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We propose a new exact method for solving bilevel 0-1 knapsack problems. A bilevel problem
models a hierarchical decision process that involves two decision makers called the leader and
the follower. In these processes, the leader takes his decision by considering explicitly the reaction
of the follower. From an optimization standpoint, these are problems in which a subset of the
variables must be the optimal solution of another (parametric) optimization problem. These
problems have various applications in the field of transportation and revenue management, for
example. Our approach relies on different components. We describe a polynomial time procedure
to solve the linear relaxation of the bilevel 0-1 knapsack problem. Using the information provided
by the solutions generated by this procedure, we compute a feasible solution (and hence a lower
bound) for the problem. This bound is used together with an upper bound to reduce the size
of the original problem. The optimal integer solution of the original problem is computed using
dynamic programming. We report on computational experiments which are compared with the
results achieved with other state-of-the-art approaches. The results attest the performance of our
approach.

1. Introduction

Bilevel optimization problems were introduced for the first time in [1] in connection with the
well-known Stackelberg game [2]. These problems are related to the decision making process
conducted by two agents, each with his own individual objective, under a given hierarchical
structure. The agent that is at the top of this hierarchy is called the leader. His distinctive
feature in the process is that he knows which decision is taken by the other agent (called the
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follower). As a consequence, he can optimize his own objective by taking into account the
decision of the follower.

The bilevel 0-1 knapsack problem (BKP) that is addressed in this paper is defined in
this context. It is a hierarchical optimization problem in which the set of feasible solutions
depends on the set of optimal solutions of a parametric 0-1 knapsack problem. The BKP can
be formulated as follows:

(BKP) max
x,y

f1(x, y
)
= d1x + d2y

s.t. x ∈ {0, 1}n1
,

y ∈ Argmax
{
f2(y′

)
= cy′ : a1x + a2y′ ≤ b, y′ ∈ {0, 1}n2

}
.

(1.1)

The n1 decision variables related to the leader are denoted by x. The follower has n2 decision
variables which are denoted by y. The objective functions of the leader and the follower are
denoted, respectively, by f1(x, y) and f2(y). The weights of the variables x and y in the
objective function of the leader are denoted by d1 and d2, respectively, while the vector c
represents the coefficients of the follower variables in his own objective function. The vectors
a1 and a2 are the set of coefficients related to the decision variables of the leader and the
follower in the knapsack constraint of the follower, respectively. The capacity of this knapsack
constraint is denoted by b. All the coefficients of the problem are assumed to be positive. The
standard 0-1 knapsack problem is a special case of BKP. It is obtained from (1.1) by setting
n1 = 0 and d2 = c. As a consequence, the problem BKP is NP-hard.

Different methods have been proposed in the literature for bilevel programming
problems with and without integer variables [3, 4]. A recent survey on the contributions
for solving bilevel programming problems can be found in [5]. Many of these methods focus
on problems with continuous variables.

The bilevel knapsack problem was addressed by Dempe and Richter [6], Plyasunov
[7], and Brotcorne et al. [8], but only for the case where there is a single (continuous) variable
for the leader and different binary variables for the follower. Note that, for these cases, there
may be no optimal solution for the problem [4]. The branch-and-bound algorithm proposed
byMoore and Bard in [9] and the method proposed by Brotcorne et al. in [10] can be adapted
to solve the BKP addressed in this paper. At the end of the paper, we will compare our
approach with the results obtained by these two algorithms.

Here, we consider the case where all the variables of the problem are binary variables.
We propose a new exact approach for this problem based on several intermediate procedures.
A lower bound for the problem is computed by applying first a polynomial time algorithm
to solve the linear relaxation of BKP. The solutions generated by this algorithm are then
used to compute feasible solutions to BKP and hence to obtain a valid lower bound for the
problem. Using this lower bound and a given upper bound, the size of the problem is reduced
by applying fixing rules. Dynamic programming rules are applied afterwards to obtain the
optimal solution of BKP.

Bilevel programming problems have many applications on different fields includ-
ing economics, engineering, the determination of pricing policies, production planning,
transportation, and ecology. In [11], Dempe identified more than 80 references in the
literature describing applications of bilevel problems. Other examples, namely, on the field of
engineering are described in [12]. The BKP is a discrete bilevel problem that can be applied in
many situations involving the interaction between two agents whose (binary) decisions are
interrelated and with each one trying to optimize his own objective. Real applications of this
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problem can be found in revenue management, telecommunications, capacity allocation, and
transportation, for example.

An application in revenue management may involve an individual searching for the
best investment plan for his capital. The investor has the choice between placing his funds
directly on financial applications with a guaranteed rate of return, letting an intermediary
company (a broker, e.g.) decide how to invest these funds, or dividing the funds between
these two possibilities. The intermediary company cannot invest more than the amount
provided by the individual and it will do so in order to maximize its own profit. For this
purpose, the intermediary will buy shares, bonds, or other financial assets that will provide it
a revenue. Part of this revenue will be given back to the individual as a return on investment.
In turn, the individual will decide on the amount to invest by itself and the amount to give to
the intermediary with the objective of maximizing his own profit. In BKP, the individual will
be the leader, while the intermediary will be considered as the follower. The value b in (1.1)
represents the capital of the individual. The coefficients of a1 represent the amounts that the
individual can invest by itself and which will provide him a guaranteed rate of return given
by the vector d1. The alternative investment plans in which the intermediary company can
invest, the revenue that these plans will provide to this company, and the revenue that will
be paid back to the investor are represented in (1.1) by a2, c, and d2, respectively. In BKP, the
decision of the leader has a direct impact on the knapsack constraint of the follower. In fact,
the decision of the individual (the leader)will set the capacity of the knapsack and determine
the total amount of money that the intermediary (the follower) will be allowed to invest.

An alternative application of BKP occurs in telecommunications, and in particular
in the problem of allocating bandwidth to different clients. An application in this area was
addressed in [13] using an approach based on a bilevel programming problemwith knapsack
constraints. The BKP can be used in this context to model the interaction between a service
provider and its competitors. The service provider can use its installed capacity to serve
directly its clients, or it can grant capacity to another company that may use this capacity
to route the demand of its own clients through the network of the service provider. The latter
charges the company for this service, while the company will choose or not to reroute the
traffic of its clients through the network of the service provider according to the offers of
other competitors and so as to maximize its own profit. In this case, the leader is the service
provider and the follower is the other company. The total capacity of the service provider is
the coefficient b in (1.1). The price that is charged by the service provider is represented by
d2, while the amount of traffic required by the clients is given by a1 and a2.

The remainder of the paper is organized as follows. In Section 2, we introduce different
definitions and the notation that is used in the paper, andwe describe the properties of BKP. In
Section 3, we describe the details of our algorithm. We present our algorithm to solve the lin-
ear relaxation of BKP, the rules used to reduce the size of the problem, and the dynamic pro-
gramming procedures developed to find the optimal solution of BKP. In Section 4, we report
on computational results that illustrate the efficiency of our methods compared with the only
available method from the literature [14]. Some final conclusions are drawn in Section 5.

