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This paper proposes a theorem to generate chaotic key stream from topologically conjugated maps
of Tent Map. In this theorem, the condition for topological conjugation between Tent Map and
a class of chaotic maps is first determined. Then, the chaotic attractor of the maps is divided
into 2n unequal subintervals, the chaotic orbit is sampled once in n time iteration, and, finally,
the independently and uniformly distributed 2n phase key stream is obtained. The theoretical
and numerical analyses show that the chaotic key stream generated by the proposed theorem
successfully is independent and uniform, has a certain complex degree close to the maximum
approximate entropy for 2n phase key stream, and satisfies the randomness requirement defined in
NIST SP800-22. This theorem can be used in fields such as cryptography and numerical simulation.

1. Introduction

Random number generation is very important in cryptography, especially in key construc-
tion. In symmetric and asymmetric cryptosystems, the random number is the primary
resource for key generation. Further, random number generators (RNGs) are used to create
challenges, nonce, padding bytes, and blinding values in many cryptographic protocols.

There are two basic types of generators that produce random sequences: true random
number generators (TRNGs) [1] and pseudorandom number generators (PRNGs) [2–5].
PRNGs are generally faster than TRNGs, and, therefore, PRNGs are preferable in applications
requiring a large number of random numbers.

Chaotic system, characterized by sensitive dependence on initial conditions, similarity
to random behavior, continuous broad-band power spectrum, inherent determinism, and
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simplicity of realization, can be potentially exploited for PRNGs [6, 7]. Most applications
of chaotic maps use a one- or multidimensional chaotic map as a PRNG to produce a binary
stream, which is then XORed with the plaintext to produce the cipher-text [8–11]. Thus, the
statistical property—independently and identically distributed (IID)—of chaotic key stream
plays an important role in avoiding cipher-text attacking.

Tent Map is described by the uniform probability law, and, hence, the statistical inde-
pendence of successive binary symbols is the main problem to be addressed. Some studies
focus on experiments that determine the selection of a suitable Tent Map parameter for differ-
ent applicationswhere the statistical independence is of interest. The relationship between the
TentMap parameter and the statistical independence decision is indicated in [12]. Complying
with the fair coin tossing model in [13], the threshold is given according to the Tent Map
parameter to obtain a statistically independent key stream. Other studies have focused on the-
oretical proofs. Logistic Map is topologically conjugated with Tent Map [14], and, therefore,
Hu et al. proposed a method for generating chaotic key stream based on Logistic Map [15].
This key stream is proved to be independent and uniform. AdrianLuca and Vlad provided
another method for generating IID samples using Logistic Map by combining discrete noisy
channel with the test of independence in contingency tables [16]. Until now, the research
for generating IID key stream by topological conjugation has been limited to Logistic Map.
However, in our study, we determine amore general condition, under which a class of chaotic
systems can produce the IID key stream. Meanwhile, the proof in [14] can be considered as
the example for the theorem proposed in this paper.

2. Theorem for Generation of IID Key Streams

In this section, we specify the conditions and process required for a class of topologically
conjugated mapping systems of Tent Map to generate the IID key stream.

Definition 2.1 (see [17]). For two one-dimensional maps,we have

xk+1 = g(xk), x ∈ I ⊂ R,

yk+1 = g
(
yk

)
, x ∈ J ⊂ R.

(2.1)

If there exists a continuous and invertible map h : I → J , such that yk = h(xk), making
h−1 ◦ f ◦ h(xk) = g(xk) and h ◦ g ◦ h−1(yk) = f(yk), then f and g are said to be topologically
conjugated via h.

Lemma 2.2 (see [17]). If f and g are topologically conjugated via h, then fn and gn are topologically
conjugated via h.

Lemma 2.3 (see [17]). If f and g are topologically conjugated via h, and ρg is the probability density
function of g, then the probability density function of f is

ρf(x) = ρg
(
h−1(x)

)
∣∣∣∣∣
dh−1(x)

dx

∣∣∣∣∣
. (2.2)
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Theorem 2.4. For tent map, we have

xk+1 = g(xk) =

⎧
⎪⎨

⎪⎩

2xk, 0 ≤ xk ≤ 1
2

2 − 2xk,
1
2
≤ xk ≤ 1

(2.3)

whenma = −4, and m,a ∈ R,

f(xk) = mx2
k + 4xk, xk ∈ [min{0, a},max{0, a}], (2.4)

and g(xk) are topologically conjugated via

h(xk) = a sin2πxk

2
, a /= 0. (2.5)

For the map f(xk) = mx2
k + 4xk defined by (2.4), we choose n as sampling step, that is,

xk+1 = fn(xk), and can generate an independent uniformly distributed chaotic key stream {si}∞0 by
the following process.

