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A new saturation control technique is proposed to design multiobjective and robust anti-windup
controllers for linear systems with input saturations. Based on the characterization of saturation
nonlinearities and modeling uncertainties via integral quadratic constraints (IQCs), this method
considers a mixed H2/H∞ performance indexes while maintaining dynamic constraints on the
controller. The analysis and synthesis conditions are presented in terms of scaled linear matrix
inequalities (LMIs). The proposed control algorithm can improve the performance of the input-
constrained systemwhile also guaranteeing robustness with respect to the modeling uncertainties.
Finally, a numerical example is given to illustrate the effectiveness of the developed techniques.

1. Introduction

Nonlinear control was one of the most active areas of control research. A number of different
approaches have recently emerged to discuss this challenging problems, such as the fuzzy
control [1–5] and robust sliding mode control [6–8]. Saturation nonlinearities are very
common in feedback control systems [9], nearly all physical systems are subjected to some
type of control input saturation. If input constraints are not taken into account, harmful effects
on system performance and stability may appear. Numerous methods have been proposed to
handle such nonlinearities, among which the anti-windup strategy is related to pratical use
closely. The basic idea underlining anti-windup designs is to introduce control modifications
in order to recover, as much as possible, the performance induced by a previous design
carried out on the basis of the unsaturated system. First results on anti-windup consisted on
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ad hoc methods intended to work with standard PID controllers, which are commonly used
in present commercial controllers. Nonetheless, major improvements have been achieved in
the last decade as it can be researched rigorousy in theory.

A general framework that unifies a large class of existing anti-windup control schemes
in terms of two matrix parameters was proposed in [10]. In [11], a rigorous definition of anti-
windup compensation was provided in terms of L2 stability and performance. The rigorous
stability analysis based on passivity concept was developed in [12]. The synthesis condition
of static anti-windup controllers was formulated as an LMI problem in [13]. References
[14, 15] further derived the dynamic anti-windup controller synthesis condition with linear
matrix inequality (LMI) constraints. In addition, based on the linear fractional transformation
(LFT)/linear parameter-varying (LPV) framework, extended anti-windup schemes were
introduced in [16, 17]. In these contributions, the saturations are modeled as sector-bounded
nonlinearities and the anti-windup control design is recast as a convex optimization problem
by absolute stability theory provided that no uncertainty affects the plant.

The problems associated with robustness to plant uncertainty and the problems
associated with actuator saturation have often been considered in isolation. There has been
little literature which attempts to handle them simultaneously in the anti-windup framework.
As noted in [18], nominal linear robustness is only a necessary, but not sufficient condition for
the robustness of the overall anti-windup compensated system. Furthermore, [18] introduced
an approach to synthesizing anti-windup compensators for input constrained systems subject
to additive dynamic uncertainty. Reference [19] considered anti-windup design problem
for a closed-loop LFT model whose structured perturbation block contains parametric
uncertainties.

In this paper, we propose a unified synthesis method for the construction of
multiobjective and robust anti-windup controller for linear systemswith actuator saturations,
time-varying parametric and dynamic uncertainties. Through an equivalent representation,
actuator saturations are treated as sector-bounded nonlinear uncertainty and are included in
a block-diagonal operator Δ together with the other uncertainties. Inspired by the research
work in [20], the problems associated with robustness are handled within the integral
quadratic constraints (IQCs) framework characterizing the properties and structure ofΔ. The
performance objectives are specified in terms ofH∞ norm,H2 norm, and additional regional
constraints on the closed-loop poles. Interestingly, the regional closed-loop poles placement
also ensures the pole-placement constraints on the anti-windup controller in that the closed-
loop poles exactly consist of the poles of nominal system and those of anti-windup controller.
As observed in [21], this helps to prohibit the slow dynamics which remain visible on the
plant outputs even when the saturations are no longer active. The overall analysis conditions
are cast as an optimization over LMIs using S-procedure technique and a common quadratic
Lyapunov function. The controller synthesis procedure requires solving scaled LMIs with a
D/K-like iteration and provides a full-order dynamic anti-windup controller.

Notation. Let Λn×n denote n-dimensional diagonal matrix. For compact presentation, given
a square matrix X we denote HeX := X + XT . A block-diagonal structure with sub-
blocks X1, X2, . . . , Xp in its diagonal will be denoted by diag (X1, X2, . . . , Xp). Ln

2e denotes
n-dimensional functional space whose members only need to be square integrable on finite
intervals. ε is a sufficiently small value. Other notations are standard.
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Table 1: IQC characterization for specified Δi.