2. The Bilevel 0-1 Knapsack Problem

2.1. Definitions

We introduce first the following standard definitions related to the bilevel 0-1 knapsack
problem BKP described in the previous section:
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(i) the relaxed feasible set:

S =
{(

x, y
) ∈ {0, 1}n1+n2

: a1x + a2y ≤ b
}
; (2.1)

(ii) the set of rational reactions of the follower for a fixed x:

P(x) = Argmax
{
f2(y

)
: a2y ≤ b − a1x, y ∈ {0, 1}n2

}
; (2.2)

(iii) the Inducible Region (IR), that is, the space over which the leader optimizes:

IR =
{(

x, y
) ∈ S : y ∈ P(x)

}
. (2.3)

Using this notation, we can rewrite the BKP as follows.

(BKP) max
x,y

f1(x, y
)
= d1x + d2y

s.t.
(
x, y

) ∈ IR.
(2.4)

When several optimal solutions exist for the follower problem, the previous model
is not sufficient to define the optimal value of the problem because, for a leader decision,
the follower can have several equivalent solutions. In this case, the solutions of the BKP can
be defined either optimistically or pessimistically for each fixed leader variable [15]. These
approaches can be described as follows.

(i) Optimistic

We assume that the leader can influence the decision of the follower in his favor. In this case,
the problem to solve becomes

max
x

{
max

y

{
f1(x, y

)
: y ∈ P(x)

}(
x, y

) ∈ S

}
, (2.5)

and its optimal solution is called a weak solution.

(ii) Pessimistic

The follower takes his decision independently of the interests of the leader. In this case, the
problem to solve becomes

max
x

{
min
y

{
f1(x, y

)
: y ∈ P(x)

}(
x, y

) ∈ S

}
, (2.6)

and its optimal solution is called a strong solution.
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A detailed discussion of each approach can be found in [15]. The algorithms described
in this paper can find both the strong and the weak solution of the problem. However, and
for the sake of clearness, we will focus our presentation on the optimistic approach.

2.2. An Upper Bound for BKP

The linear relaxation of BKP obtained by removing all the integrality constraints does not
provide a valid upper bound for the problem. Hence, we resort to an upper bound for bilevel
programming problems provided by a relaxation of (1.1) called the high-point problem [9, 16].
The high point problem is obtained by removing the objective function of the follower and
the integrality constraints. It is defined formally as follows:

(HBKP) max
x,y

f1(x, y
)
= d1x + d2y

s.t. a1x + a2y ≤ b,

x ∈ [0, 1], y ∈ [0, 1].

(2.7)

The optimal solution of this relaxation can be computed using a classical procedure for the
knapsack problem [17].

2.3. Computing a Feasible Solution for BKP

A feasible solution to BKP can be computed by solving a different optimization problem
related to the follower problem as shown in the following proposition.

Proposition 2.1. Let z ∈ {0, . . . , b}. An optimal solution to the following problem denoted by FBKPz

is also feasible for BKP:

(FBKPz) max
x,y

f
(
x, y

)
= d1x + cy (2.8)

s.t. a1x = z, (2.9)

a2y ≤ b − z,

x ∈ {0, 1}n1
, y ∈ {0, 1}n2

.
(2.10)

Proof. As long as FBKPz admits a feasible solution, its optimal solution is feasible for the
follower problem of BKP since the knapsack constraint of the follower is satisfied due to (2.9)
and (2.10). This optimal solution is also optimal for the follower problem because it takes into
account the follower objective function on the follower variables.

An optimal solution (x∗, y∗) for BKP can then be defined using FBKPz as follows:

(
x∗, y∗

) ∈ Argmax
{
d1x∗z + d2y∗z :

(
x∗z, y

∗
z

)
is an optimal solution of FBKPz, for z = 0, . . . , b

}
.

(2.11)
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Clearly, finding an optimal solution for BKP by solving FBKPz for each possible value of z is
computationally expensive. To obtain a good feasible solution for BKP, in our algorithm, we
solve the problem FBKPz for a set of good candidate values for z, which are obtained by solv-
ing the linear relaxation of BKP with the polynomial time procedure described in Section 3.1.

3. An Exact Algorithm for BKP

Before we describe our exact algorithm for BKP, we define and discuss first its different
components. Our algorithm relies on the computation of an upper and lower bound for BKP.
The upper bound is computed by solving exactly the problem HBKP defined previously. The
lower bound is obtained by solving first a linear relaxation of BKP using the polynomial
time procedure described in Section 3.1, and then by solving the problem FBKPz for different
values of the parameter z. The values of z are associated to feasible solutions of the linear
relaxation of BKP which are obtained by applying the polynomial procedure mentioned
previously. The upper and lower bounds are used to fix variables of BKP to their optimal
values (Section 3.2) and to further enhance the definition of the original problem so as to
improve its resolution in the remaining steps (Section 3.3). The optimal value for the resulting
problem is computed using dynamic programming. This value is then used to generate
an optimal solution for BKP. The two phases of this dynamic programming procedure are
described in Section 3.4. The outline of our exact algorithm is given in Section 3.5.

3.1. A Polynomial Time Solution Procedure for the Linear Relaxation of BKP

In this section, we show that the linear relaxation of BKP can be solved up to optimality in
polynomial time, and we describe a procedure that computes this optimal solution. First,
we recall the formal definition of this linear relaxation that will be denoted by CBKP (for
continuous bilevel 0-1 knapsack problem):

(CBKP) max
x,y

f1(x, y
)
= d1x + d2y

s.t. 0 ≤ x ≤ 1,

y ∈ Argmax
{
f2(y′

)
= cy′ : a1x + a2y′ ≤ b, 0 ≤ y′ ≤ 1

}
.

(3.1)

Now,we show that solving CBKP is equivalent to the resolution of the linear relaxation
of a standard knapsack problem.

Proposition 3.1. Assume that the follower variables y1, y2, . . . , yn2 are sorted in decreasing order of
the relative value between their profit and their weight in the knapsack constraint, that is, such that
c1/a

2
1 ≥ c2/a

2
2 ≥ · · · ≥ cn2/a2

n2 . If ci/a2
i = cj/a

2
j , the order between the corresponding variables is

determined according to the objective function of the leader, that is, d2
i /a

2
i ≥ d2

j /a
2
j (in the pessimistic

case, one will consider d2
i /a

2
i ≤ d2

j /a
2
j ). Let x

∗ be a decision of the leader. In this case, the total resource
consumed by the leader in the knapsack constraint is given by a1x∗. Furthermore, let k be defined such
that b − a1x∗ ∈ [

∑k
i=1 a

2
i s,

∑k+1
i=1 a2

i [. The reaction of the follower related to the decision x∗ will be as
follows:

y1 = 1, y2 = 1, . . . , yk = 1, yk+1 =

(
b − a1x∗ −∑k

i=1 a
2
i

)

a2
k+1

, yk+2 = 0, . . . , yn2 = 0. (3.2)
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Let dopt denote the optimal value of the leader objective function;
Let (xopt, yopt) be an optimal solution of CBKP;
Initialization