(1) If a > 0, the chaotic attractor domain [0, a] is partitioned into N = 2n subdomains τi =
[ti, ti+1), where ti = h(i/N), i = 0, 1, . . . ,N − 1.

(2) If a < 0, the chaotic attractor domain [a, 0] is partitioned into N = 2n subdomains τi =
[ti, ti+1), where ti = h((N − i)/N), i = 0, 1, . . . ,N − 1.

(3) Then, chaotic key stream {si}∞0 is defined as:

if xk ∈ τi, then sk = i.

Proof. (1) f(x) Is Surjective

When ma = −4, f(xk) = mx2
k + 4xk = (−4/a)x2

k + 4xk.

If a > 0, it can be concluded that when xk ∈ [0, a], f(xk) ∈ [0, a].

If a < 0, it can be concluded that when xk ∈ [a, 0], f(xk) ∈ [a, 0].

Thus, f(x) is surjective in its definition domain [min{0, a},max{0, a}].
(2) Property of Topological Conjugation
If f and g are topologically conjugated via h, then, according to Definition 2.1,

h−1 ◦ f ◦ h(xk) = g(xk), that is, f ◦ h(xk) = h ◦ g(xk). (2.6)

For Tent Map (2.3) and transformer (2.5),

h ◦ g(xk) =

⎧
⎪⎪⎨

⎪⎪⎩

a sin2π2xk

2
= a sin2πxk, 0 ≤ xk ≤ 1

2

a sin2π(2 − 2xk)
2

= a sin2(π − πxk) = a sin2πxk,
1
2
≤ xk ≤ 1

= a sin2πxk, 0 ≤ x ≤ 1

= h(2xk).

(2.7)
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When ma = −4, for map (2.4),

f(xk) =
−4
a
x2
k + 4xk =

4
a
xk(a − xk). (2.8)

Hence,

f ◦ h(xk) =
4
a
· a sin2πxk

2

(
a − a sin2πxk

2

)

= 4a sin2πxk

2
· cos2πxk

2

= a
(
2 sin

πxk

2
· cos πxk

2

)2

= a sin2πxk.

(2.9)

Thus, f ◦ h(xk) = h ◦ g(xk).
Hence, f and g are topologically conjugated via h.

(3) f(xk) Is Chaotic

To assure the key stream {si}∞0 produced by f(xk) is chaotic pseudorandom number
with the potential characters proposed in paragraph 3 in Section 1, we prove the f(xk) is
chaotic now.

As the reference [18–20] proposed, the Lyapunov exponents of corresponding orbits of
two conjugated interval maps are the same. According to the computingmethod of Lyapunov
exponent

λ
(
g, x

)
= lim

n→∞
1
n

n∑

i=1

ln
∣∣g ′(xi)

∣∣, (2.10)

if λ(g, x) is the Lyapunov exponent of the orbit of g through x, λ(f, y) is the Lyapunov
exponent of the orbit of f through y = h(x), and f ◦ h(xk) = h ◦ g(xk) is the conjugation, then
λ(g, x) = λ(f, y) [18]. And the largest λ(g, x) with respect to changes of δx0 is independent
of x0 [20].

More precisely, for the map (2.4) f(yk) = my2
k + 4yk established by Theorem 2.4, Tent

Map defined by (2.3), and yk = h(xk) = a sin2(πxk/2) defined by (2.5), we have f ◦ h(xk) =
h ◦ g(xk), and f ′(h(xk)) · h′(xk) = h′(g(xk)) · g ′(xk), that is, f ′(yk) · h′(xk) = h′(g(xk)) · g ′(xk),
thus,

∣∣f ′(yk

)∣∣ =

∣∣∣∣∣
h′(g(xk)

)

h′(xk)

∣∣∣∣∣
· ∣∣g ′(xk)

∣∣ =
∣∣∣∣
(πa/2) sin(2πxk)
(πa/2) sin(πxk)

∣∣∣∣ ·
∣∣g ′(xk)

∣∣ = |2 cos(πxk)| ·
∣∣g ′(xk)

∣∣.

