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Remanufacturing of used products has become a strategic issue for cost-sensitive businesses.
Due to the nature of uncertain supply of end-of-life (EoL) products, the reverse logistic
can only be sustainable with a dynamic production planning for disassembly process. This
research investigates the sequencing of disassembly operations as a single-period partial
disassembly optimization (SPPDO) problem to minimize total disassembly cost. AND/OR graph
representation is used to include all disassembly sequences of a returned product. A label
correcting algorithm is proposed to find an optimal partial disassembly plan if a specific reusable
subpart is retrieved from the original return. Then, a heuristic procedure that utilizes this
polynomial-time algorithm is presented to solve the SPPDO problem. Numerical examples are
used to demonstrate the effectiveness of this solution procedure.

1. Introduction

Product recovery, or remanufacturing, has been considered as one of the most profitable
options in dealing with the end-of-life (EoL) products. The benefit of product recovery is
especially more attractive when a facility is capable of performing both manufacturing and
remanufacturing processes, and the coordination of these two processes can be included in
the production planning and scheduling. Griese et al. [1] discussed the economic challenges
for reuse and the main technical obstacles in three product categories: medical equipment,
automotive electronics, and computers. They argued that, for personal computers, reuse and
repair appeared to have more potential than pure recycling materials. Similar benefit was
confirmed by Grenchus et al. [2] from the practice at the IBM Endicott asset recovery center.
They found that, with little disassembly effort, functional parts that were recoverable had
more resale value than plain material recovery.
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Figure 1: Integrated supply chain for original equipment manufacturers. Adopted from [4].

For any original equipment manufacturer (OEM) with the capacity in performing
assembly and disassembly operations, the retrieved components from returned products can
be integrated with their forward production. As shown in Figure 1, a complete product life
cycle is defined by forward logistics (solid line) and reverse logistics (dotted line). Informa-
tion (bold line) from disassembly operation can further assist in design and manufacturing
new products. Retrieving spare parts from returned products has been one of the most
prominent strategies. Fleischmann [3] observed that, when the returned used equipments
were integrated into the spare part planning, a push policy in which returned equipments
were tested and dismantled as soon as available can achieve higher service level in IBM’s
spare part management.

It remains as one of the biggest challenges to develop the techniques in production
planning system for product recovery to be sustainable [5]. For regular assembly, demand
can be determined in advance and hence the required resources can be planed and scheduled
along the time horizon. However, for disassembly process planning, variation in quantity
and quality of returned products is so huge that it fails to fit into any available planning
scheme. Evenwhen the demand for remanufactured products is knownwith a set of available
returned products, it is still challenging to decide how these products should be dismantled
to minimize the disassembly effort for those refurbished products. Kasmara et al. [6] used an
integer programming model that included sales and returns in each period with the objective
function as maximization of profits. Clegg et al. [7] presented a linear programming model
of production planning for both new and remanufactured products. Some studies focused on
the effect of average flowtime for both assembly and disassembly operations under different
scenarios in planning mixes [8–13].

The ability to salvage the value of these returned products relies both on the disassem-
bly capacity and the ability to find the most cost-effective disassembly sequences to retrieve
valuable parts. This research is motivated to find disassembly sequences with minimum
operation costs in the production planning for EoL products. A single period planning is
considered due to the inherent fluctuation in the demand and supply of EoL products in
different periods. Moreover, a partial disassembly policy is considered for better profit in
product recovery.
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2. Literature on Disassembly Planning

Disassembly is the process of dismantling a product through successive steps at the end of its
life so as to recover useful components or subassemblies, for resale, reuse, or proper disposal.
A product, as a whole, may not be repairable at the end of its conventional useful life, yet
there might be components and subassemblies that are in good enough condition for use
in a new product or in the remanufacture of an old one [14]. The efficient retrieval of these
parts/subassemblies will not only cut down the production cost but will also reduce the
associated disposal costs and, consequently, the environmental hazards.

