algorithm, converging to a solution of the problem. The best fitness values of the
parameters show the convergence to the optimal value. Table 2 shows a detailed view of
the maneuver, explaining all the intermediate Keplerian orbits obtained.
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Table 2: The Keplerian elements of the intermediate orbits for the case where rf = 2.

Orbit a E w Vc

0 1 0 0 1
1 1.067591 0.247661 4.720904 0.967826586
2 1.553574 0.460257 5.401124 0.802294893
3 1.553574 0.460257 5.401124 0.802294893
4 2 0 0.707106781
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Figure 7: Four-burn orbit transfers for simulation 8.

Simulation 8 and Figure 7 show some new results that confirm that the use of
the procedure with four impulses provides results with higher consumption than the bi-
impulsive maneuver (Table 1), but that minimizes the four-impulsive burn technique.

This study can also be applied to find orbital maneuvers that search for the minimum
fuel consumption for a spacecraft that leaves one celestial body and goes back to this same
body (Figures 9 and 10). This question is of great importance for missions whose objective
is to shift the position of the satellite in a given orbit, without changing the other orbital
elements. Prado and Broucke [1] also studied this problem using the Lambert method, under
different circumstances.

3.1. The Swing-By Maneuvers

The next step is to use the algorithm developed here to study a maneuver that will make a
spacecraft to encounter a planet, in order to make a close approach that will change its energy.
This problem can be seen as a rendezvous problem, where the second spacecraft, the one to be
reached, is a planet and not a space vehicle. Using this approach, a transfer maneuver using
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Figure 9: Four-burn orbit transfers for simulation 1.

an impulsive engine with four burns is followed by a gravity-assisted maneuver to send the
spacecraft further in the solar system. This technique will reduce the cost of an interplanetary
mission. This is a standard procedure in orbital maneuvers, and a more detailed description
is available in references [2, 9]. In this case, the system consists of three bodies:

(1) the body M1, with finite mass, situated in the center of mass of the Cartesian system
of reference;
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Figure 10: Transfer maneuver from one orbit back to the same orbit.

(2) M2, a smaller body, that can be a planet or a satellite of M1, in a Keplerian orbit
around M1;

(3) a body M3, a space vehicle with infinitesimal mass, traveling in a Keplerian orbit
around M1, when it passes close to M2.

This close approach changes the orbit of M3 and, by the hypothesis assumed for
the problem, it is considered that the orbits of M1 and M2 do not change. Using the
“patched conics” approximation, the equations that quantify those changes are available in
the literature [9].

The standard maneuver can be identified by the following three parameters
(Figure 11):

(i) | �V∞|, the magnitude of the velocity of the spacecraft with respect to M2 when
approaching the celestial body;

(ii) rp, the distance between the spacecraft and the celestial body during the closest
approach;

(iii) ΨA, the angle the approach.

Having those variables, it is possible to obtain δ, half of the total deflection angle, by
using the equation [2]

δ = arsin

(
1

1 +
(
rpV 2∞/μ2

)

)

. (3.1)

Note that V2 is the velocity of the celestial body with respect to the main body and
VP is the velocity of the smaller mass when passing by the periapsis. A complete description
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Figure 11: The parameters of the swing-by maneuver.

of this maneuver and the derivation of the equations can be found in Prado [9]. The final
equations are reproduced below

ΔE = −2V2V∞ sin(δ) sin(ΨA),

ΔC =
−2V2V∞ sin(δ) sin(ΨA)

ω2
,

(3.2)

where ω2 is the angular velocity of the motion of the primaries, ΔE is the variation of energy,
ΔC is the variation of the angular momentum, and ΔV is the variation of the magnitude of
the velocity due to the swing-by. For the ΔV , we have the equation

ΔV =
∣∣∣Δ �V

∣∣∣ = 2
∣∣∣ �V∞

∣∣∣ sin(δ) = 2V∞ sin(δ). (3.3)

The gravity-assisted maneuver (swing-by) can provide a considerable change of the
velocity and energy of the spacecraft, reducing the costs of the mission. During this approach,
the spacecraft will be transferred to another orbit of interest of the mission. The dynamics
used to solve this problem is the traditional model given by the “Patched Conics,” so it
is assumed that all three bodies involved are points of mass and do not suffer external
disturbances. The variations given by the swing-by, in terms of velocity variation (ΔV ) and
energy variation (ΔE), can now be obtained.

Figure 12 shows the maneuver obtained by the genetic algorithm. The spacecraft
comes from an initial orbit with radius ro = 1 u.a., which represents the position of the Earth’s
heliocentric system, in astronomical units. It means that the spacecraft starts from the Earth.
Then, it performs a maneuver with 4 impulses, using three elliptic intermediate transfer
orbits, and finally it arrives in an orbit with rf = 5.202803 u.a. (Jupiter). At this moment,
it realizes a maneuver of Swing-by with the planet Jupiter. Note that the gain in velocity
was ΔVSB = 1.104368 and the gain in energy was ΔE = 2.017347. During this approach, the
space vehicle place itself in another orbit of the interest of the mission. In this mission, the
participation of the GA is to find the best procedure to make the spacecrafts reach the planet



14 Mathematical Problems in Engineering

5

4

3

2

1

0

−1

−2

−3

−4

−5
−6 −4 −2 0 2 4 6

∆V3 ∆V2

∆V1

∆V4

R(θ) (u.n.)

R
(θ
)
(u

.n
.)

V1 = 0.256974
V2 = 0.281067
V3 = 0

V4 = 0.394731
VT = 0.932772

∆
∆

∆
∆
∆

Four-burn orbit transfers—Earth-Jupiter-genetic algorithm.

Swing-by Jupiter

ψ = 259.4993
∆E = 2.017347

∆VSB = 1.104368

Figure 12: Simulation of a maneuvers leaving the Earth (ro = 1) and reaching the orbit of Jupiter (rf =
5.202803), performing a swing-by maneuver on the planet to gain velocity and energy.

Jupiter. From this point, standard procedures of interplanetary trajectories can complete the
mission.

4. Conclusion

Based on the analysis of the results obtained, the genetic algorithm implemented here
shows that this technique brings good results for the proposed four impulsive rendezvous
maneuvers, when compared with the ones obtained by the traditional impulsive methods. It
means that it can be used in real cases, specially when a bi-impulsive transfer is not possible
due to the limitations of the engine of the spacecfraft. The procedure is also effective in
maneuvering the spacecraft from one body back to the same body, that is, making it leaving
and returning to the same orbit.

The results indicate that the maneuver using the genetics algorithm with four impulses
does not provide better fuel consumption in any case simulated, since the bi-impulsive
maneuver is better in this situation, but the method proves to be efficient in minimizing
the four impulsive maneuvers. It is necessary to take into account that, in many cases, the
limitations of the propellers of the spacecraft require that the maneuver has to be performed
using several impulses, passing through intermediate orbits to reach the target.

Then, we studied a maneuver where the goal is to send a spacecraft to encounter the
planet Jupiter to make a swing-by maneuver. The algorithm worked well in finding a good
solution for this problem.

In general, the proposed technique can be used when a rendezvous maneuver is
required between two given circular orbits for a spacecraft that has an engine that requires
the application of four impulses.
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In the future, it is possible to apply this technique in three dimensions, in maneuvers
that requires more impulses, and also in maneuvers to avoid collisions between a spacecraft
and asteroids.
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