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As an efficient tool, radial basis function (RBF) has been widely used for the multivariate
approximation, interpolating continuous, and the solution of the particle differential equations.
However, ill-conditioned interpolation matrix may be encountered when the interpolation points
are very dense or irregularly arranged. To avert this problem, RBFs with variable shape parameters
are introduced, and several new variation strategies are proposed. Comparison with the RBF
with constant shape parameters are made, and the results show that the condition number of
the interpolation matrix grows much slower with our strategies. As an application, an improved
collocation meshless method is formulated by employing the new RBF. In addition, the Hermite-
type interpolation is implemented to handle the Neumann boundary conditions and an additional
sine/cosine basis is introduced for the Helmlholtz equation. Then, two interior acoustic problems
are solved with the presented method; the results demonstrate the robustness and effectiveness of
the method.

1. Introduction
As compared to traditional design criteria, such as the function, structure, andmanufacturing
technology, the comfort of a mechanical system has taken up a more and more important
place. In order to improve the properties of the vibration and acoustic of machines, especially
for those who have cavities, such as the aircrafts, vehicles, and rail trucks, it is very necessary
to determine the interior acoustic field. Until now, the FEM and boundary element boundary
(BEM) are still the most widely used numerical methods for solving the acoustic problems
[1, 2].
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In the FEM, the computational domain of the problem is divided into lots of
small elements, and the value of the field points can be obtained by a superposition
of polynomial shape functions (usually simple and low-order). Thus, it is very suitable
for solving the problems in bounded domains, such as the interior acoustic problems.
On the other hand, BEM is more applicable to deal with the problems in unbounded
domain, but it can hardly compare with the FEM for solving the bounded problems.
The reason for this is that the system matrices may become fully polluted when the
number of the elements increased, and if the collocation scheme is employed, the matrices
may even be not symmetric [3, 4]. To improve the ability of BEM in solving these
problems, several treatment methods have been proposed, such as the fast multipole
BEM [2, 5, 6] and the wave boundary elements [7], which may make the BEM more
efficient for solving interior acoustic problems. And during the last decades, considering
the robust of the FEM, most researchers preferred to use it to solve the interior acoustic
problems.

It is well known that interior acoustic problems are generally governed by the
Helmholtz equation or the wave equation. Nevertheless, the solution of these equations
solved by standard FEM suffers from the so-called “pollution effect,” which is directly
related to the dispersion [8]. In other words, the wave number of the numerical solution
is different from the one of the exact solution, especially for the high wave numbers. In
order to get reliable solutions for high wave numbers, a refined mesh or a higher order of
the polynomial approximation can be applied. Through these schemes, the solutions can be
improved, but this will result in large systems of equation; thus, the computation time will
greatly increase. Thereby, the minimization or even the elimination of the pollution effect is
strongly desirable. In the past years, a number of efforts have been spent on the development
of FEM to achieve this aim. Thompson and Pinsky presented a Galerkin least squares FEM
to reduce the dispersion [9], and Oberai and Pinsky developed the residual-based FEM to
reach this goal [10]. Partition of unity finite element method (PUFEM) is another method, in
which a priori knowledge about the solution of the problem is introduced into the FEM [11].
Unfortunately, this method will lead to ill-conditioned system matrices; hence, the use of the
classical iterative solvers becomes complicated.

In parallel with the FEM and BEM, meshless methods are relatively new numerical
methods. As compared with FEM, no mesh is needed in meshless method for the
discretization of the problems. On the contrary, the governing equations are discreted
by arbitrarily distributed points. In [12–14], meshless methods have been presented
to solve practical engineering problems. However, using the meshless methods to
solve the acoustic problems, especially the interior acoustic problem is relatively few.
Element free Galerkin method (EFG) was used to reduce the dispersion effect of
the Helmholtz equation by Bouillard et al. [15] In addition, Wenterodt [16] applied
the radial point interpolation method (RPIM) to solve the interior acoustic problem
governed by Helmholtz equation. And the results showed that the RPIM has a better
performance than EFG in reducing the dispersion effect; thus, better solutions can be
obtained.