Taleb and Gupta [15] addressed the scheduling problem of disassembly operations
with commonality in the parts or materials. Then, a scheduling mechanism was provided to
determine the total disassembly requirement as well as the time to release along the planning
horizon. Langella [16] developed heuristics for the disassembly planning when a returned
product was used in multiple purposes. Gungor and Gupta [17] used a heuristic algorithm
to evaluate total costs among different disassembly strategies for returned products using the
precedence relationship among subassemblies. Deterministic formulations originated from
variations of travelling salesman problem (TSP) were used to find optimal disassembly
sequences [18, 19]. Johnson and Wang [20] considered the disassembly precedence
relationship according to a bill of material (BOM) of the product and formulated the problem
as a two-commodity network formulation. Lambert [21] solved a similar formulation as in
[20] with sequence-dependent setup time by using an iterative heuristic approach.

Graph-based representation is often used to find all feasible disassembly sequences.
De Fazio and Whitney [22] proposed a network of liaison sequences, or precedence se-
quences, that are generated from the bill of material (BOM) of a product. Sarin et al. [19]
incorporated the precedence constraints into a tree-structured network with additional nodes
representing the connection and joints between subparts. Zhang and Kuo [23] and Kuo [24]
proposed a component-fastener graph to represent the assembly relationship to find the
most profitable dismantle sequence for returned products. Homem de Mello and Sanderson
[25, 26] introduced an AND/OR graph representation of assembly plan which includes all
possible sequences of operations. Lambert [27] utilized the AND/OR graph to generate
sequences in retrieving subassemblies with the consideration of disassembly line balancing.

The objective of this research is to find an optimal partial disassembly sequence to
retrieve reusable subassemblies or subparts from EoL products in single planning period
or referred to as single period partial disassembly optimization (SPPDO) problem herein.
A label correcting algorithm is proposed to solve the AND/OR graph as a shortest path
problem. Furthermore, a heuristic procedure is developed to utilize this label correcting
algorithm in solving the SPPDO problem. The remainder of the paper is organized as follows.
In the next section, the representations of disassembly sequences and AND/OR graph are
briefly discussed. The subsequent sections further introduce the mathematical formulation
of the problem, the label correcting algorithm, and a heuristic procedure for solving SPPDO.
This is followed by a section that illustrates how the heuristic algorithm works with
numerical examples. Then, some concluding remarks are summarized in the last section.

3. Formulation of Partial Disassembly Optimization Problem

3.1. Disassembly Sequence and AND/OR Graph

For a given return, the feasible disassembly sequence is restricted to the design of that
product. After specifying the structure of a product, it is prerequisite to develop the relations
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Figure 2: (a) The structure and (b) component-fastener graph for a partially disassembled PC [24].

ABCDEF

ABCDE ABCDF

ABCD

ABF

AB

BCD

AE CD

1
1 2

2 33 4

4

5

5

6

6

7

7 7

8

8
9

9

A = 10
B = 11
C = 12
D = 13
E = 14
F = 15

F

B A

D

C

E

−1
−1−1

−1
−1

−1
−1

−1

−1 −1
−1−1

−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

1

1
1

1 1

1

1
1

1
1

1 1
1 1

1
1 1 1

1
1

1
1

1
1

1

1

2
3
4

12
11

13

13

5
6

8
9

10

71 2 3 4 1211 135 6 8 9 10

12 11

10

(a)

(b)

14
15

(c)

Figure 3: (a) The structure, (b) AND/OR disassembly tree, and (c) transition matrix for a ballpoint [21].

between subassemblies and parts where separation operations are possible. A component-
fastener graph can be used to represent the assembly relationship [23, 24]. As shown in
Figure 2, if two components are attached or joined by fasteners, then these two components
are connected by an undirected edge in the component-fastener graph.

A disassembly AND/OR graph is another useful representation for all possible
disassembly sequences. An AND/OR graph is a directed hypergraph where subassemblies
are represented as nodes. If more than one subassembly/part can be separated from a
parent assembly in one disassembly operation, a hyperarc (AND arc) is used to indicate
this operation and connects the parent node to all child nodes. Otherwise, a directed arcs
(OR arcs) are used. Figure 3(a) illustrates the drawing of a ballpoint product with associated
AND/OR graph in Figure 3(b). The assembly {ABCDE} yields two subassemblies {BCD}
and {AE} through the disassembly operation {12}, and this operation is represented as an
AND arc (“∪” arc). Moreover, this hypergraph is compact which requires a reduced number
of nodes/arcs to enumerate all partial sequences of disassembly operations [25].