Sort the variables x and y in decreasing order of the ratio d1
j /a

1
j for x and cj/a

2
j

and d2
j /a

2
j for y;

Let

x∗1 = 1, x∗2 = 1, . . . , x∗
k
= 1, x∗

k+1 =
(b −∑k

i=1 a
1
i )

a1
k+1

, x∗
k+2 = 0, . . . , x∗

n1 = 0

be the optimal solution for the following problem:
x∗ ∈ Argmax{f1(x) = d1x : a1x ≤ b, 0 ≤ x ≤ 1};

Let

y∗1 = 1, y∗2 = 1, . . . , y∗t = 1, y∗t+1 =
(b − a1x∗ −∑t

i=1 a
2
i )

a2
t+1

, y∗t+2 = 0, . . . , y∗
n2 = 0

be the optimal solution for the following problem:
y∗ ∈ Argmax{f2(y) = cy : a2y ≤ b − a1x∗, 0 ≤ y ≤ 1};

/∗ The indexes k + 1 and t + 1 are respectively the indexes of the last
leader and follower variables with a positive value according
to the ordering ∗/
Let dopt = d1x∗ + d2y∗;

i = k + 1; j = t + 1;
while (i > 0) and (j < n2 + 1) do

if (a1
i x
∗
i > a2

j (1 − y∗j )) then
x∗i = x∗i − a2

j (1 − y∗j )/a1
i ; y

∗
j = 1; j = j + 1;

end
else if (a1

i x
∗
i < a2

j (1 − y∗j )) then
x∗i = 0; y∗j = y∗j − a1

i x
∗
i /a

2
j ; i = i − 1;

end
else if (a1

i x
∗
i = a2

j (1 − y∗j )) then
x∗i = 0; y∗j = 1; i = i − 1; j = j + 1;

end
if (dopt < d1x∗ + d2y∗) then

dopt = d1x∗ + d2y∗; (xopt, yopt) = (x∗, y∗);
end

end

Algorithm 1: A polynomial time solution procedure for CBKP.

Proof. Indeed, for a given decision x∗ of the leader, the problem CBKP becomes a standard
0-1 knapsack problem:

(CBKPx∗) y ∈ Argmax
{
f2(y

)
= cy′ : a2y′ ≤ b − a1x∗, 0 ≤ y′ ≤ 1

}
. (3.3)

In Algorithm 1, we describe a polynomial time procedure that generates a weak
solution for CBKP. The algorithm is based on the same idea that is used to solve the standard
0-1 knapsack problem. We start by solving the knapsack problem associated to the leader
variables and objective function:

x∗ ∈ Argmax
{
f1(x) = d1x : a1x ≤ b, 0 ≤ x ≤ 1

}
, (3.4)
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with x∗ being the optimal solution of this problem. Then, we solve the follower knapsack
problem that results from the leader decision x∗:

y∗ ∈ Argmax
{
f2(y

)
= cy : a2y ≤ b − a1x∗, 0 ≤ y ≤ 1

}
, (3.5)

with y∗ being the corresponding optimal solution. The algorithm enumerates all the
nondominated feasible linear programming basic solutions starting by the solution (x∗, y∗).
At each iteration, we move from a feasible basic solution to another by transferring the
resources consumed by the leader to the follower. To clarify the procedure, we illustrate its
execution in Example 3.2.

Example 3.2. Consider the following continuous bilevel 0-1 knapsack problem denoted by
CBKP1:

(CBKP1) max
x,y

f1(x, y
)
= 3x1 + 2x2 + 7x3 + 5y1 + y2 + 2y3 + y4

s.t. 0 ≤ x ≤ 1,

max
y

f2(y
)
= 2y1 + 2y2 + 3y3 + 4y4

s.t. 3x1 + x2 + 2x3 + y1 + 2y2 + y3 + 4y4 ≤ 4

0 ≤ y ≤ 1.

(3.6)

We start by sorting the variables of the leader in decreasing order of the ratio d1
j /a

1
j , which

results in the sequence x3 (with d1
3/a

1
3 = 7/2), x2 (with d1

2/a
1
2 = 2/1), and x1 (with d1

1/a
1
1 =

3/3). A similar ordering is applied to the variables of the follower resulting in the sequence y3

(with c3/a
2
3 = 3/1), y1 (with c1/a

2
1 = 2/1), y2 (with c2/a

2
2 = 2/2), and y4 (with c4/a

2
4 = 4/4).

Note that y2 and y4 have the same ratio cj/a
2
j , but y2 with d2

2/a
2
2 = 1/2 outperforms y4 with

d2
4/a

2
4 = 1/4. In this example, we are considering the optimistic case. In the first phase of the

procedure, we solve the following problem:

max
x

f1(x) = 3x1 + 2x2 + 7x3

s.t. 3x1 + x2 + 2x3 ≤ 4,

0 ≤ x ≤ 1.

(3.7)

The optimal solution of this problem is x∗3 = 1, x∗2 = 1, and x∗1 = 1/3. The optimal reaction
of the follower for this decision of the leader is y∗ = (0, 0, 0, 0) and dopt = 10. The solutions
generated at each iteration of the Algorithm 1 are described as follows:

(1) x∗3 = 1, x∗2 = 1, x∗1 = 1/3 and y∗3 = 0, y∗1 = 0, y∗2 = 0, y∗4 = 0 with dopt = 10;

(2) x∗3 = 1, x∗2 = 1, x∗1 = 0 and y∗3 = 1, y∗1 = 0, y∗2 = 0, y∗4 = 0 with dopt = 11;

(3) x∗3 = 1, x∗2 = 0, x∗1 = 0 and y∗3 = 1, y∗1 = 1, y∗2 = 0, y∗4 = 0 with dopt = 14;

(4) x∗3 = 0, x∗2 = 0, x∗1 = 0 and y∗3 = 1, y∗1 = 1, y∗2 = 1, y∗4 = 0 with dopt = 8.
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The value dopt denotes the optimal value of the leader objective function as introduced in
Algorithm 1. The optimal solution of CBKP1 is obtained at the third iteration. This solution is
achieved after a polynomial number of steps.

In Algorithm 1, all the nondominated feasible basic solutions of CBKP are visited.
For each one of these solutions, we can associate a value for the parameter z in FBKPz. In
Example 3.2, the value of z is equal to 4, 3, 2, and 0 at the iterations 1 to 4, respectively. These
values are equal to a1x0, with x0 being the value of the leader variables of a given basic
solution generated in Algorithm 1. As shown in Section 2.3, we can obtain a feasible solution
for BKP by solving the problem FBKPz using these values of z.

A basic solution of CBKP has at most two fractional variables (one for the leader, and
another for the follower). If a basic solution of CBKP is integer for both the leader and the
follower variables, then this solution is feasible for FBKPz and for BKP too. If all the variables
of the leader are integer, and only one variable of the follower is fractional, then we can fix
the values of the leader variables in FBKPz and solve the resulting problem which becomes a
single knapsack problem. In these two cases, it is always possible to find a feasible solution
for FBKPz, and hence for BKP. However, when one of the leader variables is fractional, the
problem FBKPz may be infeasible. This is due to the fact that we are considering that z ∈
{�a1x0�, �a1x0� + 1}. Since there is no guarantee that the equation a1x = z in FBKPz has a
solution, the corresponding problem FBKPz may be infeasible.