Type Φ ∈ [0, KΦ] diag(δ1, . . . , δni
) δi(t)Ini

‖Δi(s)‖∞ < 1
Q = −2V ∈ Λni×ni Q ∈ Λni×ni Q ∈ �ni×ni Q = qIni

, q ∈ �
Scalings S = VKΦ S = 0 S + ST = 0 S = 0

R = εI R = −Q R = −Q R = −Q

2. Problem Statement

The anti-windup control problem is sketched in Figure 1(a). The block P(s) denotes the stable
nominal system and typically includes a model of the plant with uncertainties, nominal
controller together with weighing functions specified by the user. Note that Φ = z − Ψ(z),
where Ψ denotes the standard saturation operator. For clearness, the anti-windup control
diagram in Figure 1(a) is equivalently reformulated as LFT structure in Figure 1(b)with ˜P(s)
described by

ẋp = Apxp + Brwr + Bpwp + Buu,

zr = Crxp +Drrwr +Drpwp +Druu,

z∞ = C∞xp +D∞rwr +D∞pwp +D∞uu,

z2 = C2xp +D2rwr +D2pwp +D2uu,

w = Dwrwr,

wr = Δzr.

(2.1)

Here, xp ∈ �n are the states. The input/output channels associated with the robustness are
wr, zr ∈ �nr . The input/output channels associated with the performance criterion are wp ∈
�np , z∞ ∈ �n∞ , and z2 ∈ �n2 . u ∈ �nu are the compensated controls, and w ∈ �nw are the
saturation error feedback. For well posedness, we will assume that D2p = 0.

Δ is a causal operator from Lr
2e[0,∞] to Lr

2e[0,∞]with its inputs and outputs satisfying
the following time-domain integral quadratic constraint

∫ t

0

[

wr(t)
zr(t)

]T[
Q ST

S R

][

wr(t)
zr(t)

]

dt ≥ 0, ∀t ≥ 0. (2.2)

Let Q, S, R be constant scaling matrices such that Q < 0, R > 0. We assume that Δ is block
diagonal: Δ = diag(Δ1, . . . ,Δr), where Δi denotes a “troublemaking” component. The IQC
characterizations for the typical cases considered here are listed in Table 1. Reference [20]
provides a fairly complete overview of IQCs. For application, all of the individual IQC are
collected in block-diagonal matrices Q = diag (Q1, . . . , Qr), R = diag (R1, . . . , Rr), and S =
diag (S1, . . . , Sr) to characterize the associated composition of Δ.
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Figure 1: (a) Anti-windup control structure; (b) equivalent LFT formulation.

Considering system (2.1), we assume that a full-order dynamic anti-windup
compensator is of the form

ẋk = Akxk + Bkw,

u = Ckxk +Dkw,
(2.3)

where xk ∈ �n is the controller state, and Ak, Bk, Ck, Dk are constant matrices of appropriate
dimensions. Then, the final closed-loop system admits the realization

ẋc = Acxc + Brwr + Bpwp,

zr = Crxc +Drrwr +Drpwp,

z∞ = C∞xc +D∞rwr +D∞pwp,

z2 = C2xc +D2rwr,

(2.4)

where xc = [xT
p xT

k ]
T and

[Ac Bi

Cj Dji

]

=

⎡

⎢

⎣

Ap BuCk Bi + BuDkDωi

0 Ak BkDωi

Cj DjuCk Dji +DjuDkDwi

⎤

⎥

⎦
(2.5)

with i = r, p and j = r,∞, 2.
Denoting by T∞(s) and T2(s) the closed-loop transfer functions from wp to z∞ and z2

respectively, we consider the following multiobjective synthesis problem: design an dynamic
anti-windup controller (2.3) such that as follows.

(1) The closed-loop system (2.4) is robustly stable with respect to the perturbation
block Δ.

(2) Minimize ‖T2(s)‖2 subject to ‖T∞(s)‖∞ < γ .
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(3) The closed-loop poles can be placed in the prescribed complex plane which is
described by LMI region.

3. LMI Formulation of System Analysis

In this section, we will provide robust stability and performance analysis conditions for
the closed-loop system (2.4) in the LMI framework. The specifications and objectives under
consideration include H∞ performance, H2 performance. Additional regional constraints on
the closed-loop poles can also be imposed.

Theorem 3.1 (robust H∞ performance). Given the closed-loop system (2.4) with perturbation
blockΔ satisfying the integral quadratic constraint (2.2) and a scalar γ , if there exist a positive-definite
matrix P∞ and scaling matrices Q,S,R such that

He

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P∞Ac P∞Br + CT
r S P∞Bp 0 0

0
1
2
Q + STDrr STDrp 0 0

0 0 −1
2
γI 0 0

RCr RDrr RDrp −1
2
R 0

C∞ D∞r D∞p 0 −1
2
γI

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (3.1)

then the closed-loop system is robustly stable against the perturbation block Δ, and one has
‖T∞(s)‖∞ < γ with zero-state initial conditions.

