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A Canonic-Signed-Digit-(CSD-) coded genetic algorithm (GA) is proposed to find the optimal
design of robustly stable infinite impulse response digital filter (IIR). Under the characteristics of
the CSD structure, the circuit of the filter can be simplified and also the calculation speed can be
raised to increase the hardware’s efficiency. However, the design of CSD has a big challenge: the
CSD structure of the system parameters will be destroyed by an optimal design procedure. To
solve this problem, in this research a CSD-coded GA is proposed so that the CSD structure can be
maintained. Moreover, the robustly stable IIR filters design problem is included in this paper. The
robustness of the IIR filters is achieved by ensuring that all poles of the filters are located inside
a disk D(α, r) contained in the unit circle, in which α is the center, r is the radius of the disk, and
|α| + r < 1. Consequently, in this paper, a new and more efficient D(α, r)-stability criterion will
be derived and then embedded in GA for the design of robust IIR filters. It is worthwhile to note
that to design an IIR filter simultaneously with CSD-structured parameters and robust stability is
difficult and is not well explored so far. An example will be presented to show the efficiency of the
proposed strategy for design of IIR filters.

1. Introduction

Among the digital filters, Infinite Impulse Response (IIR) digital filters are useful in various
applications where high selectivity processing of discrete signals is desirable [1]. Conse-
quently, IIR filters designs have been a hot topic in the research of digital signal processing
[1–16]. Of all the design problems of IIR filters, stability is the major problem, which arises
in the design of IIR filters. Recently, there have been many literatures concerning this topic.
For example, in [8], stability is guaranteed by a linear inequality constraint. In that paper,
the problem of minimizing the output error function with the stability constraint is solved by
Quadratic Programming (QP). Similarly, in the papers [1, 12], the minimax design method is
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used to design stable IIR filters under the condition that the magnitude and phase response
is prescribed. Moreover, adaptive IIR filtering is the challenging problem in the design of
intrinsically stable filters [6]. Some convenient solutions have been developed by using
gradient-based techniques as shown in the examples of [6, 10, 11].

As for the hardware implementation of IIR filters, in recent years, due to its char-
acteristics the CSD code has been broadly applied to the simplification of hardware
structure. The CSD code method can not only reduce the number of adders/subtractors
and shift registers, but also accelerate the calculation process and achieve the performance
of hardware circuit simplification. Therefore, in recent years, a lot of research has applied
the CSD code structure to circuit design [17–21]. Recently, since the computation ability of
computers has been enormously enhanced, evolutionary algorithm computation is widely
applied in many areas of engineering; for a recent review of these applications, please see,
for example, [14, 22–25]. The most popular evolutionary algorithm is GA. GA is based
on the Darwinian “Survival of the Fittest” strategy. Each individual in the population
represents a potential solution to the problem at hand. They compete and mate with each
other in order to produce stronger individuals. Much recent research has pointed out that
GA is efficient in solving optimization problems [2, 13–15, 26–30]. GA is adopted in this
paper for the design of CSD-coded IIR filters due do to the advantage that each gene in
the chromosome of GA can be taken care of individually and can be designed to keep
the CSD structure. Other evolutionary algorithms, such as particle swarm optimization
(PSO), differential evolution (DE), and steepest decent method (SDM), use real numbers
to code the problem’s variables; therefore it is not possible for them to keep the special CSD
coding.

So far, the research on CSD-coded filters has focused on the design of FIR filters.
Examples can be found in [31–34]. In those researches, the GA based on the CSD code
structure was studied for the design of FIR filters. There were two types of design methods.
The first method was to check the inspection of the CSD structure after each generation of
GA evolution. The second method was to transform all filter coefficients to the binary system
code first and then transform the designed binary system code into a CSD structure code.
However the CSD structure code can be only an approximation of the binary system code.
Hence, errors unavoidably occur during the transformation.