Solving the problem FBKPz for a single value of the parameter z can be done efficiently
using branch-and-bound, for example. Clearly, solving this problem for all the values of
z in {0, . . . , b} is much more expensive computationally. In our algorithm, our approach
to generate a good feasible solution for BKP consists in inspecting a restricted set of good
candidate values for z. For this purpose, we choose the values of z that are associated to the
n best solutions generated by Algorithm 1. In Example 3.2, if we set n = 2, then the values of
z associated to the two best solutions generated by Algorithm 1 (obtained at the iterations 2
and 3)will be used as a parameter in FBKPz. The problems that will be solved in this case are
FBKP2 and FBKP3.

The feasible solution (and corresponding lower bound) that is generated using this
approach can be used together with the upper bound provided by HBKP to reduce the size
of the original problem BKP. This can be done by fixing the values of some variables to their
optimal values. The strategies used to reduce the size of the original BKP are described in the
next section.

3.2. Reducing the Size of BKP Using Fixing Rules

A strategy to improve the resolution of 0-1 mixed integer programming problems which has
been used extensively in the literature consists in fixing the values of some variables to their
optimal value. Many authors [18–20] reported different procedures based on this idea to
reduce the size of multidimensional knapsack problems. In this section, we show that it is
also possible to apply fixing rules to BKP, and we describe the procedure that we used in our
algorithm.

In many cases, fixing variables to their optimal value can be done via inexpensive
operations. In the sequel, we show how variables can be fixed using information on the upper
and lower bounds for the problem.

Proposition 3.3. Let α ∈ {0, 1} and LB be a lower bound for BKP. One will use the notation v(·) to
indicate the optimal value of a given problem. The following fixing rules apply:
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(i) for any j ∈ {1, . . . , n1}, if v(HBKP | xj = α) < LB, then xj can be fixed to the value 1 − α;
(ii) for any j ∈ {1, . . . , n2}, if v(HBKP | yj = α) < LB, then yj can be fixed to the value 1 − α.

Proof. Let v(BKP) be the optimal value for BKP, and let q denote both the variables x and y of
the leader and follower, respectively. Note that v(BKP) = max{v(BKP | qj = α), v(BKP | qj =
1 − α)}. Therefore, if v(HBKP | qj = α) < LB, then inevitably v(BKP) = v(BKP | qj = 1 − α),
and the optimal value q∗j can be fixed to 1 − α.

These fixing rules depend only on an upper and a lower bound for the problem. The
stronger the upper and lower bounds are, the more effective will be the rules for fixing the
variables.

To introduce a new fixing rule, we rewrite the problemHBKP (used to derive an upper
bound for BKP) in its standard form as follows:

max
{
d1x + d2y : a1x + a2y + s = b, e ≥ x ≥ 0, e ≥ y ≥ 0, s ≥ 0

}
, (3.8)

where s corresponds to the vector of slack variables and e is the vector with all elements
equal to 1. Let N1 = {1, . . . , n1} and N2 = {1, . . . , n2} be the indices of the leader and follower
variables x and y, respectively.

By reference to the LP basis that produces (x, y), we define B = {j ∈N1 : xj is basic} ∪
{j ∈ N2 : yj is basic} and B = {j ∈ N1 : xj is nonbasic} ∪ {j ∈ N2 : yj is non-basic}. We

subdivide B to identify the four subsets B0x = {j ∈ B : xj = 0}, B0y = {j ∈ B : yj = 0},
B1x = {j ∈ B : xj = 1}, and B1y = {j ∈ B : yj = 1}.

Assume that (x, y) is an optimal basic solution of HBKP. The problem HBKP can be
written in the optimal basis related to (x, y) in the following way:

max v(HBKP) +
∑

j∈B0x

d̂1
j xj +

∑

j∈B0y

d̂2
j yj −

∑

j∈B1x

d̂1
j

(
1 − xj

) −
∑

j∈B1y

d̂2
j

(
1 − yj

)
+ l̂s

s.t. â1x + â2y + t̂s = b̂,

x ∈ [0, 1]n
1
, y ∈ [0, 1]n

2
, s ≥ 0,

(3.9)

with v(HBKP) being the optimal value of HBKP, and (d̂1, d̂2, l̂) the vector of reduced costs
corresponding to the variables (x, y, s) of the optimal basis. For a given lower bound LB for
BKP, we have

v(HBKP) +
∑

j∈B0x

d̂1
j xj +

∑

j∈B0y

d̂2
j yj −

∑

j∈B1x

d̂1
j

(
1 − xj

) −
∑

j∈B1y

d̂2
j

(
1 − yj

)
+ l̂s ≥ LB.

(3.10)

The quantity l̂s is negative because of the negative reduced cost vector l̂ associated to the

optimal basic solution, and the positive slack variables s. Moreover, since d̂1
j ≤ 0 for j ∈ B0x
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(resp., d̂2
j ≤ 0 for j ∈ B0y), and d̂1

j ≥ 0 for j ∈ B1x (resp., d̂2
j ≥ 0 for j ∈ B1y), we can consider the

following cut based on the reduced costs:

∑

j∈B0x

d̂1
j xj +

∑

j∈B0y

d̂2
j yj −

∑

j∈B1x

d̂1
j

(
1 − xj

) −
∑

j∈B1y

d̂2
j

(
1 − yj

) ≤ v(HBKP) − LB.
(3.11)

This inequality can be used to derive the fixing rule introduced in the next proposition.

Proposition 3.4. If xj (resp., yj) is a nonbasic variable, and |d̂1
j | > v(HBKP) − LB (resp., |d̂2

j | >
v(HBKP) − LB), then at optimality one has x∗j = xj (resp., y∗j = yj).

Proof. The proof comes directly from the previous inequality (3.11).

Applying these fixing rules is useful for reducing the size of the original problem BKP,
and hence to improve its resolution. However, because they do not take into account the
objective function of the follower, these rules may result in problems whose solutions are
infeasible for the original BKP. The problem occurs when the leader has solutions with the
same value than the optimal solution, but which are infeasible for the original BKP because
they are not optimal for the follower. To clarify this issue, we apply these rules on the case
described in Example 3.2. The results are given in the following example.

Example 3.5. Consider the instance of BKP whose linear relaxation is given by CBKP1 in
Example 3.2. We will denote this instance of BKP by BKP1. In Table 1, we describe an optimal
solution (x, y) for the corresponding problem HBKP, and we report on the values of the
associated vectors of reduced costs (d̂1, d̂2). Furthermore, we specify whether a given variable
is a basic variable or not by reference to the solution (x, y), and we identify the variables that
can be fixed according to the fixing rules described previously.