Proof. Consider a Lyapunov function V (xc) = xT
c P∞xc for the closed-loop system (2.4). A

sufficient condition for the robust H∞ performance specification can be established from the
inequality

V̇ +
[

wr

zr

]T[
Q ST

S R

][

wr

zr

]

+
1
γ
zT∞z∞ − γwT

pwp < 0. (3.2)

First, consider the robust stability with the performance channel removed, the
inequality (3.2) is rewritten as

d

dt

(

V +
∫ t

0

[

wr

zr

]T[
Q ST

S R

][

wr

zr

]

dt

)

< 0. (3.3)

Note that the second term is always nonnegative. According to standard arguments from
Lyapunov theory, the closed-loop system is stable. Here, the function V decreases to zero,
but not necessarily monotonically. Next, consider robust performance, integrating (3.2) from
0 to ∞ with initial condition xc(0) = 0 yields ‖z∞‖2 < γ‖wp‖2. As a result, robust H∞
performance can be guaranteed. Inequality (3.2) is equivalent to the LMI condition (3.1) by
Schur complement.
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Theorem 3.2 (robustH2 performance). Given the closed-loop system (2.4)with perturbation block
Δ satisfying the integral quadratic constraint (2.2) and a scalar ν, if there exist a positive-definite
matrix P2 and scaling matrices Q,S,R such that

He

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P2Ac P2Br + CT
r S 0 0

0
1
2
Q + STDrr 0 0

RCr RDrr −1
2
R 0

C2 D2r 0 −1
2
I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0,

[

P2 P2Bp

BT
pP2 W

]

> 0,

Tr(W) < ν2

(3.4)

then the closed-loop system is robustly stable against the perturbation blockΔ, and one has ‖T2(S)‖2 <
ν.

Proof. Let {e1, . . . , enp} be a basis of the input space �np . Let xc0·i = Bpei, i = 1, . . . , np be the
initial conditions of the closed-loop system (2.4). Let z2·i denote the output response subject
to initial condition xc0·i and wp = 0. Then the H2 norm ‖T2(s)‖2 can be equivalently defined
as [22]

‖T2(s)‖22 :=
np
∑

i=1

‖z2·i‖22. (3.5)

With these results, a Lyapunov function V (xc) = xT
c P2xc can be constructed to satisfy the

following inequality

V̇ +
[

wr

zr

]T[
Q ST

S R

][

wr

zr

]

+ zT2z2 < 0. (3.6)

The robust stability proof is the same as the one in Theorem 3.1. As for robust
performance, integrating (3.6) from 0 to ∞ with xc(∞) = 0 guaranteed by stability, we can
obtain ‖z2‖22 < V (xc(0)). As a result, the output energy is bounded by

np
∑

i=1

‖z2·i‖22 <
np
∑

i=1

eTi BT
pP2Bpei = Tr

(

BT
pP2Bp

)

. (3.7)

With an auxiliary parameter W such that BT
pP2Bp < W , the LMI conditions (9∼11) can be

obtained by Schur complement.
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Pole assignment in convex regions of the left-half plane can be expressed as LMI
constraints on the Lyapunov matrix. An LMI region is any region D of the complex plane
that can be defined as

D =
{

z ∈ C : L +Mz +MTz < 0
}

(3.8)

with L = LT = {λij}1≤i, j≤m and M = {μij}1≤i, j≤m being constant real matrices. Reference [23]
gives a thorough discussion for various types of the convex region.

Theorem 3.3 (see [23] (pole placement)). The closed-loop state matrix Ac has all its eigenvalues
in the LMI region D (3.8) if and only if there exists a positive definite matrix Ppol such that

[

λijPpol + μijAT
c Ppol + μjiPpolAc

]

1≤i, j≤m
< 0. (3.9)

Note that the closed-loop poles of system (2.4) exactly consist of the poles of system
(2.1) and those of controller (2.3); LMI region D should include the poles of system (2.1) to
ensure the feasibility of the problem. Furthermore, the dynamics of the controller (2.3) can be
constrained by the LMI region D.

4. LMI Approach to Multiobjective Synthesis

Based on the analysis results stated in the above section, in this section we aim to present a
constructive procedure to design an anti-windup controller of the form (2.3), satisfying the
multiobjective synthesis purposes proposed in Section 2. This procedure relies on a simple
change of controller variables to map all LMIs of Section 3 into a set of affine constraints on
the new controller variables and the closed-loop Lyapunov matrix.