In this paper, GA has been used to search for the optimum filter coefficient with the
CSD code. Since the CSD code structure may be destructed during GA evolution process, this
paper proposes a strategy to solve this problem. Moreover, the design of a robustly stable IIR
filters is included in this CSD coded filter design. An algorithm is proposed in this paper to
simultaneously solve the problem of the CSD code design and the robustly stable IIR filters
design. In this paper, the robustness of the IIR filters is achieved by ensuring that all poles
of the filters are located inside a disk D(α, r) contained in the unit circle, in which α is the
center, r is the radius of the disk, and |α| + r < 1. So, a D(α, r)-stability criterion will be
first derived and is then used to check the stability of the design filter in each generation
of the evolution of GA. It is worthwhile to note that to design an IIR filter simultaneously
with CSD-structured parameters and robust stability is difficult and is not well explored so
far.

The structure of this paper is as follows. Section 2 introduces the IIR filters. Section 3
is on the CSD-coded evolution strategy of GA. In Section 4, a D(α, r)-stability criterion will
be derived and then be applied to the CSD-coded structured robustly stable IIR filters design
according to the proposed strategy. Section 5 shows the simulation results with a low-pass
IIR filter design example.
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Figure 1: Architecture of IIR filters [14].

2. Infinite Impulse Response Filters (IIRs)

An IIR filter is a filter with the property of output feedback. An architecture which is used
generally is depicted in Figure 1 [14]. The governing equation of an IIR filter is then described
as follows:

N∑

k=0

aky[n − k] =
M∑

k=0

bkx[n − k], (2.1)

in which ak , k = 0, 1, . . . ,N, and bk, k = 0, 1, . . . ,M, are the coefficients of the IIR filter. It
is obvious that the output of the filter depends on not only the current and past inputs but
also on the past outputs. This leads to the dependence of the output on the infinite many
past inputs due to the iteration process in (2.1). Hence, the filter is called Infinite Impulse
Response (IIR) filter. According to (2.1), the transfer function of the IIR filter can be derived
as

H(z) =
b0 + b1z−1 + b2z−2 + b3z−3 + · · · + bMz−M

a0 + a1z−1 + a2z−2 + a3z−3 + · · · + aNz−N
=

∑M
k=0 bkz

−k
∑N

k=0 akz−k
. (2.2)

Before further discussions, the following definitions will be helpful to describe the proposed
design strategy.

Definition 2.1. A polynomial d(z) is P -stable if all solutions of the equation d(z) = 0 lie inside
the unit circle.

Definition 2.2. A polynomial d(z) is PD(α, r)-stable if all solutions of the equation d(z) = 0
are within the disk D(α, r) centered at α with radius r, in which r > 0 and |α| + r < 1.
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Definition 2.3. Let the transfer function of a IIR filter be described as H(z) =
∑M

k=0 bkz
−k/∑N

k=0 akz−k. If the denominator of the H(z), a(z) =
∑N

k=0 akz−k , is P -stable, then the IIR filter
is stable. Moreover, if a(z) is PD(α, r)-stable, then the IIR filter isD(α, r)-stable.

However, without loss of generality, we adopt the function

H(z) =
∑m

k=0 bkz
−k

1 +
∑n

k=1 akz−k
(2.3)

as the transfer function of designed IIR filters [14]. In the following paragraphs, the parame-
ters ak and bk will be found, under the CSD-coded format, via the proposed strategy so that
the error between the frequency response of designed IIR filters and the desired frequency
response is minimal. Moreover, all the poles of H(z) will be placed in the disk D(α, r), that
is, the IIR filters areD(α, r)-stable.

3. Genetic Algorithm with CSD-Coded Evolution Strategy

The main feature of the CSD format is that two consecutive digits cannot be “1” simultane-
ously. That is, the product of every two consecutive digits must be zero, that is, bn × bn+1 = 0.
With this feature, fewer bits of nonzero values will appear in the parameters of a system,
and hence fewer shifting and adding operations are required for the computation of system
output. Therefore, compared with the binary system, the CSD coding of system parameters
can accelerate the operation speed [32]. The CSD-coded coefficient C is represented as
follows. It is noted that a ternary coding for the CSD code is adopted here to shorten the
bit length of the encoded number

C =
m∑

j=0

Skj × 2j , (3.1)

where Skj ∈ {−1, 0, 1} andm is the bit length of the encoded number C.
Since the CSD format is possibly destructed during the evolution of GA, in past re-

search, the examination after each evolution for making sure whether the CSD structure
remains or not is necessary. A new evolution process will be fired if the CSD format is
destructed by the previous evolution. However, this method lengthens the search time for
an optimum solution. Therefore, in this section, in order to decrease the time of examining
the CSD structure, a new crossover and a new mutation are proposed so that the CSD code
structure will remain during the evolution process of GA.