Let UB and LB denote, respectively, the value of an upper and lower bound for this
instance of BKP. The value of the solution given in Table 1 is 14, and hence we have UB = 14.
By applying Algorithm 1, we obtain a lower bound of value LB = 14, as shown in Example 3.2.
According to Proposition 3.4, since UB − LB = 0, all the nonbasic variables with an absolute
reduced cost greater than 0 can be fixed, and hence we have x∗1 = 0, x∗3 = 1, y∗1 = 1, y∗2 = 0, and
y∗4 = 0. The variable x2 cannot be fixed because the absolute value of its reduced cost is not
greater than UB − LB. Similarly, the variable y3 cannot be fixed because it is a basic variable.
Applying the fixing rules leads to the following problem:

(BKP1) max
x,y

f1(x, y
)
= 2x2 + 2y3 + 12

s.t. x2 ∈ {0, 1},

max
y

f2(y
)
= 3y3

s.t. x2 + y3 ≤ 1,

y3 ∈ {0, 1}.

(3.12)



12 Mathematical Problems in Engineering

Table 1: An optimal solution for HBKP (Example 3.5).

x1 x2 x3 y1 y2 y3 y4

(x, y) 0 0 1 1 0 1 0
(d̂1, d̂2) −3 0 3 3 −3 0 −7
Basic variable no no no no no yes no
Variable can be fixed yes no yes yes yes no yes

The resulting problem has two equivalent solutions. The first one consists in the leader action
x2 = 1 and the follower reaction y3 = 0. In this case, the complete solution (denoted by sol1)
for the original problem is x1 = 0, and x2 = 1, x3 = 1 and y1 = 1, y2 = 0, y3 = 0, and y4 = 0.
The second solution consists in the leader action x2 = 0 and the follower reaction y3 = 1. The
complete solution for the original problem in this case (denoted by sol2) is x1 = 0, x2 = 0, and
x3 = 1 and y1 = 1, y2 = 0, y3 = 1, and y4 = 0. The value of both sol1 and sol2 is equal to 14.
However, the optimal solution of original problem BKP 1 is given by sol2, since for the leader
action x1 = 0, x2 = 0, and x3 = 1 the reaction of the follower y1 = 1, y2 = 0, y3 = 1, and y4 = 0 is
optimal for the follower problem. On the contrary, sol1 is not feasible for the problem because
for the leader action x1 = 0, x2 = 1, and x3 = 1, the follower reaction should not be y1 = 1,
y2 = 0, y3 = 0, and y4 = 0 with the value 2 for the follower objective function. In this case, the
follower reaction should be y1 = 0, y2 = 0, y3 = 1, and y4 = 0 with a corresponding value for
the follower objective function that is equal to 3.

As shown in Example 3.5, the optimal solution of the problem can be found even
when the fixing rules described in this section are applied. However, an additional treatment
on the optimal solutions of the resulting problem is necessary to identify the solutions that
are optimal for the follower problem (and hence feasible for the original problem BKP). To
overcome this issue, in our algorithm, we fixed only the leader variables that are not directly
influenced by the objective function of the follower.

3.3. Reducing the Interval of Values for the Parameter Z in FBKPZ

In this section, we show how to decrease the knapsack capacity b of the follower problem,
and hence the size of the interval of possible values for z in FBKPz. Let lbz and ubz be the
values of a lower and upper bound for z in the problem FBKPz. Initially, we have lbz = 0 and
ubz = b, and hence z ∈ [0, b]. The smaller the size of the interval [lbz,ubz] is, the easier the
problem BKP will be to solve.

To improve the values of lbz and ubz, we solve the following two linear programming
problems (denoted by LBz and UBz) which relies on a lower bound LB for BKP. The optimal
value of LBz leads to a feasible value for lbz, while UBz leads to a feasible value for ubz:

(LBz) min z

s.t. a1x = z,

a2y ≤ b − z,

d1x + d2y ≥ LB,

x ∈ [0, 1]n
1
, y ∈ [0, 1]n

2
, z ∈ [0, b],
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(UBz) max z

s.t. a1x = z,

a2y ≤ b − z,

d1x + d2y ≥ LB,

x ∈ [0, 1]n
1
, y ∈ [0, 1]n

2
, z ∈ [0, b].

(3.13)

Optimizing over the variable z with the additional constraint d1x + d2y ≥ LB in these two
linear programs ensures that the resulting lower and upper bound for z will not cut the
optimal solution of the original BKP. In the next section, we show how this new interval helps
in improving the performance of the dynamic programming component of our algorithm for
BKP.

3.4. Computing an Optimal Solution of BKP Using Dynamic Programming

In this section, we describe an approach based on dynamic programming to compute the
optimal solution of BKP. The approach is divided into two phases. The first phase is a forward
procedure whose objective is to find the value of an optimal solution for BKP. This forward
phase divides in turn into two steps which are applied, respectively, to the leader variables
and to the follower variables. The dynamic programming rules used for the follower variables
are an extension of those used in [8]. In the second phase, a backtracking procedure is applied
to generate a solution for the BKP with the value found in the forward phase. This dynamic
programming algorithm has a pseudo-polynomial complexity, and it is able to solve both the
optimistic and pessimistic cases mentioned previously. For the sake of brevity, we will focus
our presentation on the optimistic case.

3.4.1. Computing the Optimal Value of BKP: The Forward Phase

As alluded previously, the objective of the forward phase is to find the optimal value of BKP.
This phase consists in two steps. The first step applies to the variables of the leader in BKP,
and it considers only the objective function of the leader. The definition of this step relies
on the interaction between the leader and the follower. For a given decision x of the leader,
the follower has to maximize his total profit cy using the corresponding residual capacity
b − a1x. For each value of ϑ ∈ [0, b], the best action for the leader has to be determined:
xϑ∈[0,b] ∈ Argmax{d1x : a1x = ϑ, x ∈ {0, 1}n1}. Hence, the dynamic programming subproblem
for the leader states as follows:

f1
k(ϑ) = max

⎧
⎨

⎩

k∑

j=1

d1
j xj :

k∑

j=1

a1
j xj = ϑ, x ∈ {0, 1}k

⎫
⎬

⎭
, (3.14)

with k ∈N1.
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f1
1 (ϑ) = 0 if ϑ = 0, d1

1 if ϑ = a1
1, −∞ otherwise;

for k = 2 to n1 do
for ϑ = 0 to b do

if ϑ < a1
k
then

f1
k
(ϑ) = f1

k−1(ϑ);
end
else

f1
k
(ϑ) = max(f1

k−1(ϑ), f
1
k−1(ϑ − a1

k
) + d1

k
);

end
end

end

Algorithm 2: Forward procedure for the leader.

Table 2: First step of the forward phase for the leader of BKP1.

k

1 2 3
ϑ f1

1 (ϑ) f1
2 (ϑ) f1

3 (ϑ)
0 0 0 0
1 −∞ 2 2
2 −∞ −∞ 7
3 3 3 9
4 −∞ 5 5

The dynamic programming procedure for the leader in this first step of the forward
phase is described in Algorithm 2. To illustrate the execution of this algorithm, we show in
the following example how it applies to the instance of the BKP described in Example 3.2.