For tractability in the LMI framework, we must seek a common Lyapunov matrix

P := P∞ = P2 = Ppol (4.1)

that satisfies Theorems 3.1, 3.2, and 3.3. This restriction has been extensively used in
multiobjective control problem such as [23, 24]. Partition P and P−1 as

P =
[

Y N
NT ∗

]

, P−1 =
[

X M
MT ∗

]

, (4.2)

where X,Y ∈ �n×n are symmetric. Factorizing P as

PX1 = X2, X1 =
[

X I
MT 0

]

, X2 =
[

I Y
0 NT

]

(4.3)
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we define the change of controller variables as follows:

Ak := YApX + YBuCkM
T +NAkM

T,

Bk := YBuDk +NBk,

Ck := CkM
T,

Dk := Dk.

(4.4)

For full-order design, one can always assume thatM,N are n×n square and invertible matri-
ces. Hence the controller variables Ak, Bk, Ck,Dk can be determined by Ak,Bk,Ck,Dk, X, Y
uniquely. Then through suitable congruence transformation, the analysis results of Section 3
are readily turned into inequality constraints on the variables X,Y,Ak,Bk,Ck,Dk as well as
auxiliary variable W and scaling matrices Q,S,R, and we arrive at Theorem 4.1.

Theorem 4.1 (multiobjective synthesis for robust anti-windup controller). Given the general-
ized plant (2.1)with perturbation blockΔ satisfies the integral quadratic constraint (2.2) and the LMI
regionD (3.7). There exists a controller (2.3) which robustly stabilizes plant (2.1) and enforces a tight
upper bound

√

Tr(W) on ‖T2(s)‖2 subject to ‖T∞(s)‖∞ < γ and closed-loop poles constraints specified
byD, if there exist matrices X,Y,Ak,Bk,Ck,Dk as well as auxiliary variableW and scaling matrices
Q,S,R such that the inequalities hold as shown in (20∼22) at the top of the next page, together with

He

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ApX + BuCk Ap +AT
k

Br + BuDkDwr +XCT
r S + CT

k
DT

ruS Bp 0 0
0 YAp YBr + BkDwr + CT

r S YBp 0 0

0 0
1
2
Q + STDrr + STDruDkDwr STDrp 0 0

0 0 0 −1
2
γI 0 0

RCrX + RDruCk RCr RDrr + RDruDkDwr RDrp −1
2
R 0

C∞X +D∞uCk C∞ D∞r +D∞uDkDwr D∞p 0 −1
2
γI

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0,

He

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ApX + BuCk Ap +AT
k

Br + BuDkDwr +XCT
r S + CT

k
DT

ruS 0 0
0 YAp YBr + BkDwr + CT

r S 0 0

0 0
1
2
Q + STDrr + STDruDkDwr 0 0

RCrX + RDruCk RCr RDrr + RDruDkDwr −1
2
R 0

C2X +D2uCk C2 D2r +D2uDkDwr 0 −1
2
I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0,

[

λij

(

X I
I Y

)

+ μij

(

ApX + BuCk Ap

Ak YAp

)T

+ μji

(

ApX + BuCk Ap

Ak YAp

)

]

1≤i, j≤m
< 0,
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⎡

⎣

X I Bp

I Y YBp

BT
p BT

p Y W

⎤

⎦ > 0,

Minimizing Tr(W).

(4.5)

Due to the fact that thematrix variablesX,Y,Ak,Bk,Ck,Dk and scalingmatricesQ,S,R
enter the inequalities (21∼22) in nonlinear fashion, synthesis conditions are no longer convex
optimization problem. In order to overcome this difficulty, one will resort to the following
iterative scheme based on LMI.

Step 1. Initialize scaling matrices Q,S,R.

Step 2. With fixed Q,S,R, perform control synthesis according to Theorem 4.1. Compute two
invertible matrices M,N ∈ �n×n such that

MNT = I −XY. (4.6)

Equation (4.4) can be solved for Dk,Ck, Bk,Ak in this order.

Step 3. Apply Theorems 3.1, 3.2, 3.3, and (4.1) to the closed-loop system (2.4) to solve scaling
matrices Q,S,Rminimizing Tr(W).

Step 4. Iterate over Step 2 to Step 3 until Tr(W) cannot be decreased significantly.

It is important to mention that the previously described iterative scheme, although not
guaranteeing a global solution theoretically, has proven very efficient in practice.