This AND/OR graph can also be represented completely via a transition matrix T .
Suppose I be the set of subassemblies/subparts and J be the set of operations, the element Tij
has a value of 1 if a subassembly i ∈ I is released by some operation j ∈ J or −1 if subassembly
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i ∈ I is to be dismantled via operation j ∈ J . Figure 3(c) defines the associated transition
matrix for the ballpoint product in Figure 3(a), where I = {1 · · · 15} and J = {1 · · · 13}. For
example, the operation j = 12 will dismantle one subassembly i = 2 or assembly {ABCDE},
for two corresponding subassemblies i = 6 and i = 8 or assemblies {BCD}, and {AE},
respectively.

3.2. Mathematical Model

The partial disassembly optimization problem considered in this research is defined as a
single-period partial disassembly optimization (SPPDO) problem. The problem assumed
that the disassembly decision is to consider myopic optimal sequences given the quantity of
returned products and the demands for reusable subparts in the period. For the product with
I as the set of feasible subassemblies/subparts and J as the set of disassembly operations,
two more sets are defined as follows: I0 as the set of original products, I0 ⊆ I; If as set of
reusable subparts or target subparts, If ⊆ I.

Consider the AND/OR graph G for this returned product with I nodes and J arcs
and the transition matrix T for the product. A feasible disassembly sequence to retrieve
reusable parts from a returned product can be defined as a path from a source node in I0
to the corresponding target nodes in If . Let cj be the cost of operation j, and cj ≥ 0, for all
j ∈ J . In this model, the available quantity is defined as a negative number bi ≤ 0, for original
returns i, for all i ∈ I0. For each reusable subpart i, the demand is defined as bi ≥ 0, for all
i ∈ If . Intermediate subassembly has zero demand; that is, bi = 0, for all i ∈ I \ {I0 ∪ If}.
Without loss of generality, we assume that this model has enough supply of original returns;
that is,

∑
i∈I bi ≤ 0. Suppose yj be the number of operation j, j ∈ J , needed in this planning

period, then an optimal partial disassembly sequence with minimum total disassembly cost
can be obtained by solving the formulation proposed as follows:

SPPDO

Minimize
∑

j∈J
cj · yj , (3.1)

Subject to
∑

j∈J
Tij · yj ≥ bi, ∀i ∈ I0 ∪ If , (3.2)

∑

j∈J
Tij · yj ≥ 0, ∀i ∈ I \ {I0 ∪ If

}
, (3.3)

yj ≥ 0 and integer ∀j ∈ J. (3.4)

This SPPDO model is a generalized minimum cost flow problem where the arc in a graph
include both hyperarcs (AND arcs) and regular directed arcs (OR arcs). The constraint set
(3.2) is to ensure that the demands of reusable subparts are fulfilled or the required quantities
for original returns are still sufficient. The constraint sets (3.3) and (3.4) are nonnegative
constraints on the resulting quantity of intermediate subassemblies/parts and the number
of operations needed. It is worth noting that this AND/OR graph is acyclic, and the sum of
degrees from all nodes might not be zero. Further note that, since the transition matrix T does
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not have the property of total unimodularity, this SPPDO formulation can only be solved as
a pure integer programming (IP) problem.

In the literature, a searching algorithm for an AND/OR graph with different inter-
pretation is available, but it is not applicable to solve the SPPDO problem directly. AND/OR
graph is often used to represent a problem-solving process which transforms the original
problem into several subproblems [28, 29]. Each node represents a distinct problem. The node
represents the original problem is referred to as the starting node or root node. A terminal
node, or leaf node, in this graph represents a problem whose solution is either known to exist
or not to exist. A directed arc is linked from a node (problem) to its associated successive
nodes (subproblems). For an OR arc, the problem is solved when the immediately successive
subproblem is solved. If the problem is linked by an AND arc, the problem is only solved
when all the successive subproblems are solved. Hence, the solution for the original problem
is to search for a tree that connects the root node with terminal nodes only [28].