(2.11)
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Also, for xk in Tent Map, we have cos(πxk) = cos(π2xk−1), then

λ
(
f, y

)
= lim

n→∞
1
n

n∑

i=1

ln
∣
∣f ′(yi

)∣∣ = lim
n→∞

1
n

n∑

i=1

ln
(|2 cos(πxk)| ·

∣
∣g ′(xk)

∣
∣)

= lim
n→∞

1
n

n∑

i=1

ln(|2 cos(πxk)|) + λ
(
g, x

)

= lim
n→∞

1
n
ln(|2 cos(πx1)| · |2 cos(πx2)| · · · |2 cos(πxn)|) + λ

(
g, x

)

= lim
n→∞

1
n
ln
( |sin(πx1)||2 cos(πx1)| · |2 cos(πx2)| · · · |2 cos(πxn)|

|sin(πx1)|
)
+ λ

(
g, x

)

= lim
n→∞

1
n
ln
( |sin(πx1)||2 cos(πx1)| · |2 cos(π2x1)| · · · |2 cos(π2nx1)|

|sin(πx1)|
)
+ λ

(
g, x

)

= lim
n→∞

1
n
ln
( |sin(π2x1)| · |2 cos(π2x1)| · · · |2 cos(π2nx1)|

|sin(πx1)|
)
+ λ

(
g, x

)

= lim
n→∞

1
n
ln

|sin(π2nx1)|
|sin(πx1)| + λ

(
g, x

)

= lim
n→∞

1
n
ln|sin(π2nx1)| − lim

n→∞
1
n
ln|sin(πx1)| + λ

(
g, x

)

≤ lim
n→∞

1
n
lnn − 0 + λ

(
g, x

)
= λ

(
g, x

)
= ln 2.

(2.12)

Hence, the largest Lyapunov exponent of f(x) is ln 2, and the map (2.4) is a chaotic
system.

(4) Chaotic Key Stream Is Uniformly Distributed

From Lemma 2.3, the probability density function of f is

ρf = ρg
(
h−1(x)

)
∣∣∣∣∣
dh−1(x)

dx

∣∣∣∣∣
. (2.13)

Therefore, the probability of f in the domain [ti, ti+1) is

∫ ti+1

ti

dh−1(x)
dx

dx =
∫h((i+1)/N)

h(i/N)
dh−1(x) = h−1(x)

∣∣∣∣∣∣

h((i+1)/N)

h(i/N)

= h−1
(
h

(
i + 1
N

))
− h−1

(
h

(
i

N

))

=
i + 1
N

− i

N
=

1
N

.

(2.14)
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Thus, the value of chaos has the same probability in each domain, and, hence, chaotic
key stream is uniformly distributed.

(5) sk Is Independent of sk+1 (Property of Independence)

In this part, we will show that the value of sk+1 depends on the subdomains τ
j

i =
[tij , t

i
j+1), j = 0, 1, . . . ,N − 1, tij = h((1/N)(i + j/N)), where xk is uniformly distributed

according to the proof (4), and is independent of the τi to which xk belongs.
For simplicity, we will only consider the condition a > 0. According to Definition 2.1,

Lemma 2.2, and the sampling way xk+1 = fn(xk), we get that, for θ ∈ [0, 1], xk = h(θ) =
a sin2(πθ/2) is increasing and has a one-to-one correspondence with θ, and xk ∈ τij ⇔ θ ∈
[(1/N)(i+ j/N), (1/N)(i+ (j + 1)/N)), then xk+1 = h(2nθ) = a sin2(π2nθ/2) ∈ h([i+ j/N, i+
(j + 1)/N)). For h is an even function with period 2, then

xk+1 ∈ h

([
i +

j

N
, i +

j + 1
N

))
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
h

(
j

N

)
, h

(
j + 1
N

)]
, i is even

[
h

(
N − j − 1

N

)
, h

(
N − j

N

)]
, i is odd.

(2.15)

Thus, when sk = i,

sk+1 =

{
j, i is even
N − j − 1, i is odd,

(2.16)

that is, sk+1 is independent of sk.
Considering (1) to (5), the theorem proposes a method to establish a class of topo-

logically conjugated maps of Tent Map and can generate independently and uniformly dis-
tributed chaotic key stream.