The interpolation function in RPIM is RBF, which is widely used in numerical
simulation for its efficiency and simplicity. However, the RBF interpolation may suffer
from the contradiction between the accuracy and the stability, which can be described as
uncertainly principle [17]. The condition number of the RBF interpolation matrix becomes
very large when the interpolation points are irregularly or density arranged. And the ill-
conditioned matrix will limit the application of the RBF, especially for large-scale problems.
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In order to guarantee the robustness and stability of interpolation with RBFs, many numerical
treatments have been proposed, such as compactly supported RBF [12], precondition method
[18], domain decomposition method [19], RBF with variable shape parameter [20], and
node adaptively method [21]. In this paper, we focus on the RBF with variable shape
parameter.

The main concept of variable shaped RBFs is to apply different shape parameters
in RBFs according to the local density of its corresponding interpolation point. Therefore,
the columns of the interpolation matrix elements are more distinct and the condition
number becomes relatively smaller. This numerical scheme has been investigated by some
researchers. The accuracy of multiquadrics (MQ) interpolation was improved by using
variable shape parameters according to the work of Kansa and Carlson [22, 23]. Sarra
and Sturgill proposed a random variation scheme for shape parameter selection [24].
And most researchers put their attention on the improvement of the accuracy rather than
stability by applying variable shaped RBFs in the previous work. On the contrary, Zhou
et al. focused on the great performance of variable shaped RBFs on the stability [20]. In
addition, they proposed a quadric scheme for the variable shaped MQ and a linear scheme
for the variable shaped inverse MQ (IMQ) to improve the interpolation matrix condition
number.

Since the variation strategy is the key factor for the variable shaped RBF. In this
paper, we proposed several new variation strategies for the MQ and IMQ to improve their
performance. Numerical results show that the variable shaped MQ with our strategies
can improve both accuracy and stability, and the variation strategies for IMQ can
improve the stability of the IMQ under an acceptable accuracy. Based on the variable
shaped MQ, an improved collocation meshless method is presented, and instead of the
traditional polynomials terms added for RBF, we proposed an additional sine/cosine basis
for the Helmholtz equations. Then, two interior acoustic problems are solved with the
proposed method. Since there are no analytical solutions for the two problems, refined
FEM solutions are presented as the reference solutions. Comparison with the reference
solutions shows the efficiency of the proposed method in solving the interior acoustic
problems.

The paper is organized as follows: in Section 2, the interior acoustic problems are
briefly introduced. Section 3 demonstrates the outline of the RBF interpolation and its
error estimation. The RBF with variable shape parameters and their variation strategies are
presented in Section 4. The improved collocation meshless method is described in Section 5.
In Section 6, two examples are solved with the proposed method. The paper ends with
conclusion in Section 7.

2. Interior Acoustic Problem

As shown in Figure 1, we consider the interior acoustic problem in domainΩwith boundaries
ΓD, ΓN , and ΓR. The propagation of the acoustic in the domain is governed by the following
wave equation:

ΔP − 1
c2
∂2P
∂t2

= 0, (2.1)
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Figure 1: The interior acoustic problem; Ω: computational domain; ΓD: sound soft boundary; ΓN : sound
hard boundary; ΓR: impedance boundary.

where P is the acoustic pressure (small perturbations around a steady state) and c denotes the
speed of sound in the medium. Considering a steady harmonic wave of angular frequency
ω, the pressure can be described as

P = p · e−jωt, (2.2)

where p denotes the complex amplitude of acoustic pressure. By introducing the wave
number k = ω/c and substituting (2.2) into (2.1), the following Helmholtz equation can
be obtained:

Δp + k2p = 0. (2.3)

In addition, the particle velocity v is another important quantity in the interior acoustic
analysis, which can be obtained through the equation

jρckv +∇p = 0, (2.4)

where ρ denotes the density of the medium. Associated with the governing equation, there
are three typical boundary conditions encountered in the interior acoustic problem.

Sound soft boundary condition:

p = 0. (2.5)

Sound hard boundary condition:

∂p

∂n
= 0. (2.6)



Mathematical Problems in Engineering 5

Impedance boundary condition:

∂p

∂n
= − jωp

Z
, (2.7)

whereZ is the acoustic input impedance of the external domain. Note that in the two opposite
limitsZ → ∞ andZ → 0, the sound-hard and sound-soft boundary conditions are obtained.