3.1. Definition of the Fitness Function

In order to identify the quality of a chromosome in GA, the fitness function is usually used to
evaluate each chromosome. Different fitness functions are used for different environments. It
is important to define the fitness function of a chromosome. In this paper, the definition of
the fitness function for the IIR design is defined as follows.
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Suppose the transfer function of IIR filters is expressed as (2.3). Let z = ejΩ, then the
frequency response of IIR filters becomes

H(Ω) =
∑m

k=0 bke
−jkΩ

1 +
∑n

k=1 ake−jkΩ
(3.2)

or

H(Ω) =
Y(Ω)
X(Ω)

=
b0 + b1e−jΩ + b2e−j2Ω + · · · + bme−jmΩ

1 + a1e−jΩ + a2e−i2Ω + · · · + ane−jnΩ
, (3.3)

in which Ω = 2π(f/fs)� Ω is the digital frequency; f is the analog frequency; fs is the
sampling frequency. The error function is then defined as

Ep ≡
∑

Ω |H(Ω) −HI(Ω)|2
Ns

, 0 ≤ Ω ≤ π, (3.4)

in which HI(Ω) is the desired frequency response and Ns is the sampling point. The fitness
function for a chromosome p is then defined as

fitness
(
p
)
=

1
E2
p + 1

. (3.5)

3.2. Crossover Based on CSD Structure

For crossover of the chromosomes with CSD code format, it matters whether the offspring
remains its CSD structure after the crossover. Usually the crossover results in a non-CSD
structure and a renewal of the code is required. In past research, the structure of the
parameters must be examined after crossover. If a non-CSD structure was found, the code
was renewed. The renewed code must be close to the value of the original code. If the length
of a code was long, it takes much time to examine the code format. Consequently, it cost
enormous computation time for the methods in the research. Therefore, this paper proposes
a new method to save the time for renewing a code. However, the proposed method must
be operated only when the parent chromosomes are already in the CSD format, and then
the offspring will be permanently maintained in the CSD format. The Proposed CSD-based
crossover can be described as follows:

(1) if CP1
N1

× CP2
N1−1 /= 0 then

CP2
N1−1 = 0 (3.6)

end,

(2) if CP1
N2

× CP2
N2+1 /= 0 then

CP1
N2

= 0 (3.7)

end,
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Figure 2: (a) Before two-point crossover based on CSD structure. (b) After two-point crossover based on
CSD structure.

(3) if CP2
N1

× CP1
N1−1 /= 0 then

CP1
N1−1 = 0 (3.8)

end,

(4) if CP2
N2

× CP1
N2+1 /= 0 then

CP2
N2

= 0 (3.9)

end,

(5) proceed the crossover process of the two points P1 and P2 with N1 andN2.

The notations CPi

Ni
, i = 1, 2, represent the Nth

i bit of the P th
i chromosome, and “×”

represents the mathematical multiplication. Figure 2 gives an example for this CSD-based
crossover. In the figure, we suppose the two points selected for crossover are points 3 and 6
of a chromosome. Figure 2(b) shows that the proposed crossover preserves the CSD structure
in the offspring.

3.3. Mutation Based on CSD Structure

A mutation for a binary-coded chromosome always simply changes 0 to 1 or vice versa.
However, for a CSD structure, the mutation will cause loss of the CSD format. Thus a method
must be found to make the code remain in the CSD format after mutation. Otherwise, the
effort to maintain the CSD structure in the previous section by the CSD-based crossover
method would become futile. Therefore, in this paper, we propose a method for the mutation
so that the CSD format will be maintained after mutation.



Mathematical Problems in Engineering 7

Before mutation,

0 1 0 1 0 1 00

Point of mutation

P1 =

(a)

0

After mutation

Offspring P1 = 0 1 0 1 0 1 −1

Non CSD structure

(b)

00 1 0 1 0 0 −1

After CSD mutation

Offspring P1 =

(c)

Figure 3: Illustration for CSD-based mutation.

