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This paper presents an artificial intelligence application to measure switching overvoltages caused
by shunt reactor energization by applying analytical rules. In a small power system that appears in
an early stage of a black start of a power system, an overvoltage could be caused by core saturation
on the energization of a reactor with residual flux. A radial basis function (RBF) neural network has
been used to estimate the overvoltages due to reactor energization. Equivalent circuit parameters
of network have been used as artificial neural network (ANN) inputs; thus, RBF neural network
is applicable to every studied system. The developed ANN is trained with the worst case of the
switching angle and remanent flux and tested for typical cases. The simulated results for a partial
of 39-bus New England test system show that the proposed technique canmeasure the peak values
and duration of switching overvoltages with good accuracy.

1. Introduction

In high-voltage (HV) power systems usually power is transmitted through long high-voltage
transmission lines. During the low demand periods (nights or weekends), excessive reactive
power produced by the capacitance of these lines causes a voltage increase over 1.1 p.u. at
the high-voltage/medium-voltage (HV/MV) substations. For the absorption of the surplus
reactive power, HV shunt reactors are connected to the receiving end of the transmission
lines. Switching of those shunt reactors produce transients that need to be carefully studied
and, if required, limited [1–7].

If the frequency characteristic of the system shows resonance conditions around
multiples of the fundamental frequency, very high and weakly damped temporary
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overvoltages (TOVs) of long duration may occur when the system is excited by a harmonic
disturbance [8–14].

Overvoltages can be classified as transient overvoltages, sustained overvoltages, har-
monic resonance overvoltages, and overvoltages resulting from ferroresonance. Excessive-
sustained overvoltages may lead to the damage of transformers and other power system
equipments. Transient overvoltages are a consequence of switching operations on long
transmission lines, or the switching of capacitive devices, and may result in arrester failures.
Ferroresonance is a nonharmonic resonance characterized by overvoltages whose waveforms
are highly distorted and can cause catastrophic equipment damages [11, 15].

Overvoltage will put the shunt reactor into saturation, causing core heating and
copious harmonic current generation. Circuit breaker called upon to operate during periods
of high voltage will have reduced interrupting capability [11, 16].

In this paper power system blockset (PSB), a MATLAB/Simulink-based simulation
tool [17, 18] is used for computation of temporary overvoltages. In order to study temporary
overvoltages for a large number of possible system configurations, it is necessary to runmany
time-domain simulations resulting in a large amount of simulation time. A way to limit the
overall calculation time is to reduce the number of simulations by applying analytical or
knowledge-based rules to discard a number of system configurations before an actual time-
domain simulation is carried out. This paper presents the artificial neural network (ANN)
application for estimation of peak and duration overvoltages under switching transients
during reactor energization. A tool such as the one proposed in this paper that can give
the maximum switching overvoltage and its duration will be helpful to the operator during
system restoration. Also it can be used as a training tool for the operators. Results of the
studies are presented for a partial of 39-bus New England test system to illustrate the
proposed approach.

2. Study System Modelling

The electrical components of the network are modeled using the MATLAB/Simulink
environment [17]. These models should be adapted for the desired frequency range (here
the frequencies up to f = 10f0 are considered to be sufficient). The generator is represented
by an ideal voltage source behind the subtransient inductance in series with the armature
winding resistance that can be as accurate as the Park model [19]. Phase of voltage source
is determined by the load flow results. Transmission lines are described by distributed line
models. The circuit breaker is represented by an ideal switch. The shunt reactor model takes
into account the leakage inductance as well as the magnetizing characteristics of the core,
which is modeled by a resistance, Rm, simulating the core active losses and a saturable
inductance, Lsat. The saturation characteristic is specified as a piecewise linear characteristic
[20]. All of the loads are modeled as constant impedances.

3. Harmonic Overvoltages during Restoration

This paper concentrates on the estimation of harmonic overvoltages. These are a result of
network resonance frequencies close to multiples of the fundamental frequency. They can be
excited by harmonic sources such as saturated reactors, power electronics, and so forth. They
may lead to long lasting overvoltages resulting in arrester failures and system faults [21, 22].
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Figure 1: Sample system for shunt reactor energization study.
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Figure 2: Voltage at bus 2 after switching of shunt reactor.

The sample system considered for explanation of the proposed methodology is a
400 kV EHV network shown in Figure 1. The normal peak value of any phase voltage is
400

√
2/

√
3 kV and this value is taken as base for voltage p.u. In the system studies 100MVA

as a base power is considered. Figure 2 shows the switching transient at bus 2 when reactor
is energized.