Example 3.6. Let us recall first the definition of the instance BKP1:

(BKP1) max
x,y

f1(x, y
)
= 3x1 + 2x2 + 7x3 + 5y1 + y2 + 2y3 + y4

s.t. x ∈ {0, 1}3,

max
y

f2(y
)
= 2y1 + 2y2 + 3y3 + 4y4

s.t. 3x1 + x2 + 2x3 + y1 + 2y2 + y3 + 4y4 ≤ 4,

y ∈ {0, 1}4.

(3.15)

The results of the first step of the forward phase applied to the leader variables of
BKP1 are given in Table 2. In this table, we report on the optimal values of the associated
subproblems at this step.

Note that the value of f1
3 (4) is smaller than f1

3 (3) because there is no solution x with a
better value which consumes exactly 4 units of capacity.
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Table 3: Second step of the forward phase for the follower of BKP1.

k

1 2 3 4
β f2

1 (β) f̂1
1 (β) f2

2 (β) f̂1
2 (β) f2

3 (β) f̂1
3 (β) f2

4 (β) f̂1
4 (β)

0 0 0 0 0 0 0 0 0
1 2 5 2 5 3 2 3 2

2 2 5 2 5 5 7 5 7
3 2 5 4 6 5 7 5 7
4 2 5 4 6 7 8 7 8

In the second step of the forward phase, we focus on the variables of the follower. The
problem that is solved at this stage is the following:

max
y

d2y

s.t. y ∈ Argmax
{
f2(y′

)
= cy′ : a2y′ ≤ b, y′ ∈ {0, 1}n2

}
.

(3.16)

Let β = b − ϑ ∈ [0, b] denote the residual capacity associated with the leader action xϑ. In this
second step, we consider both the leader and the follower objective functions, and we apply
the forward procedure based on dynamic programming described in [8]. The objective is to
determine all the reactions of the follower for a given action of the leader.

Two tables are generated in the second step of the forward phase: one that stores the
optimal values of the follower (f2

k
(β)), and a second one that stores the optimal values of the

leader values (f̂1
k(β))with

f2
k

(
β
)
= max

⎧
⎨

⎩

k∑

j=1

cjyj :
k∑

j=1

a2
j yj ≤ β, y ∈ {0, 1}k

⎫
⎬

⎭
,

f̂1
k

(
β
)
= max

⎧
⎨

⎩

k∑

j=1

d2
j yj : y ∈ Argmax

{
f2
k

(
β
)}

⎫
⎬

⎭
,

(3.17)

and k ∈N2. To illustrate the execution of the forward procedure for the follower, we applied
it to the instance BKP1 used in the previous examples. The results are reported in Example 3.7.

Example 3.7. The results after the second step of the forward phase are reported in Table 3.
This example shows that the values of the leader subproblems do not increase always because
of the choice of the follower. For y3 (k = 3) and β = 1, the value for the leader decreases from
5 (for y2 and β = 1) to 2. This new value is associated with d2

3 = 2 in order to satisfy the
objective of the follower. Note that we applied the dynamic recurrence rules on the leader
objective function for y2 (k = 2) and β = 2. The two values of the follower are equivalent:
f2
y1
(2) = f2

y1
(0) + c2 = 2. In this case, the value for the leader is 5 because (f̂1

y1
(2) = 5) >

(f̂1
y1
(0) + d2

2 = 1).
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ϑ ← ϑ∗;
for k = n1 to 2 do

if f1
k
(ϑ) = f1

k−1(ϑ − a1
k
) + d1

k
then

x∗
k
= 1;

ϑ ← ϑ − a1
k
;

end
else
x∗
k
= 0;

end
end
if f1

1 (ϑ) = 0 then x∗1 = 0; else x∗1 = 1; end

Algorithm 3: Backtracking procedure for the leader.

This dynamic programming approach can be improved by fixing some variables of
the problem BKP to their optimal value, and by reducing the size of the interval [lbz,ubz] as
discussed in the previous sections. Once this new interval has been computed, the first step
of the forward phase can be applied with ϑ ∈ [0,ubz] instead of ϑ ∈ [0, b]. Since b ≥ ubz, this
may reduce the number of steps of Algorithm 2. We do not apply this dynamic programming
procedure up to the value of b, because there is no solution with a value better than LB for
ϑ > ubz. Similarly, in the second step of the forward phase, we use the following interval for
β: β ∈ [0, b − lbz].

3.4.2. Generating an Optimal Solution for BKP: The Backtracking Phase

Let (x∗, y∗) be an optimal solution for BKP. The objective of the backtracking phase is to
generate a solution (x∗, y∗) with a value that is equal to the value computed in the forward
phase. Before we introduce the backtracking procedure, we define first the optimal value that
is determined in the forward phase. The optimal solution can be defined using the following
rule:

d1x∗ + d2y∗ = f1
n1(ϑ∗) + f̂1

n2(b − ϑ∗) = max
0≤ϑ≤b

{
f1
n1(ϑ) + f̂1

n2(b − ϑ)
}
. (3.18)

The main idea is based on the fact that for each leader decision with ϑ resources consumed,
the follower reaction has to be optimum for the remaining b − ϑ resources.

From the value ϑ∗, we apply the backtracking procedure on the leader variables
described in Algorithm 3. For the follower variables, we apply the backtracking procedure
described in [8] by taking into account both the leader and the follower objective functions,
and starting with the value b − ϑ∗.

For a given k, if the follower has different equivalent choices, the value of y∗k is
determined according to the profit of the leader. Note that the variable y∗

k
can take the value

0 or 1, if the two choices are equivalent for the leader and the follower. In Example 3.8,
we illustrate the execution of the backtracking procedure on the instance BKP1 used in the
previous examples.
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Table 4: Backtracking procedure for the follower and leader of BKP1.

k

1 2 3 4 1 2 3
ϑ/β f2

1 (β) f̂1
1 (β) f2

2 (β) f̂1
2 (β) f2

3 (β) f̂1
3 (β) f2

4 (β) f̂1
4 (β) f1

1 (ϑ) f1
2 (ϑ) f1

3 (ϑ)
0 0 0 0 0 0 0 0 0 (0) (0) 0
1 2 (5) 2 (5) 3 2 3 2 −∞ 2 2
2 2 5 2 5 5 (7) 5 (7) −∞ −∞ (7)
3 2 5 4 6 5 7 5 7 3 3 9
4 2 5 4 6 7 8 7 8 −∞ 5 5

Example 3.8. The optimal value for the problem BKP1 described in Example 3.2 is determined
from Tables 2 and 3 as follows:

max
0≤ϑ≤4

{
f1
n1(0) + f̂1

n2(4), f1
n1(1) + f̂1

n2(3), f1
n1(2) + f̂1

n2(2), f1
n1(3) + f̂1

n2(1), f1
n1(4) + f̂1

n2(0)
}
= 14,

(3.19)

with ϑ∗ = 2.
The results of the backtracking procedure for the follower and leader of BKP1 are given

in Table 4. To determine the optimal action of the leader, we apply Algorithm 3 starting with
ϑ∗ = 2. The optimal action for the leader is x∗1 = 0, x∗2 = 0, and x∗3 = 1. For the follower,
we apply the backtracking procedure described in [8], starting from 4 − ϑ∗ = 2. The optimal
reaction of the follower is y∗1 = 1, y∗2 = 0, y∗3 = 1, and y∗4 = 0.