3. Outline of the RBF Approximation

3.1. Basis Formulation

Considering n distinct points x1, . . . , xn in the real number set R
d (d is the dimension) and

a continuous function u(x), the approximation of the u(x) at the point x with RBF can be
expressed as

û(x) =
n
∑

i=1

R(ri)ai +
m
∑

k=1

pk(x)ck, (3.1)

where

ri = ‖x − xi‖2. (3.2)

And R is the radial basis function, ai, ck are coefficients to be determined, and pk is the
polynomial of an order not exceeding m. To ensure the û(x) approximates the u(x), the
following conditions should be satisfied:

n
∑

i=1

R
(

rij
)

ai +
m
∑

k=1

pk
(

xj
)

ck = u
(

xj
)

. (3.3)

To ensure the unique solution of the coefficients, additional equations should be considered

n
∑

i=1

pk(xi)ai +
nDB
∑

j=1

pk
(

xj
)

ck = 0, k = 1, 2, . . . , m. (3.4)

Combining (3.3) and (3.4), the following matrix can be obtained:

[

A BT

B 0

]{

a
c

}

=
{

u
0

}

, (3.5)

where the matrix element for A is R(rij), for B is pk(xi), and a, c are the coefficient vectors.
Solving (3.5), the coefficients ai and ck can be gotten, and the approximation function is then
given by (3.1). It should be noticed that the additional polynomials are not necessary if the
RBF is strictly positive definite (SPD).
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Table 1: Typical radial basis functions with dimensionless shape parameters.

Name Expression Shape parameter
Multiquadrics (MQ) Ri(r) = (r2 + (εl)2)q ε ≥ 0, q
Inverse multiquadrics (IMQ) Ri(r) = (r2 + (εl)2)−q ε ≥ 0, q
Gaussian (GA) Ri(r) = exp[−ε(r/l)2] ε

Thin plate spline (TPS) Ri(r) = rη η

Note: l is a characteristic length that relates to the nodal spacing in the computational domain.

3.2. Typical RBFs

There are several advantages of the radial basis function (RBF) to be used for interpolation.
First, there are generally few restrictions on the way the data prescribed and it can easily be
applied in almost any dimension. Second, it has the naturally mesh-free property. And high-
order accuracy is its other merit. Until now, many RBFs have been developed, and the most
widely used global supported RBFs are listed in Table 1.

In these RBFs, the TPS is conditional positive definite, and others are SPD RBFs. Thus,
when the TPS is used for interpolation, the polynomial terms should be employed to avoid
the singularity.

3.3. Error Estimation and Stability of the RBF Interpolation

For the advantage of the RBF interpolation, it has been applied to a wide range of engineering
problems. However, works concerning the error estimation and stability of this interpolation
with mathematical theories are relatively less. The most noticeable work was completed by
Schaback [17]. For the error estimation, the formulation is as follows:

|u(x) − ua(x)| ≤ |u|f · P(x), (3.6)

where P(x) is called the power function, which is the norm of the error function on F
evaluated at x. And F is a native space, which can be described as

F =
{

f ∈ L2(Rn) |
∫

Rd

|û(ω)|
ψ(ω)

dω <∞
}

. (3.7)

In addition, û is in L1(Rd) and

u|2f =
∫

Rd

|û(ω)|
ψ(ω)

dω <∞, (3.8)

where ψ(ω) denotes the d-variate generalized Fourier transform of ϕ. Furthermore, Schaback
proposed that the error and the sensitivity of the RBF interpolation can be described by P(x)
and the eigenvalue λ of the interpolation matrix, which seems to be intimately related. P(x)
and λ are bounded by F(h(x)) and G(h(x)) separately, the exact forms of which can be found
in [17].
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And the shape parameters are directly contained in G(h(x)) but not in F(h(x)). Here,
we list the G(h(x)) as follows:

MQ : G(h) = he(−12.76εd/h),

IMQ : G(h) = h−1e(−12.76εd/h),

Guassian : G(h) = h−de(−40.71ε
2d3/h2),

(3.9)

where h = maxx∈Ω minxi∈X‖x − xi‖, Ω is the interpolation domain, and X denotes the set of
the interpolation points, d represents the dimensions, and ε is the shape parameter of the
corresponding RBF.