In practical system a number of factors affect the overvoltages factors due to
energization or reclosing. In this paper, the following parameters are considered:

(i) voltage at shunt reactor bus before switching,

(ii) equivalent resistance of the network,

(iii) equivalent inductance of the network,

(iv) equivalent capacitance of the network,

(v) line length,

(vi) closing time of the circuit breaker poles,

(vii) shunt reactor capacity,

(viii) saturation curve slope; and

(ix) remanent flux.

In this paper, ANN training is based on Figure 1 that includes equivalent circuit
parameters. In fact, ANN is trained just once for Figure 1. Therefore, it’s possible to use
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Figure 3: Overvoltage at bus 2 as line length while equivalent resistance 0.003 p.u., equivalent inductance
0.03 p.u., equivalent capacitance 1.282 p.u., switching angle 60◦, shunt reactor capacity 20MVAR,
saturation curve slope 0.28 p.u., and remanent flux 0.8 p.u. S.V. is source voltage. (a) Peak; (b) duration.

developed ANN for estimation of overvoltages in every studied system. In Section 6 that
developed ANN is tested for 39-bus New England test system, this issue is better understood.
Also, a novel method based on worst case condition determination is proposed in Section 4
to reduce time-domain simulations.

Source voltage affects the overvoltage strongly. Figure 3 shows the effect of line length
on overvoltage at different source voltage. Figure 4 shows the effect of saturation curve slope
on overvoltages at different equivalent inductance. The saturation curve, and especially the
Lsat, that is, the final slope of this curve, is a key point for the computation of the inrush
currents. The reactor manufacturer provides a Lsat slope value with a dispersion usually
considered of ±20%. Figure 5 shows the effect of shunt reactor capacity on overvoltages at
different equivalent resistance. Also, Figure 6 shows the effect of equivalent capacitance on
overvoltages at different remanent flux.
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Figure 4:Overvoltage at bus 2 as saturation curve slope while source voltage 1.25 p.u, equivalent resistance
0.003 p.u., equivalent capacitance 1.282 p.u., line length 210 km, switching angle 60◦, shunt reactor capacity
20MVAR, and remanent flux 0.8 p.u. Leqv is equivalent inductance. (a) Peak; (b) duration.

As discussed above for an existing system the main factors which affect the peak
and duration values of switching overvoltage are voltage at reactor bus before switching,
equivalent resistance, equivalent inductance, equivalent capacitance, line length, switching
angle, reactor capacity, saturation curve slope, and remanent flux. Here it should be
mentioned that a single parameter often cannot be regarded independently from the other
important influencing factors.

Themagnitude and duration of the overvoltages normally does not depend directly on
any single-isolated parameter and a variation of one parameter can often alter the influence of
another parameter, in other words, there exists an interaction between the various system and
breaker parameters. This forbids the derivation of precise generalized rule of simple formulae
applicable to all cases [23]. So an ANN can help to estimate the peak and duration values
of switching overvoltages generated during reactor energization. An ANN is programmed
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Figure 5: Overvoltage at bus 2 as shunt reactor capacity while source voltage 1.2 p.u., equivalent
inductance 0.025 p.u., equivalent capacitance 1.8912 p.u., line length 190 km, switching angle 45◦,
saturation curve slope 0.32 p.u., and remanent flux 0.8 p.u. Reqv is equivalent resistance. (a) Peak; (b)
duration.

by presenting it with training set of input/output patterns from which it then learns the
relationship between the inputs and outputs. In the next section, an ANN-based approach is
described which can give an acceptable solution of switching transients by the help of which
an operator can take a quick decision at the time of operation.

4. Proposed Method for Harmonic Overvoltages Study

4.1. Worst-Case Condition Determination for Overvoltages Simulation

Normally for harmonic overvoltages analysis, the worst case of the switching angle and
remanent flux must be considered which it is a function of switching time, reactor
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Figure 6:Overvoltage at bus 2 as equivalent capacitance while source voltage 1.2 p.u, equivalent resistance
0.004 p.u., equivalent inductance 0.025 p.u., line length 190 km, switching angle 45◦, shunt reactor capacity
20MVAR, and saturation curve slope 0.32 p.u. Φr is remanent flux. (a) Peak; (b) duration.

characteristics and its initial flux condition, and impedance characteristics of the switching
bus [20]. Using the worst switching angle and remanent flux, the number of simulations for
each case can be reduced significantly.