3.5. Outline of the Algorithm

The outline of our exact algorithm for BKP is given in Figure 1. Each box in this figure
corresponds to a step of our algorithm. The numbers identify the sequence by which the
operations are performed.

The algorithm starts by computing an upper bound for BKP through the exact
resolution of HBKP. The next step consists in finding a good lower bound for BKP
by computing a feasible solution for the problem. For this purpose, we solve first the
problem CBKP using Algorithm 1. As referred to in Section 3.1, each solution generated
by Algorithm 1 can be associated to a value of the parameter z in FBKPz. From the set of
solutions found by Algorithm 1, we select the n best solutions, and we solve the n problems
FBKPz for the corresponding values of the parameter z.

The upper and lower bounds (denoted, resp., by UB and LB in Figure 1) obtained in
the previous steps are used to fix the variables of the leader to their optimal values. This is
done by applying the fixing rules discussed in Section 3.2. The resulting problem is called
the reduced problem in Figure 1. The lower bound LB is then used to reduce the size of
the interval of possible values for z. The new computed interval may help in reducing the
number of steps of the dynamic programming procedures that are applied next. Similarly,
the size of the reduced problem (i.e., solved with dynamic programming in the next step of
the algorithm) is smaller than the original BKP, and hence, it is easier to solve using dynamic
programming.
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Figure 1: Outline of the algorithm.

The next step of our algorithm consists in applying the forward phase of the dynamic
programming procedure to the reduced problem in order to compute the value of an optimal
solution for BKP. Finally, from this optimal value, an optimal solution for BKP is generated
using the backtracking procedure described in Section 3.4.2.

4. Computational Results

In this section, we report on the results of the computational study that was performed to
evaluate the performance of our algorithm. Our approach is compared with other methods
proposed in the literature. The limits of our algorithm are discussed, and a strategy to
overcome these limits is presented and tested. All the algorithms analyzed in this section
were coded in C++. We used the version 12.0 of the commercial optimization solver CPLEX.
The experiments were conducted on a PC with 2.4GHz with 4GB of RAM.

Three sets of computational experiments were performed. In the first one, we compare
our algorithm with the branch-and-bound algorithm proposed by Moore and Bard in [9]. In
the second one, we perform a comparative study between our algorithm and the method of
Brotcorne et al. described in [10]. The third set of experiments was conducted to analyze the
impact of each component of our algorithm in the performance of our global approach. The
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Table 5: Computing time for BM and MACH1 for uncorrelated instances with L = 100 and α = 0.25.

n1 n2 tBB tMACH1

10 10 0 0
10 50 0 0
10 100 0 1
50 10 2 0
50 50 4 0
50 100 22 1
100 10 6 0
100 50 28 0
100 100 130 1

limits of our algorithm are illustrated from a computational standpoint, and a variant that
handles these issues is described and tested.

We used the generator proposed by Martello et al. [21] to generate instances of the
knapsack problem. This generator gives us the data for the coefficients a1, a2, d1, and c of
BKP. The value of b is computed as follows: b = α(

∑n1

i=1 a
1
i +

∑n2

j=1 a
2
j ), with α ∈ {0.50, 0.75}.

The input data for the leader (d2) is generated randomly, such that all the coefficients are in
the interval [1, L], with L ∈ {100, 1000}. We generated instances with uncorrelated coefficients
(UC), and with correlated coefficients (C) [17].

In Table 5, we compare the performance of our algorithm (denoted by MACH1) with
the branch-and-bound algorithm proposed in [9] (denoted by BM). For these experiments,
we used a set of small instances with uncorrelated coefficients with α = 0.25 and L = 100. We
generated 5 instances for each set of instances characterized by the parameters n1 and n2. In
Table 5, we report on the average computing time (in seconds) required by BM and MACH1
to find an optimal solution for these instances. The computing times for BM and MACH1 are
given, respectively, in the columns tBM and tMACH1.

Table 5 shows the difficulty of the branch-and-bound algorithm of Moore and Bard
in solving these instances, while our approach remains very fast. Note that the branch-and-
bound algorithm is not able to find the optimal solution of medium instances with α = 0.5,
n1 = 200, and n2 = 200 and correlated coefficients in less than one hour. As we will see in the
next experiments, our approach can solve these (and larger) instances very efficiently.

The results of our second set of experiments are reported in Table 6. We compare the
performance of our algorithm with the method described in [10]. In the sequel, the latter
will be denoted by BHM. The algorithm BHM is composed by two phases: the first phase
is a dynamic programming procedure applied to the follower problem to determine all the
possible reactions of the follower; in the second phase, a reformulated integer problem is
solved by making the link between the actions of the leader and the reactions of the follower.

For these experiments, we used harder instances. The sets of instances are character-
ized by the parameters n1, n2, and α. Again, we generated randomly 5 instances for each set.
The parameters were chosen as follows: n1 ∈ {50, 100}, n2 ∈ {50, 100}, and α ∈ {0.50, 0.75}.
The coefficients were generated in the interval [1, 1000], andwe considered both uncorrelated
and correlated instances. For these experiments, we used a maximum time limit of 600
seconds.

In column optBHM, we give the number of times the algorithm BHM finds a proven
optimal solution within the maximum time limit. Note that our algorithm always finds
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Table 6: Comparison between BHM and MACH1.

n1 n2 α
UC C

optBHM tBHM tMACH1 optBHM tBHM tMACH1

50 50 0.5 5 0.4 0.6 2 485.8 1.2
50 100 0.5 5 5 0.4 0 >600 1.0
100 50 0.5 5 3.8 0.6 0 >600 1.2
100 100 0.5 4 421.6 1.4 0 >600 2.0
50 50 0.75 5 0.4 0.4 4 177.8 0.8
50 100 0.75 5 2.8 0.8 0 >600 1.2
100 50 0.75 5 0.8 0.8 0 >600 1.2
100 100 0.75 5 12.0 0.8 0 >600 1.4

an optimal solution within this time limit. The average computing time required by BHM
and MACH1 to find a proven optimal solution is given in the columns tBHM and tMACH1,
respectively. For BHM, the average time reported in Table 6 corresponds only to the cases
where this algorithm finds a proven optimal solution within the time limit of 600 seconds.

From the results of Table 6, it is clear that our algorithm outperforms the approach
of Brotcorne et al. [10]. Our approach remains very fast both for the uncorrelated and the
correlated instances, while BHM is not able to find the optimum solution for most of the
correlated instances. The performance of our algorithm is due in a large part to the strategies
used for fixing the value of some variables, to our procedures for computing lower and upper
bounds, and in particular to the strategy for reducing the interval of values for the parameter
z in FBKPz. Note that our algorithm does not have any difficulty in proving the optimality of
the solution found in the backtracking phase, since the optimal value is known at the end of
the forward phase. The algorithm BHM spends more time precisely in its second phase when
it solves the reformulated problem. At this stage, this algorithm has no information for the
value of the optimal solution. Its computing time increases quickly with the correlation of the
instances because in this case the size of the reformulated integer problem becomes larger.