On the other hand, the error bound that contains the shape parameter was described
in Madych’s theoretical analysis. His conclusions are proposed for two different classes of
functions, Bσ and Eσ ,

Bσ =
{

f ∈ L2(Rn) : ˜f(ξ) = 0 if ‖ξ‖ > σ
}

,

Eσ =
{

f ∈ L2(Rn) : ˜f(ξ) <∞
}

,

(3.10)

where σ is a positive constant,

˜f(ξ) =
∫

Rn
f(x)e−i(x,ξ)dx (3.11)

is the multivariate Fourier transform of function f(x), and

∥

∥

∥

˜f
∥

∥

∥

2

Eσ
=
∫

Rn

∣

∣

∣

˜f(ξ)
∣

∣

∣

2
e|ξ|

2/σdξ. (3.12)

Considering the different functions, Madych presented the following error estimation for a
class of RBF interpolations, which include Gaussian, MQ, and IMQ:

for f ∈ Bσ : εr ∼ O
(

eaελε/h
)

for 0 < λ < 1 and a > 0,

for f ∈ Eσ : εr ∼ O
(

eaε
2
λε/h
)

for 0 < λ < 1 and a > 0,
(3.13)

where εr is the error. It is worth noting that there is an intimate relation between the accuracy
and the stability of the RBF interpolation. In the following section, we will present some
strategies to balance the accuracy and the stability.
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4. Variable Shaped RBF

4.1. The Role of the Shape Parameter in RBF Interpolation

Since the shape parameter in the RBF greatly affects the interpolation error and the stability,
it has drawn many attentions of the researchers. For the MQ case, Hardy’s original work
showed that the larger shape parameter caused the unstable results [25]; therefore, he advised
the use of small shape parameter. However, contrary to Hardy’s belief, both Tarwate [26]
and Kansa [27] observed that the accuracy of the MQ interpolation actually increases with
increasing shape parameter. Furthermore, Huang et al. [28] established that the theoretically
larger shape parameter often results in high accuracy. Nevertheless, as the shape parameter
is continuously increasing, the interpolation function becomes flat. As the function flattened,
it becomes insensitive to the distance r; thus, the elements of the interpolation matrix
become nearly identical. The interpolation matrix may become ill-conditioned, which leads
to unstable results.

Once the role of the shape parameter is realized, many efforts followed to choose the
optimal shape parameter for the RBF interpolation. Even though many algorithms have been
developed, there is no widely accepted theory for choosing the proper shape parameter for
various applications; therefore, it is still an open problem.

In this paper, we try to use variable shape parameter strategies to improve the
performance of RBF for interpolation.

4.2. Why RBF with Variable Shape Parameter

There are at least three advantages of using the RBF with variable shape parameter.

(1) It can improve the accuracy of the RBF interpolation. Kansa’s work showed that
the accuracy of the RBF interpolation can be greatly improved if spatially variable
shape parameters are employed. In addition, Sturgill proposed a random variable
shape parameter strategy, which can greatly improve the numerical accuracy [24].

(2) The condition number of the interpolation matrix can be greatly reduced and
the stability of the numerical methods based on RBF can be improved. In [20],
the author presented several variation schemes for the RBF with variable shape
parameters, and then introduced the variable shaped RBF into the dual reciprocity
boundary face method. Numerical results showed the robustness and better
stability of the new method.

(3) Runge errors encountered in the interpolation can be overcome by the spatially
variable shape parameter. Fornberg detailed and described the Runge phenomenon
in the RBF interpolation and demonstrated the effectiveness of the spatially
variable shape parameters in dealing with the Runge errors both theoretically and
numerically [29].

4.3. Variation Strategies

Heuristically, it has been demonstrated that using a variable shape parameter is an excellent
idea. However, as mentioned in Section 3, there is a contradiction between the accuracy and
the sensitivity generally, which can also be described by Schaback as “uncertainly principle.”
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Thus, the variation strategies are crucially important to the performance of the variable
shaped RBF. Until now, there are several variable shape parameter strategies that have been
proposed. In [27], Kansa presented the following variation scheme:

εj =

⎡

⎣ε2min

(

ε2max

ε2min

)(j−1)/(N−1)⎤

⎦

1/2

j = 1, . . . ,N (4.1)

to improve the accuracy of the MQ, where εj is the jth shape parameter in MQ, εmin and
εmax are the minimum and maximum values of the shape parameter separately, and N is
the number of the points used for interpolation. Furthermore, Kansa pointed out that the
very accurate numerical result could be gotten if εmin and εmax varied by several orders of
magnitude [22].