Zhang and Kuo [23] had extended this searching algorithm in finding a solution
tree from an AND/OR graph to obtain the optimal assembly sequence toward the final
product. Even with the assumption of reversible operation, the sequence obtained from
the solution tree might not be directly used for generating disassembly sequence if partial
disassembly is allowed. The main reason is that the disassembly level needs to be identified
if full disassembly is not desirable. The selection in a proper set of terminal nodes can
be combinatorial [25]. Considering the example as in Figures 4(a) and 4(b), the searching
algorithm can be used to find the best trees for the assembly operations from leaf nodes to
the root node as in Figure 5. But to retrieve a stick from the returned problem, the optimal
sequences for partial disassembly operations ({1}, {8}) or ({4}, {7}) can only be obtained if
and only if the set of terminal nodes selected are {7, 9, 10} or {6, 10, 12}, respectively.

3.3. Label Correcting Algorithm

Here we propose a label correcting algorithm to find an optimal disassembly sequence from
an AND/OR graph. This algorithm maintains a label Li = [di, pi] for each node i, i ∈ I,
where di is the minimum disassembly cost to retrieve node i from some starting node in Is,
and pi is the set of immediately predecessor nodes in the shortest path. Let f(j) and t(j)
denote the from-node and to-node of some arc j, j ∈ J . Further, Fi = {j ∈ J : f(j) = i} and
Ri = {j ∈ J : t(j) = i} define the forward star and reverse star for each node i, i ∈ I. The
detailed steps of this algorithm are as follows.

Initialization

For each source node k in k ∈ Is, set the minimum cost dk = 0, the predecessor set pk = φ, and
update the set of labelled node L = L∪{k}. For node k in I \ Is, set the minimum cost dk = ∞,
the predecessor set pk = φ. Select the first labelled node k in L.

Step 1. Determine the set Sk for unlabelled nodes that are immediately connected from node
k; that is, Sk = {n | n ∈ t(j), j ∈ Fk} \ L. If Sk is not empty, then go to Step 2. Otherwise, go to
Step 3.

Step 2. For each node i in Sk, do the following

(1) For each arc j where j ∈ Fk ∩Ri, if dk + cj < di, update the minimum cost di = dk + cj
and set pi = {k}. Otherwise, if dk + cj = di, then update pi = pi ∪ {k}.
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Figure 4: (a) The structure and (b) the AND/OR disassembly tree for a simple product [25].
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(2) Determine the set Ui for unlabelled nodes that are immediately connected toward
node i; that is, Ui = {n|n ∈ f(j), j ∈ Ri} \ L. If Ui is empty, make node i as labelled
and update the set of labelled nodes L = L ∪ {i}.

Step 3. Mark the current node k as solved. Move to the next unsolved node in L as new node
k, go to Step 1. If all nodes are solved, stop.
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If only original returns can be dismantle for reusable subparts, we have Is = I0. For
any solved node i, the di from the label Li = [di, pi] represents the minimum disassembly cost
to retrieve one subpart i directly from a starting assembly. Moreover, the complexity of this
procedure is polynomial bound by the number of nodes; that is, O((|I|)2) [30].
Lemma 3.1. If only one target subpart has positive demand, the label correcting algorithm solves the
SPPDO problem.

Proof. In the SPPDO formulation, it is assumed that target subparts are retrieved from
returned products directly. If only one target subpart i has positive demand, it is equivalent
to find an optimal sequence of disassembly operations with the minimum total cost to reach
the destination node i from the source node. This minimum cost is also defined as di in the
label Li = [di, pi] for node i, i ∈ If .

Lemma 3.2. If more than one target subpart has positive demands, then the corresponding di from
the label correcting algorithm for associated nodes forms an upper bound for the optimal solution in
the SPPDO problem. That is, suppose y∗

j , j ∈ J , be the optimal solution for the SPPDO problem, then
one has

∑
j∈J cj · y∗

j ≤
∑

i∈If bi · di.