In the CSD structure only the values 1 and −1 would influence the CSD structure; the
CSD structure will be affected when a mutation transforms from 0 to 1 or −1, whereas the
structure is not affected with the transform from 1 or −1 to 0. That is, the CSD structure might
be destructed when the new value of the mutation point is 1 or −1. Consequently, the focus
in this paper is only on the point of mutation and its two neighbor points. To check and solve
this problem, the following steps are performed.

Step 1. First, inspect the value of the point of mutation. As mentioned before, if the original
value of the mutation point is 1 or −1, the structure will not be influenced after mutation.
However if it is 0, the mutation transforming from 0 to 1 or −1 might cause the structure to
change, so the structure cannot further follow the CSD structure.

Step 2. This step is to inspect the values of the points adjacent to the mutational point. If the
value of any of them is 1 or −1, suitable changes are required. If the adjacent values are both
0, no changes are required.

Step 3. If any necessary change is detected in Step 2, find the last significant bit in a series of
“1” or “−1” or alternation of “1” and “−1” change it to zero. Repeat this step until the CSD
format is retained.

By following the above three steps, the chromosomes will stay in CSD. Therefore, the
CSD format will maintain after crossover andmutation proposed in this paper. Consequently,
reinspection or code renewal is not necessary. With this method, the computation time for
evolution can be reduced. Figure 3 shows the procedure of a CSD-based mutation. Again,
after the CSD-based mutation, the CSD format is preserved.
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4. Stability Criterion and the Proposed Strategy

A theorem which is useful in the evolution of GA for a design of robust stable IIR filters is
introduced in this section. Before proceeding, we introduce a useful lemma as follows.

Lemma 4.1 (see [35]). If f(z) is analytic in a bounded domain Ψ and continuous in the closure of
Ψ, then |f(z)| takes its maximum on the boundary ofΨ.

One is now to derive the main theorem. The following theoremwill provide a stability
criterion for the PD(α, r)-stability of a polynomial.

Theorem 4.2. Consider the polynomial d(z) ≡ ∑n
k=0 akz

−k. If the following inequality (4.1) is
satisfied, then all the solutions of d(z) = 0 will lie inside a disk D(α, r), that is, the polynomial d(z)
is PD(α, r)-stable with |α| + r < 1 and |α| ≤ r.

n∑

k=1

ak

a0
(|r| − a)−k < 1, (4.1)

Proof. From Definition 2.1, it is obvious that if |d(z)| = |∑n
k=0 akz

−k| > 0, for all |z| ≥ 1,
then the polynomial d(z) is P -stable. Furthermore, according to Definition 2.2, if |d(z)| =
|∑n

k=0 akz−k | > 0, for all |z − α| > r (i.e., |(z − α)/r| > 1), then the polynomial d(z) is PD(α, r)-
stable.

Let β = (z−α)/r, that is, z = rβ+α. We have |d(z)| = |∑n
k=0 akz−k| = |∑n

k=1 ak(rβ+α)
−k|.

Consequently, if

∣∣∣∣∣

n∑

k=0

ak

(
rβ + α

)−k
∣∣∣∣∣ > 0, ∀∣∣β∣∣ ≥ 1, (4.2)

then the polynomial d(z) is PD(α, r)-stable from Definition 2.2.
Letting δ = β−1, the inequality (4.2) becomes

∣∣∣∣∣

n∑

k=0

ak

(
rδ−1 + α

)−k
∣∣∣∣∣ > 0, ∀|δ| ≤ 1. (4.3)

Note that

n∑

k=0

ak

(
rδ−1 + α

)−k
= a0

[
1 +

n∑

k=1

ak

a0

(
rδ−1 + α

)−k
]
. (4.4)

Since the roots of the terms (rδ−1 + α)−k, k = 1, 2, . . . , n, are multiple roots at δ =
−r/α and |δ| = |r|/|α| > 1, (rδ−1 + α)−k is analytic for all |δ| ≤ 1. This implies that∑n

k=1(ak/a0)(rδ−1 + α)−k is analytic on the closed and bounded region |δ| ≤ 1. Hence, by
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Lemma 4.1, |∑n
k=1 (ak/a0)(rδ−1 + α)−k| will take its maximum on the boundary |δ| = 1.