In addtion, a linearly varying formula and a random variable shaped parameter
strategy are also investigated.

(1) The linearly varying formula:

εj = εmin +
(

εmax − εmin

N − 1

)

j, j = 1, . . . ,N. (4.2)

(2) The random variation scheme:

εj = εmin + (εmax − εmin) × rand(1,N), j = 1, . . . ,N. (4.3)

What is more, the strategy that one constant shape parameter applied in the domain and
another constant shape parameter implemented on the boundaries were also suggested to
guarantee the stability of the numerical approach. It should be noticed that for different RBFs,
the variation strategies should be different. In this paper, we focus on the widely used MQ
and IMQ.

For MQ, we consider the upper bound of λ−1, which can represent the sensitivity of
the RBF interpolation, and the formulation is as follows:

λ−1 ≤ h−1e25.25ε/h in 2D. (4.4)

We propose the following two variation strategies for the MQ:

εi = h3i , (4.5)

εi = 2h2i , (4.6)

where hi = mini /= j‖xi − xj‖ and xi and xj denote the different center points for interpolation.
Compared with the constant shape parameter, we substitute the expression (4.5) into (4.4);
the new bound can be obtained

λ−1 ≤ h−1e25.25h2 . (4.7)
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It should be noticed that h−1e25.25h
2
= O(h−1) when h goes to zero. In addition, the new error

estimations as follows are obtained:

for f ∈ Bσ : εr ∼ O
(

eahλh
)

,

for f ∈ Bσ : εr ∼ O
(

eah
6
λh
)

.

(4.8)

In the same way, we can get the error estimations and the bound of the λ−1 for the variation
strategy εi = 2h3i . Furthermore, the balance between the accuracy and the stability may be
found through the variation strategies (4.5) and (4.6).

For the IMQ, the bound of λ−1 is given by

λ−1 ≤ he25.25ε/h in 2D. (4.9)

We propose the following variation strategy for this RBF:

εi = hi/5. (4.10)

Substituting (4.10) into (4.9), we can get the new bound for the λ−1:

λ−1 ≤ he5.05. (4.11)

Furthermore, the error estimations can be formulated by

for f ∈ Bσ : εr ∼ O
(

eah/5λ1/5
)

,

for f ∈ Eσ : εr ∼ O
(

eah
2/25λ1/5

)

.

(4.12)

Through the above expressions, the balance between the accuracy and stability for the IMQ
may be found. In order to verify the effectiveness of our variation strategy, we consider the
following interpolation example:

f = sinx siny sin z Ω :
(

x, y, z
) ∈ [−1, 1] × [−1, 1] × [−1, 1]. (4.13)

There are totalN points that are used for interpolation. Both the MQ and IMQwith variation
strategies are tested, and comparisons with the corresponding RBFs with constant shape
parameters are shown in Figures 2–5. In addition, the parameters of constant-shaped RBFs
are evaluated with the average value of all the variable parameters.

The relative error of the numerical solution is defined as

e =

√

√

√

√

∑N
i=1
(

uexacti − unumi

)2

∑N
i=1
(

uexacti

)2
, (4.14)
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Figure 2: Relative error versus the number of points for MQ; variable shaped MQ(1): εj = h3i ; (2) variable
shaped MQ(2): εj = 2h2i .
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Figure 3: Condition number versus the number of points for MQ; variable shaped MQ(1): εj = h3i ; (2)
variable shaped MQ(2): εj = 2h2i .

where uexacti and unumi refer to the exact solution and the numerical solution at the point xi,
respectively, and N is the number of the points used for interpolation. In order to measure
the stability of the variable shaped RBF, condition number is employed, which can be defined
as

Cond(A) = ‖A‖
∥

∥

∥A−1
∥

∥

∥, (4.15)

where A is the interpolation matrix, A−1 and ‖A‖ are its inversion and norm separately.
As shown in Figure 2, when the number of the interpolation points is too small (N <