Proof. Suppose two target subparts, say l and m, l /=m, have positive demands. Let Pl =
{jl1, jl2, . . . , jlp} and Pm = {jm1, jm2, . . . , jmp} be the optimal disassembly sequences for node
l and node m, respectively. Without loss of generality, we assume that bl ≥ bm > 0. Suppose
there exists some node k ∈ tj , j ∈ Pl and also k ∈ fj , j ∈ Pm. Then the shortest disassembly
path from the source node to node k is overlapped in the optimal disassembly sequences from
the source node to node l and node m. Hence, an upper bound for the optimal disassembly
cost is

∑
j∈J cj · y∗

j ≤ (bl · dl + bm · dm) − bm · dk.

Moreover, it can be concluded that
∑

j∈J cj · y∗
j =

∑
i∈If bi · di if and only if each original

return can be retrieved for no more than one target subpart only.

3.4. A Heuristic Procedure for Solving Partial Disassembly
Optimization Problem

Next, we presented heuristic procedure that utilizes the label correcting algorithm in the
previous section. This procedure is to find a good solution for larger instances of SPPDO
problem in a real-world setting within a reasonable computation effort. The detail of this
iterative procedure is described as follows.

Initialization

Apply the label correcting algorithm with Is = Io to obtain the initial labels Li = [di, pi] for all
subparts i, i ∈ I. Set the variable yj = 0, j ∈ J . Let xi be the quantity of subassembly i available
for further dismantle, set xi = 0, i ∈ I, and xi = |bi|, i ∈ I0. Note that

∑
i∈I0 |bi| ≥

∑
i∈If bi.

Phase 1 (Path construction). Select a target node iwhich has the maximum total potential cost
in unfulfilled demand; that is, i = argk∈If max{(bk − xk) · dk | bk > xk}. Break ties arbitrarily.

Obtain the minimum cost disassembly sequences, Pi = {ji1, ji2, . . . , jip}, which forms a
directed path from source node s, s = f(ji1) toward the demand node i; i ∈ t(jip). Break ties
arbitrarily. Find the maximum flow for this path, Δ = min{xs, (bi − xi)}.
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For each arc j, j ∈ Pi, start from the first arc, perform the following updates sequen-
tially.

yj = yj + Δ,

xk = xk −Δ, if k ∈ f
(
j
)
,

xk = xk + Δ, if k ∈ t
(
j
)
.

(3.5)

Phase 2 (Termination test). Update the total disassembly cost z = z + Δ · di and check for any
unfulfilled demand; that is, xk < bk, k ∈ If . If all demands are fulfilled, then stop. The current
solution of yj , j ∈ J , is feasible for the SPPDO problem.

Otherwise, update the set of source nodes to include intermediate nodes with positive
quantity; that is, Is = I0 ∪ {k}, if xk > 0 for k ∈ I \ {I0 ∪ If}. Update labels Li = [di, pi] for all
subparts i, i ∈ I using the label correcting algorithm in Section 3.3 with the new set of source
nodes Is. Go to Phase 1.

Lemma 3.3. The objective value of solution obtained from this heuristic procedure, referred to as zH ,
is at least as good as that obtained from the label correcting algorithm, referred to as zLC.

Proof. In Phase 2, the labels for subparts are altered only when there exists some intermediate
subassembly with positive quantity to be further dismantled for those target subparts
with lower costs. Otherwise, the initial labels remain unchanged. So, the contribution of
disassembly cost for a target subpart in zH is no higher than that in zLC.

Furthermore, let z∗ =
∑

j∈J cj · yj be the optimal solution for the SPPDO problem and
zLC =

∑
i∈If bi · di. We have z∗ ≤ zH ≤ zLC from Lemmas 3.2 and 3.3.