Consider δ = e−jθ , that is, the boundary |δ| = 1, we have |∑n
k=1(ak/a0)(rejθ + α)−k| ≤

∑n
k=1 (ak/a0)|(rejθ + α)|−k ≤ ∑n

k=1(ak/a0)(|r| − α)−k. Consequently, if the inequality (4.1) is
satisfied, then |∑n

k=1(ak/a0)(rδ−1 + α)−k| < 1, for all |δ| = 1. This means that

∣∣∣∣∣

n∑

k=1

ak

a0

(
rδ−1 + α

)−k
∣∣∣∣∣ < 1, ∀|δ| ≤ 1. (4.5)

According to (4.4) and (4.5), we have |∑n
k=0 ak(rδ−1 + α)−k| > 0, for all |δ| ≤ 1. Consequently,

from (4.2) and (4.3), the polynomial d(z) is PD(α, r)-stable. This completes the proof.

Remark 4.3. The stability criterion proposed in Theorem 4.2 can avoid the boundary checking
procedure which is necessary in the stability criterion proposed in the paper [2]. This means
that the stability checking procedure by using the proposed stability criterion can save much
computation time than that by using the stability criterion in [2].

Theorem 4.2 will be used to check whether the poles of an IIR filter all lie inside the
disk D(α, r). This stability check should be performed in each generation of an evolutionary
algorithm which is used to design IIR filters. Before proceeding, we first define the vector of
the coefficients in the denominator of H(z), a = (1a1a2 · · ·an), as a chromosome of GA. The
following definition is fundamental to understand this paper.

Definition 4.4. A chromosome a = (a0 a1a2 · · ·an) is stable if the corresponding polynomial
a(z) =

∑n
k=0 akz

−k is P -stable. Moreover, it is D(α, r)-stable if the corresponding polynomial
is PD(α, r)-stable.

After the derivation of the stability criterion for the design of an IIR filters, a design
strategy of robust CSD-coded stable IIR filters is then proposed as follows. Moreover, the
flowchart of the design procedure is depicted in Figure 4 for clarification.

Step 1 (initial generation). Set the coefficients of the denominator of the H(z), a(z) =∑N
k=0 akz−k, as a chromosome a = (a0a1a2 · · ·an). Generate the initial generation of the

chromosomes based on the CSD code format.

Step 2 (check the stability property). Check the stability of the chromosome according to
Theorem 4.2 andDefinition 4.4. If a chromosome does not satisfy the criterion in Theorem 4.2,
then regenerate a new chromosome based on CSD code format.

Step 3 (evaluate the fitness value of the chromosomes). Evaluate the fitness value of the
chromosomes according to (3.4).

Step 4 (check whether the result is acceptable). If the result is acceptable or the number of iter-
ations is larger than an assigned maximum number, go to the end of this procedure (Step 7),
or go to next step.

Step 5 (generate offspring). Generate new chromosomes by the crossover andmutation based
on the CSD format which are proposed in Section 4.
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Figure 4: The design procedure of the proposed strategy.

Step 6 (check the stability criterion). Check the new chromosomes generated from Step 5 to
see whether they satisfy the stability criterion in Theorem 4.2. Go to Step 3 if it does or go
back to Step 5.

Step 7 (end of this procedure).

5. Simulation Results

Suppose that the transfer function of a CSD-coded IIR filter is described as H(z) = (b0 +
b1z−1)/(a0 + a1z−1 + a2z−2), in which the coefficients ai, i = 0, 1, 2, and bi, i = 0, 1, are all de-
signed in the CSD format. The desired frequency response is HI(Ω) as depicted in Figure 5.
The sampling rate, pass band edge frequency, and stop-band edge frequency of HI(Ω) are
set to be 9600Hz, 1650Hz, and 2800Hz, respectively. The CSD-coded IIR filter is designed to
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Table 1: Parameters for GA.

Selection method Roulette wheel

Crossover CSD-based
crossover

Mutation CSD-based
mutatiom

Chromosomes for each generation 40
No. of bits for each chromosome 90
Probability for crossover 0.9
Probability for mutation 0.08
No. of generations 35000

minimize the mean square error between H(Ω) and HI(Ω) and to have the poles and zeros
of H(z) lie inside the disk D(0.3, 0.7). That is, the IIR filter will be robustly D(0.3, 0.7)-stable.