7), the accuracy is not too good, which is similar to the FEM. However, when the number of
the points increase, and N ≥ 7, the accuracy can be greatly improved due to the properties
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Figure 4: Relative error versus the number of points for IMQ.
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Figure 5: Condition number versus the number of points for IMQ.

of the MQ. Furthermore, the more points used for interpolation, the more accurate results
can be obtained both for the constant shaped MQ and the variable shaped MQ, and the MQ
with εi = 2h2i can get the best accuracy as the number of points increases. Figure 3 shows
the condition numbers of the interpolation matrices with different RBFs. It can be observed
that the condition number can be well controlled with the variable shaped MQ presented.
Thus, we can figure out that the variable shaped MQ with the proposed variation strategies
outperform the constant shaped MQ both in the accuracy and the stability.

Figures 3 and 4 show the comparisons of the constant shaped IMQ and the variable
shaped IMQ in the accuracy and the stability. Even though the convergence of the constant
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shaped IMQ is better than the variable shaped IMQ, the condition number with the variable
shaped IMQ grows much slower than the constant shaped IMQ.

All the numerical results show that both the variable shapedMQ and IMQwith proper
variation strategies can greatly reduce the condition number of the interpolation matrix
and improve the performance of RBFs. At the same time, the accuracy of the MQ can also
be improved with our strategies. Thus, in the following section, an improved collocation
meshless method will be formulated by employing the variable shaped MQ.

5. The Improved Collocation Meshless Method

5.1. Collocation Scheme

According to the formulation procedures of the governing equations, various meshless
methods can be divided into three types: meshless methods based on weak form, meshless
methods based on strong form (collocation form), and meshless methods based on the
combination of the weak and strong form. Considering the straightforward and truly
meshless method of the collocation form, it is introduced into the approach of the interior
acoustic problems. In order to demonstrate its application in the solution of the boundary
value problems, the following equation is considered:

A
∂2u

∂x2
+ B

∂2u

∂y2
+ C

∂2u

∂x∂y
+D

∂u

∂x
+ E

∂u

∂y
+ Fu = G, Ω, (5.1)

with the boundary conditions:
Dirichlet boundary

u = H on ΓD, (5.2)

Neumann boundary

∂u

∂n
= I on ΓN. (5.3)

Here, Ω is the computational domain. A, B, C, D, E, F, G,H, and I can be constant or
depend on x and y. Consider that there are nΩ points that are distributed in the domain, nD
points on the Dirichlet boundary, and nN points on the Neumann boundary.

By substituting u in (5.1) with the approximation u(xi) expressed in (3.1), the
following nΩ linear equations can be obtained:

Ai
∂2u(xi)
∂x2

+ Bi
∂2u(xi)
∂y2

+ Ci
∂2u(xi)
∂x∂y

+Di
∂u(xi)
∂x

+ Ei
∂u(xi)
∂y

+ Fiu(xi) = Gi, (5.4)



14 Mathematical Problems in Engineering

where i = 1, 2, . . . , nΩ, xi denotes the ith points in the domainΩ and note that the xi = (xi, yi).
In the same way, the following nD + nN equations are satisfied on the Dirichlet boundary ΓD
and the Neumann boundary:

u(xi) = Hi i = 1, 2, . . . , nD,

∂u(xi)
∂n

= Ii i = 1, 2, . . . , nN.
(5.5)

5.2. Treatment for Neumann Boundary Conditions

It is well known that meshless methods based on collocation scheme are weak in dealing with
Neumann boundary conditions; in order to overcome this issue, a Hermite-type interpolation
is employed [30]. The formula is as follows:

u(x) =
n
∑

i=1

Ri(x)ai +
nN
∑

j=1

∂RN
j (x)

∂n
bj +

m
∑

k=1

pk(x)ck. (5.6)

Here, the Ri(x) and RN
j (x) denote the RBF, and pk(x) is the polynomial terms, with

which a linear field can be reproduced exactly and the accuracy of the interpolation can be
improved in most cases. n is the total number of the points both in the domain and on the
boundaries for interpolation. nN represents the number of the interpolation points on the
Neumann boundaries and m is the number of the polynomial. In addition, ai, bj , and ck are
the constant coefficients that need to be determined. n is the vector of the unit outward normal
on the Neumann boundaries, and in (5.6), the derivative terms can be obtained through the
following expression:

∂RN
j (x)

∂n
= lxj

∂RN
j (x)

∂x
+ lyj

∂RN
j (x)

∂y
, (5.7)

where lxj = cos(n, x) and lyj = cos(n, y) denote the direction cosines in x and y directions
separately.