3. Examples of the Theorem 2.4

This section consists of the illustration of the deduction in [14], which is an example of the
proposed theorem. To illustrate the effectiveness and feasibility of the proposed theorem,
another example is provided to verify the chaotic property, independently and uniformly dis-
tributed property, and randomness of key streams. Due to the differences between theoretical
values and calculated ones of a chaotic Logistic Map proposed in [21], all the examples are
run with MATLAB (R2011a, v7.12) codes on the Window XP (32-bit) or Win7 (32-bit), and all
the results are rounded into 4 digits after the decimal point.

Example 3.1. In Theorem 2.4, when a = 1, m = −4,

f(xk) = −4x2
k + 4xk = 4xk(1 − xk). (3.1)

This map is the typical Logistic Map f(x) = ux(1 − x), when u = 4. It is used in [14]
for the generation of key stream. According to Theorem 2.4, when m = −4, the h(x) =
sin2(πxk/2), then the proof of Deduction 1 in [14] can be considered as an example of the
theorem proposed in this paper.
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Figure 1: Partition of the attractor domain.

Example 3.2. In Theorem 2.4, we choose a = 8, m = −1/2, and another chaotic map is obtained
as follows:

f(xk) = −1
2
x2
k + 4xk, (3.2)

and the transformer is

h(xk) = 8sin2πxk

2
. (3.3)

We choose n = 8 and divide the domain [0, a] = [0, 8] into 2n = 256 intervals, each intervals’
beginning pot and ending pot is shown in Figure 1. Not similar to the Tent Map, the partition
of the attractor domain for i.i.d key stream generation is symmetric and is not uniform equal.

(1) Chaotic Property of Map (3.2)

For map (3.2), we set the initial condition x0 = 0.2323, and the results of 1,000 iterations
are shown in Figure 2. It is observed that the values are nonperiodic and are distributed in
almost the entire domain.

(2) Independently and Uniformly Distributed Property of {si}∞0
(a) χ2 Test [22]

For the chaotic map (3.2) established by Theorem 2.4, we choose x0 = 0.2323 and
sampling step n = 8. After first 5,000 iteration abandoned, we get the 8-phase key stream
{si}M0 , where M is the lengths of sequence.
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Table 1: Results of uniform distribution of key stream {si}M0 by map (3.2).

x0 M Threshold χ2 Result
100,000 293.2478 281.9430 Pass
200,000 293.2478 232.4326 Pass

0.2323 300,000 293.2478 239.8327 Pass
400,000 293.2478 246.4038 Pass
500,000 293.2478 246.6816 Pass
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Figure 2: 1,000 iterations of map (3.2).

We set significance level α = 0.05, then for M more than 100000, we get the same
threshold χ2

α(M) = 293.2478, and the results of χ2 test are shown in Table 1, where all the
results pass the test successfully.

Then we choose 100 random x0 and set M as 20,000 to do χ2 test. From the results
in Figure 3, it can be observed that most of the tests passed and only 3 tests did not pass. As
indicated in [12], the choice of initial value has an important impact on the statistical property
of the chaotic system. Therefore, we can conclude that the key stream generated from
Theorem 2.4 is uniformly distributed under the appropriate initial value.

(b) Approximate Entropy Analysis of {si}∞0
For the chaotic map (3.2) established by Theorem 2.4, we choose x0 = 0.2323 and

sampling step n = 8. After first 5,000 iteration abandoned, we get the 8-phase key stream
{si}M0 , where M is the lengths of sequence.

According to the algorithm of approximate entropy in [23], we choose length of
compared run lcr = 2, filtering level r = 0.25 SD, where SD is the standard deviation of {si}M0 .
For different M, we compute the approximate entropy of {si}M0 as shown in Table 2, where
all the approximate entropies are close to the largest approximate entropy ln 8 = 2.0794 for
8-ary key stream, which is inferred in [24] and follows Theorem 2 in [23].

Then we choose 100 random x0 and set M as 6,000 with the same lcr = 2 and r =
0.25 SD to compute the approximate entropy. From the results in Figure 4, it can be observed
that the mean approximate entropy of {si}M0 is close to the maximum approximate entropy
ln 8 = 2.0794 which shows that the sequence produced by Theorem 2.4 has a certain complex
degree.