In our final set of experiments, we focus on our algorithm. Despite its efficiency
compared with other approaches, our algorithm may experience some difficulties with
memory space for larger instances. These difficulties are illustrated in Table 7. The instances
used in this case were generated as in the previous experiments, and with the parameters n1,
n2, and α given in Table 7. For each case, we generated 5 instances. Since these difficulties
are due to the dynamic programming part of our algorithm, we used in these experiments a
version ofMACH1 inwhich the procedures described in Sections 3.1, 3.2, and 3.3 are disabled.
We will denote this version by MACH1′. Table 7 reports the average computing time for the
MACH1′ and for a variant that will be described hereinafter. The entry mem in Table 7 means
that MACH1’ did not complete because of the memory space required for its execution. This
problem arises for the largest instances with n1 = 500, n2 = 500, and α = 0.75. Recall that,
for the coefficient b, we have b = α(

∑n1

i=1 a
1
i +

∑n2

j=1 a
2
j ). In this case, the value of b can be very

large, and that is the main cause for this memory problem.
To overcome this issue, we propose a variant of the algorithm MACH1 (denoted by

MACH2) that consists in replacing the backtracking phase based on dynamic programming
in MACH1 by the exact resolution of the problem FBKPz right after the forward phase. The
forward phase gives us the optimal value for BKP. This optimal value is used for solving
FBKPz. Since we know this optimal value in advance, the resolution of FBKPz becomes easier.
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Table 7: Comparison between MACH1′ and MACH2′.

n1 n2 α
UC C

tMACH1′ tMACH2′ tMACH1′ tMACH2′

250 250 0.5 5.0 5.0 5.1 5.4
250 500 0.5 13.8 14.0 14.0 14.6
500 250 0.5 11.6 12 11.8 12.8
500 500 0.5 22.4 23.2 22.4 23.2
250 250 0.75 8.2 8.4 8.4 8.4
250 500 0.75 20.2 20.4 21.0 21.4
500 250 0.75 17.0 17.0 17.6 17.6
500 500 0.75 mem 33.8 mem 35.6

Table 8: Comparison between MACH2′ and MACH2.

n1 n2 α

UC C
qualh th

fix intz tMACH2′ tMACH2
qualh th

fix intz tMACH2′ tMACH2
% % % % % %

500 500 0.5 99.0 3.0 9.8 8.51 21.0 12.6 99.2 0.8 0 45.5 21.4 15.8
500 1000 0.5 99.0 2.6 0.0 9.98 50.2 35.8 99.0 1.4 0 48.9 51.0 44.8
1000 500 0.5 99.0 3.8 8.0 6.85 43.0 25.6 99.0 1.0 0 34.47 44.2 31.8
1000 1000 0.5 99.0 2.4 0.0 9.39 82.8 49.6 99.0 1.4 0 44.5 85.2 65.2
500 500 0.75 99.2 2.2 12.6 6.22 30.8 15.8 99.0 1.0 0 25.5 31.2 21.4
500 1000 0.75 99.0 1.6 0.0 5.78 74.6 49.8 99.4 1.2 0 24.3 75.0 56.6
1000 500 0.75 99.0 2.4 19.2 4.36 63.0 26.6 99.0 1.2 0 18.7 64.0 41.2
1000 1000 0.75 99.0 2.8 0.0 5.63 122.0 69.8 99.0 1.0 0 25.7 124.0 81.4

In MACH2, we keep only two columns for dynamic programming at each iteration of the
forward phase, and hence, the memory space that is necessary decreases.

In Table 7, we report on the average computing time required by a version of this
variant without the procedures described in Sections 3.1, 3.2, and 3.3 (as in MACH1’). This
version will be denoted by MACH2’. All the instances are solved up to optimality with a
very small increase in the computing time compared to MACH1’. With this new variant, the
problem with memory space does not occur anymore.

In Table 8, we compare the complete version of the algorithmMACH2with the version
MACH2′. In our implementation of MACH2, we solved the problem FBKPz with the 10
best solutions generated by Algorithm 1 to find a valid lower bound. The objective of these
experiments was to evaluate the impact of the additional components of our approach,
namely, the polynomial procedure for solving CBKP described in Section 3.1 (Algorithm 1)
and the reduction procedures described in Sections 3.2 and 3.3. We generated randomly 5
instances for each set of instances as in the previous experiments with the parameters n1, n2,
and α given in Table 8. The meaning of the entries in Table 8 is the following:

(i) qualh: quality of the solution obtained with Algorithm 1 described in Section 3.1
(value of the best solution given by Algorithm 1 divided by the value of the optimal
solution of the BKP);

(ii) th: computing time (in seconds) required by Algorithm 1;

(iii) fix: percentage of variables that were fixed;
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(iv) intz: measure of the reduction achieved with the procedure described in Section 3.3;
the values in this column are computed as follows: (ubz − lbz)/b;

(v) tMACH2′ : computing time (in seconds) required by MACH2′;

(vi) tMACH2: computing time (in seconds) required by MACH2.

From the results of Table 8, we can observe that the additional components of the
algorithm have a positive impact on the performance of our global approach. The average
computing times for all the sets of instances decreased with MACH2. For the set of instances
with n1 = 1000, n2 = 500, and α = 0.75, the reduction is greater than 50%.

The lower bound given by CBKP is strong. Furthermore, it is computed very efficiently
with Algorithm 1. The average computing time required by this algorithm is always smaller
than 4 seconds. The fixing rules presented in Section 3.2 have a limited impact on the
correlated instances. This can be explained by the quality of the upper bound that was
considered (given by HBKP), and by the correlation between the coefficients of the instances.
These rules perform better on the uncorrelated instances. While the lower bound on the
optimal value of BKP does not seem to be very useful for fixing the values of the variables, it
is for reducing the interval of feasible values for z. Although the size of this interval decreases
for all the instances, it is more significant for the uncorrelated instances. The reduction of the
size of this interval has a strong influence on the resolution of the reduced problem with
dynamic programming. Indeed, it implies reducing the capacity of the knapsack constraint
at each step of the dynamic programming procedures. That explains in part the better
performance of MACH2 compared with MACH2′.

5. Conclusions

In this paper, we described a new exact algorithm for bilevel 0-1 knapsack problems (BKPs).
We developed an original method for solving the linear relaxation of BKP, and we proposed
a method for computing good feasible solutions for this problem using the information
provided by the solutions of this linear relaxation. We described different strategies to
enhance the resolution of BKP based on a valid upper and lower bound for the problem.
Finally, we presented a dynamic programming procedure to find the integer optimal solution
of the problem. To evaluate the performance of our approach, we conducted a set of
computational experiments. Our results were compared with other algorithms proposed in
the literature. The results that we obtained show that our algorithm clearly outperforms other
state-of-the-art methods presented so far.
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