In (5.6), there are totally n + nN + m unknown qualities that need to be determined;
however, by enforcing the interpolation functions pass through n + nN points both in the
domain and on the boundaries, only n + nN equations can be gotten. Therefore, to ensure the
unique solution of the coefficients, the following constraint condition is added:

n
∑

i=1

pk(xi)ai +
nN
∑

j=1

pk
(

xj
)

bj = 0, k = 1, 2, . . . , m. (5.8)

Here, xi and xj represent the points in the domain and on the Neumann boundary
separately.
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5.3. The Interpolation Function with Sine/Cosine Basis
for the Helmholtz Equations

As mentioned in Section 3, the additional polynomial terms are not always necessary for the
interpolation if the RBF is strictly positive definite (SPD), such asMQ and IMQ. Nevertheless,
considering the property of the Helmholtz equation, we add sine and cosine expressions into
the RBF, which are better suitable to reproduce the wave characteristics of the Helmholtz
equation. Therefore, the polynomial terms are substituted by the following expression:

p(x) =
[

1 kx cos θ + ky sin θ kx sin θ + ky cos θ
]

, (5.9)

where k is the wave number and θ denotes the angle of propagation.

6. Solving the Interior Acoustic Problems by the Improved Collocation
Meshless Method

To verify the efficiency of the proposed method in solving the interior acoustic problems, two
numerical examples are carried out. The method is first applied to a problemwith an L-shape
domain. Then an irregular domainwith complex boundary conditions is further investigated.
Since both of the two examples have no analytical solutions, comparisons with the refined
FEM solutions are made. Considering the better performance of the variable shaped MQ
with the εi = 2h2i variation strategy, it will be employed in the proposed method.

Example 6.1 (L-shape interior acoustic problem). As shown in Figure 6, an L-shape acoustic
domain is considered, a harmonic plane wave (p = p0e

−jwt) is applied on the boundary A,
and on all other boundaries impedance boundary condition (∂p/∂n = jkp) is considered.
L = 1 and p0 = 1 are considered in this example. To approach the problem with the proposed
method, total 100 points are employed, including 40 of them on the boundaries. Since there
is no analytical solution for the problem, refined FEM solutions with 2500 elements are
presented as a reference. It should be noticed that the number of the FEM elements should
satisfy the rule of thumb of at least 10 grid points per wave length.

Figure 7 shows a pressure variation of a fixed field point (0.4, 0.6) with respect to
the wave number. The good agreement with the reference solution can be seen from the
figure. We can also figure out that when k ≥ 17, the solution becomes a little inaccurate. The
reason for this is that there is a pollution effect caused by dispersion in solving the Helmholtz
equations with numerical methods for the high wave number. The relatively small number of
the interpolation points is another reason for the error. As described, only 100 points are used
for interpolation and 2500 elements are employed in the reference solution. Furthermore,
our numerical tests showed that very accurate results (for k = 17 ∼ 20) can be obtained by
increasing very few additional interpolation points. In addition, we believe that the accuracy
can also be improved by using better-shape parameter strategies, which is an ongoing work.

In addition, another two tests with different wave numbers (k = 10, 20) are conducted.
Figures 8 and 9 show the numerical solution along the diagonal of the computational domain
(x = y). Comparison with the reference solutions shows the efficiency of the proposed
method in dealing with the interior acoustic problems. Even though relatively few points
are used for interpolation, very accurate results are obtained.
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Figure 6: The L-shape interior acoustic problem.
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Figure 7: Comparison of the numerical solutions at the field point (0.3, 0.5) with respect to wave number.
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Figure 8: Comparison of numerical solutions along the diagonal x = y for k = 10 (545.9Hz).
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Figure 9: Comparison of numerical solutions along the diagonal x = y for k = 20 (1091.8Hz).
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Figure 10: The computational domain for the Example 6.2.