According to Steps 1 and 7 of the design strategy proposed in Section 5, in which the
parameters of GA are listed in Table 1, the coefficients of the IIR filter are designed after
35000 generations of GA as CSD-coded format. The transfer function of designed CSD-coded
IIR filter is then described as

H(z) =
−4990 − 1250z−1

−12505 + 10000z−1 − 3750z−2
=

−0.499 − 0.125z−1

−1.2505 + 1z−1 − 0.375z−2
. (5.1)

Table 2 lists the designed CSD-coded coefficients and the numbers of operations for the
CSD-coded coefficients while Table 3 lists the binary-coded coefficients and the numbers of
operations for the binary-coded coefficients. In order to make the representation of the tables
more compact, the value −1 in these tables is replaced by the notation 1. It is obvious that
the numbers of operations for CSD-coded coefficients are less than those of binary-coded
coefficients. This means that the CSD-coded coefficients have less computational cost than
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Table 2: Numbers of operations for the designed CSD code of the coefficients.

Coefficient
symbols

Scaled
coeffiicients CSD code No. of add

operations
No. of subtract
operations

Total
operations

a0 −12505 0000 0101 0001 0010 1001 3 3 6
a1 10000 0000 0010 1001 0001 0000 3 1 4
a2 −3750 0000 0001 0010 1010 1010 2 4 6
b0 −4990 0000 0001 0100 1000 0010 2 2 4
b1 −1250 0000 0000 0101 0001 0010 1 3 4

Table 3: Numbers of operations for the binary code of the coefficients.

Coefficient symbols Scaled coefficients Binary code Total operations

a0 −12505 1000 0011 0000 1101 1001 8
a1 10000 0000 0010 0111 0001 0000 5
a2 −3750 1000 0000 1110 1010 0110 8
b0 −4990 1000 0001 0011 0111 1110 10
b1 −1250 1000 0000 0100 1110 0010 6

Table 4: Precision and optimality of the designed coefficients.

Simplified
coefficients

Trained by the proposed
CSD-coded GA

Optimal solution
without CSD coded

Differences between the
designed and optimal

coefficients

a0 −1.2505 −1.2505 0
a1 1 1.0004 0.0004
a2 −0.375 −0.37505 0.00005
b0 −0.499 −0.49895 0.00105
b1 −0.125 −0.12505 0.00005
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Mathematical Problems in Engineering 13

Table 5: Precision and optimality of the designed poles.

Poles designed by the
proposed CSD-coded GA

Optimal poles
locations

Distance between the
designed and optimal

poles

0.3998 + j0.3741 0.4 + j0.374 0.000224
0.3998 − j0.3741 0.4 − j0.374 0.000224
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binary coded coefficients. Moreover, the precision and optimality of the designed CSD-coded
coefficients and designed poles are illustrated in Tables 4 and 5, respectively. These two tables
reveal that the designed coefficients and poles of the IIR filter are precise and are near optimal,
since they are all very close to the optimal coefficients and poles for this design problem.
Besides, the frequency response of the desired IIR filter and the designed IIR filter is depicted
in Figure 6. It can be seen that the designed frequency response is very close to that of the
desired filter. Moreover, the poles of the transfer function of the IIR filter are depicted in
Figure 7. It is also obvious that all the poles lie inside the disk D(0.3, 0.7). That is, the CSD-
coded IIR filter is robustly D(0.3, 0.7)-stable.

6. Conclusions

A robust stability criterion is derived for the design of a robust IIR filters. A strategy is
proposed based on GA to design an IIR filter so that its coefficients satisfy the robust stability
criterion and the CSD code format simultaneously. This proposed CSD-based GA wouldnot
destruct the filter coefficient format and hence can maintain the CSD code format after each
generation of chromosome evolution. The recursive try-and-error step is not required and
consequently can save a lot of time. Moreover, a more efficient stability criterion than that in
[12] is proposed to be checked in the evolution of GA to ensure that stability of the designed
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IIR filter. According to the final simulated results in the paper, it is shown that the proposed
algorithm has a quite good efficiency.
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