(3) Randomness Test of Key Streams {si}∞0
In this part, we change {si}∞0 into binary sequences to carry out the test of NIST

SP800-22 (April 2010), whose 15 tests depict the deviations of a binary sequence from
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Table 2: Approximate entropy analysis of {si}M0 with differentM.

lcr r x0 M Approximate entropy
3,000 2.0370
4,000 2.0291
5,000 2.0204

2 0.25 SD 0.2323 6,000 2.0108
7,000 2.0035
8,000 2.0009
9,000 1.9981
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Figure 3: Result of χ2 tests with 100 random number x1.
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Figure 4: Result of approximate entropy with 100 random number x1.

randomness [25]. P value, as the probability against the null hypothesis, represents the
degree of randomness of the tested sequence. When we choose significance level α = 0.01, if
the value is bigger than α = 0.01, it demonstrates that the sequence passes the test and could
be considered as random. And the bigger the value is, the more random the sequences are.

First we use the chaotic map (3.2) established by Theorem 2.4 and choose x0 = 0.2323,
sampling step n = 8. After first 5,000 iteration abandoned, we get the 8-phase key stream
{si}M0 , where M is the lengths of sequence and M = 125000. Then we test the binary
sequences {bi}10000000 , which is changed from 8-phase sequence {si}M0 , with NIST SP800-22.
The results are shown in Table 3, implying that the key streams produced by theorem can
satisfy the random requirements in NIST SP800-22.
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Table 3: SP800-22 test’s results.

Test P value Results
Frequency (monobit) test 0.4156 Random
Frequency test within a block 0.7311 Random
Runs test 0.5957 Random
Test for the longest run of ones in a block 0.7238 Random
Binary matrix rank test 0.9087 Random
Discrete fourier transform test 0.4573 Random
Nonoverlapping template matching test 0.4903 (mean) Random
Overlapping template matching test 0.0173 Random
Maurer’s “universal statistical” test 0.8827 Random
Linear complexity test 0.6231 Random
Serial test 0.7478 (mean) Random
Approximate entropy test 0.0921 Random
Cumulative sums test 0.5617 (mean) Random
Random excursions test 0.2387 (mean) Random
Random excursions variant test 0.4487 (mean) Random

Table 4: Mean P value and the passing ratio in SP800-22 tests with 100 random x0.

Test Mean P value Passing ratio Results
Frequency (monobit) test 0.4750 0.9900 Success
Frequency test within a block 0.8343 1.0000 Success
Runs test 0.8343 0.9900 Success
Test for the longest run of ones in a block 0.5749 1.0000 Success
Binary matrix rank test 0.0376 1.0000 Success
Discrete fourier transform test 0.2133 0.9800 Success
Nonoverlapping template matching test 0.4871 0.9907 Success
Overlapping template matching test 0.1719 0.9800 Success
Maurer’s “universal statistical” test 0.4750 0.9900 Success
Linear complexity test 0.4944 0.9700 Success
Serial test 0.2739 1.0000 Success
Approximate entropy test 0.4944 0.9800 Success
Cumulative sums test 0.7488 0.9900 Success
Random excursions test 0.3408 0.9871 Success
Random excursions variant test 0.3988 0.9837 Success

Then we choose 100 random x0 and set M = 125000 to do SP800-22 test, and Table 4
lists the mean P value and the passing ratio. For the significance level α set as 0.01, it means
that 99% of test samples pass the tests if the random numbers are truly random. The
acceptance region of the passing ratio is given by [p−3√p(1 − p)/l, p+3

√
p(1 − p)/l], where l

represents the number of the samples tested and p = 1 − α is the probability of passing each
test [26]. For l = 100 and p = 0.99, we obtain the confidence interval [0.9602, 1.0198], that is,
[0.9602, 1]. From Table 4, we can get that the computed passing ratio for each test lies inside
the confidence interval.

4. Conclusion

In this paper, we propose a new theorem for a class of topologically conjugated maps of
Tent Map to generate independently and uniformly distributed key streams. Two examples
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are provided to validate that the key stream generated by the proposed theorem is
theoretically and experimentally provedto be independently and uniformly distributed. We
also conducted experiments for testing the randomness of these key streams, and all the key
streams passed the NIST SP800-22 test. In future, this theorem could be applied to informa-
tion security, numerical simulation, and other fields.
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