Example 6.2 (irregular shape domain with complex boundary conditions). As well known,
the boundary conditions play an important role in the boundary value problems. Just as
described in Section 2, there are generally three kinds of boundary conditions for the interior
acoustic problems. In order to verify the effectiveness of the proposed method in dealing
with these boundaries, an irregular shape domain with complex boundary conditions is
considered.

The geometry is shown in Figure 10, AB = 1.8, BC = 0.4, DE = 1.0, and EA = 0.8, the
unit is meter. The impedance boundary conditions are imposed on the AB and DE, whereZ =
1.25 × 343 (Pa·s/m). On the CD and AE, sound-hard boundary and sound-soft boundary are
considered separately. In addition, the sound source is on the BC (p = p0e−jwt), where p0 = 1 in
this example. Including 60 points on the boundaries, there are totally 400 points arranged for
simulation. For comparison, the FEM solutions with 5000 elements are also given. Figure 11
shows a pressure variation of a fixed field point (0.6, 0.4) with respect to the wave number.
The same phenomenon can be seen that when k ≥ 17, the solution becomes a little inaccurate.
The reasons for this are the same as the ones described in Example 6.1.

The comparisons of the numerical solutions for k = 10 and k = 20 are also illustrated
in Figures 12-13. All the numerical results show that the proposed method can well handle
the boundary conditions and very accurate solutions can be obtained.
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Figure 11: Comparison of the numerical solutions at the field point (0.6 and 0.4) with respect to wave
number.
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Figure 12: Comparison of numerical solutions along the oblique line y = −4x/9+4/5 for k = 10 (545.9Hz).
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Figure 13: Comparison of numerical solutions along the line x (y = 0.4) for k = 20 (1091.8Hz).
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7. Conclusion

In this paper, several new variation strategies are proposed for the RBF with variable shape
parameters in order to improve the performance of the RBF interpolation. Numerical results
show that the variable shaped RBF can usually improve the stability of the RBF interpolation.
What is more, the accuracy can also be improved with some proper variation strategies.

Then, an improved collocation meshless method is formulated by employing the new
variable shaped RBF. Considering the property of the Hemholtz equation, a sine/cosine basis
is presented for interpolation. Then interior acoustic problems with different geometries
and different boundary conditions are solved with the present method. Since there are no
analytical solutions for the examples, the refined FEM solutions are considered as reference
solutions. Compared with the FEM solutions, even though relatively few points are arranged,
very accurate results can be obtained with the proposed method. In addition, points for
interpolation can be chosen freely; thus, it can easily be extended to more complex practical
problems.

Acknowledgments

Financial supports from the National Nature Science Foundation of China (no. 51175195 and
11204098) and the China Postdoctoral Science Foundation funded project (no. 2012M511608)
are gratefully acknowledged.

References

[1] S. Li and Q. Huang, “A new fast multipole boundary element method for two dimensional acoustic
problems,” Computer Methods in AppliedMechanics and Engineering, vol. 200, no. 9, pp. 1333–1340, 2011.

[2] F. Chevillotte and R. Panneton, “Coupling transfer matrix method to finite element method for
analyzing the acoustics of complex hollow body networks,” Applied Acoustics, vol. 72, no. 12, pp.
962–968, 2011.

[3] T. W. Wu, Ed., Boundary Element Acoustics: Fundamentals and Computer Codes, vol. 7 of Advances in
Boundary Elements, WIT Press, Southampton, UK, 2000.

[4] R. D. Ciskowski and C. A. Brebbia, Eds., Boundary Element Methods in Acoustics, Springer, Berlin,
Germany, 1991.

[5] M. Fischer, U. Gauger, and L. Gaul, “A multipole Galerkin boundary element method for acoustics,”
Engineering Analysis with Boundary Elements, vol. 28, no. 2, pp. 155–162, 2004.

[6] S. Li and Q. Huang, “A fast multipole boundary element method based on the improved Burton-
Miller formulation for three-dimensional acoustic problems,” Engineering Analysis with Boundary
Elements, vol. 35, no. 5, pp. 719–728, 2011.

[7] E. Perrey-Debain, J. Trevelyan, and P. Bettess, “Wave boundary elements: a theoretical overview
presenting applications in scattering of short waves,” Engineering Analysis with Boundary Elements,
vol. 28, no. 2, pp. 131–141, 2004.
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