4. Numerical Examples

In this section, the simple product in Figure 4(a) is used to demonstrate how the heuristic
procedure in Section 3.4 works to generate partial disassembly sequences for the SPPDO
problem. There are totally twelve different (sub)assemblies, I = {1, . . . , 12}. The original
return is represented by node {1}, and reusable subparts are nodes {9}, {10}, {11}, {12} for
cap, stick, receptacle, and handle, respectively, that is, I0 = {1} and If = {9, 10, 11, 12}. A total
of fifteen disassembly operations can be used to dismantle this product, J = {1, . . . , 15} with
the associated costs C = {5, 7, 7, 5, 6, 7, 2, 2, 7, 6, 2, 1, 4, 4, 1}.

The construction of labels using the label correcting algorithm is shown in Figure 6.
The minimum disassembly cost to retrieve node {10} (stick) is 7 with two alternative optimal
disassembly sequences: P10 = {4, 7} or P10 = {1, 8}. This optimal solution is consistent with
observation in Section 3.2.

Next, we demonstrate the use of heuristic algorithm with the consideration of the
following demands for target subparts: three caps (node{9}) and one stick (node{11}); that
is, b9 = 3. b11 = 1. It implies that the supply of original returns should be at least four; that
is, b1 = −4. In the initialization step, all variables x,y are set to zero except x1 = 4 and the
initial labels are obtained from Figure 6. In Phase 1, since node {9} (cap) has a higher total
unfulfilled cost than node {11} (stick), node {9} is selected along with the associated directed
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Figure 6: Brief illustration of stepwise label correcting algorithm for the product structure as in Figure 5(a).

path P9 = {1}. Calculate the flow Δ = min{x1, (b9 − x9)} = min{4, (3 − 0)} = 3 on this path.
Since P9 has only one arc j = 1, update the solution y1 = 3, x1 = 4 − 3 = 1, x3 = 3, and x9 = 3.

Continue to Phase 2 to check for the termination criteria. Update the current total
disassembly cost z = z + Δ · d9 = 0 + 3 ∗ 5 = 15. There still exists unfulfilled demand since
x11 = 0 < b11. So, first update the set of source nodes Is = {1, 3} to include the intermediate
node {3} as x3 = 3 > 0. Then labels for subparts are updated using the label correcting
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Figure 7: Updated labels with an additional source node {3} as in the shaded area.

algorithm. It is worth noting that, as shown in Figure 7, not every label is changed, and the
effected nodes with associated arcs are shown in bold in the shaded area.

In the second iteration, select node {11} to fulfil the remaining demand b11 = 1 with
the disassembly path P11 = {8, 14}. Calculate the maximum flow Δ = min{x3, (b11 − x11)} =
min{3, (1−0)} = 1 and update the solution starting from the first arc j = 8: y8 = 1, x3 = 3−1 = 2,
x7 = 1, and x10 = 1. Then update for the second arc j = 14: y14 = 1, x7 = 1 − 1 = 0, x11 = 1,
and x12 = 1. This procedure terminates since all demands are fulfilled with the total cost
z = 15 + 1 ∗ 6 = 21. The resulting quantities of subparts are x1 = 1, x3 = 2, x9 = 3, x11 = 1, and
x12 = 1, and the required disassembly operations are y1 = 3, y8 = 1 and y14 = 1 for three caps
and one stick.

5. Conclusions

In this paper, we investigate a single period partial disassembly optimization (SPPDO)
problem to generate an optimal disassembly sequence in product recovery of the end-of-life
(EoL) products. An AND/OR graph representation and associated transition matrix are used
in the mathematical formulation of the SPPDO problem to minimize the total disassembly
cost. Since the transition matrix does not have the property of total unimodularity, this
SPPDO model can only be solved as a pure integer programming (IP) problem, which is
NPcomplete.

A label correcting algorithm is proposed to find an optimal disassembly sequence
when the reusable subpart is retrieved directly from original return. To solve the SPPDO
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problem in general case, this paper presents a heuristic procedure that utilizes this poly-
nomial-time algorithm to find a solution. This heuristic procedure can quickly provide a good
disassembly plan for problems with more complicated disassembly structures in a real-world
setting within a reasonable computation effort. It can be further integrated in the production
planning for end-of-life (EoL) products to improve the profitability of product recovery.
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