5. Application Example

As an application, a missile benchmark problem [25] will be used to demonstrate the
effectiveness of the results discussed. The model is linearized at α = 10deg (angle of attack)
and Ma = 3 (Mach number), and admits the realization

⎡

⎣

α̇
q̇
ϑ̇

⎤

⎦ =

⎡

⎣

Zα 1 0
Mα 0 0
0 1 0

⎤

⎦

⎡

⎣

α
q
ϑ

⎤

⎦ +

⎡

⎣

Zδ

Mδ

0

⎤

⎦δ, (5.1)

where q, ϑ, and δ denote pitch rate, pitch angle, and elevator deflection, respectively. The
measurement outputs are the flight path angle r = ϑ − α and the pitch rate q. The parametric
uncertainties originate from the aerodynamic force Z and moment M with uncertainty level
of ±20%. The actuator dynamics are given byGact(s) = 1502/(s2+210s+1502)with saturation
limit δ ∈ [−15, 15]deg.

Ignoring the saturation, a PID controller can be designed as δc = [1.5
∫

(r − rc)dt +
2r + 0.3q]. δc and rc denote the commanded signal to the actuator and the commanded flight
path angle, respectively. According to the analysis results in Section 3, the PID controller can
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−
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z∞

Wd
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zr2
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z2

δzI

δmI

Figure 2: Interconnection structure for anti-windup design.

×××

×

×

1500

75◦

−0.5

Figure 3: LMI region with poles [−1346,−61,−1,−9.8 ± 10.2i].

guarantee global stability for the saturated plant with KΦ = 1. Although the PID controller
provides adequate stability and nominal performance, the tracking trajectory of the nominal
system under saturation deteriorates and exhibits great overshoot (see Figure 4). This clearly
necessitates the anti-windup compensation scheme.

In the anti-windup design, firstly parametric uncertainties in Z and M are extracted
from the plant in a linear fractional way and rescaled to [−1, 1]. Secondly, to avoid excitation
of unmodeled high-frequency dynamics, a multiplicative input uncertainty Δd(s) weighted
by Wd(s) = 1.5[(s + 2)/(s + 80)] is placed at the actuator. Finally, we end up with the control
interconnection as shown in Figure 2. Constant weights We = 1 and Wn = 0.001 are used to
reflect the tracking performance and measurements with noise.

We combine the sector-bounded nonlinearity Φ = I − Ψ with the modeling
uncertainties as a block-diagonal uncertainty structure given by Δ = diag (Φ, δzI, δmI,Δd).
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Figure 4: Time-domain responses to a double pulse reference.
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Figure 5: Time-domain responses for all combinations of perturbed aerodynamics.

Then, the anti-windup control diagram in Figure 2 is equivalently reformulated as LFT
structure in Figure 1(b) for design. For low-order compensator, the actuator dynamics are
ignored in design. This is justified by the fact that the bandwidth of the system is far below
that of the actuator. The LMI regionD specified in Figure 3 is used to constrain the dynamics
of the compensator. We choose to minimize ‖T2(s)‖2 subject to ‖T∞(s)‖∞ < γ . KΦ = 0.8 is
used to allocate the partial design freedom for coping with robustness and performance at
the cost of global stability. As a result, we achieve γ = 38.6 and ‖T2(s)‖2 = 4.2. The control
deflection should satisfy the condition |δ| ≤ (1/(1 −KΦ))15 deg. The distribution of the poles
of the compensator is shown in Figure 3.
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For numerical simulations, the measurement noise is chosen as band-limited white
noise of power 10−6 passed through a zero order holder with sampling time 10−3 s. The
resulting anti-windup response almost coincides with the linear response (see Figure 4).
We can see that the designed anti-windup controlled guarantees the stability and recovers
the nominal performance when the actuator is saturated deeply. For comparison, the anti-
windup response of the nondynamically constrained compensator become worse because of
the existence of a slow compensator mode −0.002. Figure 5 shows the time-domain robust
performance behaves. As expected from previous results, Figure 5 illustrated that the anti-
windup performance of the obtained controller is robust with respect to the error in model
parameters.

6. Conclusion

This paper presents a unified synthesis method for the construction of multiobjective and
robust anti-windup compensator for linear systems with actuator saturations, time-varying
parametric and dynamic uncertainties. Motivated by the capability of integral quadratic
constraints in characterizing saturation nonlinearities and modeling uncertainties, the
concerned anti-windup and robustness problems are addressed in the framework of IQCs.
The performance objectives are specified in terms of a mixed H2/H∞ norm and additional
constraints on the poles of the controller. The controller synthesis procedure requires solving
scaled LMIs with a D/K-like iteration and provides dynamically constrained anti-windup
compensators. Finally, simulation example demonstrates the effectiveness of the results.
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