In order to determine the worst-case switching time and remanent flux, the following
index is defined as

W =
10∑

h=2

Zjj(h) · Ij
(
h, t0, φr

)
, (4.1)
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Figure 7: Voltage at bus 2 after switching of shunt reactor.
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Figure 8: Changes ofW index with respect to current starting angle and remanent flux.

where t0 is the switching time, φr is initial transformer flux, and h is harmonic order. This
index can be a definition for the worst-case switching angle and remanent flux. Using a
numerical algorithm, one can find the switching time and remanent flux for which W are
maximal (i.e., harmonic overvoltages are maximal).

Figure 7 shows the result of the PSB frequency analysis at bus 2. The magnitude
of the Thevenin impedance, seen from bus 2, Zbus2 shows a parallel resonance peak at
174Hz. Figure 8 shows changes of W index with respect to the current starting angle and
remanent flux. Figure 2 shows voltage at bus 2 after reactor switching for the worst-case
condition (i.e., switching angle 20◦ and remanent flux 0.27 p.u.). For temporary overvoltages,
the overvoltage duration has to be taken into account in addition to the amplitude [24].
Table 1 summarizes the results of overvoltages simulation for four different switching angle
and remanent flux that verify the effectiveness of W index.
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Table 1: Effect of switching time and remanent flux on the maximum of overvoltages and duration of
Vpeak > 1.3 p.u.

Switching angle (deg.) Remanent flux (p.u.) Vpeak (p.u.) Duration of (Vpeak > 1.3 p.u.) (s)
20 0.27 1.9205 0.5628
20 0.65 1.5841 0.3394
75 0.27 1.6537 0.3064
60 0.5 1.5293 0.2675

4.2. Steps of Assessment and Estimation of Switching Transient Overvoltages

The steps for harmonic overvoltages assessment and estimation are as follows:

(1) determine the characteristics of shunt reactor that must be energized,

(2) calculate the Zii(h) at the reactor bus for h = 2f0, . . . , 10f0,

(3) calculation of worst switching angle and remanent flux for simulation,

(4) run PSB simulation,

(5) calculation of overvoltage peak and duration,

(6) repetition of the above steps with various system parameters to learning artificial
neural network, and

(7) testing of artificial neural network with different system parameters.

5. The Radial Basis Function Neural Network (RBFNN)

Figure 9 shows the structure of the RBF neural network, which comprises of three layers. The
hidden layer possesses an array of neurons, referred to as the computing units. The number of
such units can be varied depending on user’s requirement [25, 26]. Different basis functions
like spline, multiquadratic, and Gaussian functions have been studied, but the most widely
used one is the Gaussian type. In comparison to the other types of neural network used for
pattern classification like back propagation feedforward networks, the RBF network requires
less computation time for learning and has a more compact topology. The Gaussian RBF is
found not only suitable in generalizing a global mapping but also in refining local features
without altering the already learned mapping. Each hidden unit in the network has two
parameters called a center (ω) and a width (σ) associated with it. The response of one such
hidden unit to the network input X, X = [x1, x2, ..., xn]

T is expressed as:

φk(X) = exp

(
− 1
σ2
k

‖X −ωk‖2
)
, (5.1)

whereωk is the center vector for kth hidden unit, σk is the width of the Gaussian function, and
‖ ‖ denotes the Euclidean norm. The output layer comprises a number of nodes depending on
the number of fault types to be classified which perform simple summation. The response of
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Figure 9: The structure of RBF neural network.

each hidden unit (4.1) is scaled by its connecting weights (α’s) to the output nodes and then
summed to produce the overall network output. The overall network output is expressed as:

fm(X) = αmo +
N∑

k=1

αmkφk(X), (5.2)

where N indicates the total number of hidden neurons in the network, αmk is the connecting
weight of the kth hidden unit to mth output node, and αmo is the bias term for the
corresponding mth output neuron. The learning process of the RBFNN involves with the
allocation of new hidden units and tuning of network parameters. The learning process is
terminated when the output error goes under the defined threshold [27].

5.1. Training Artificial Neural Network

All experiments have been repeated for different system parameters (2000 sets). 1000 sets
were used to train RBFNN and 1000 sets were used to test RBFNN. RBFANN learned in 73
epochs. After learning, all parameters of the trained networks have been frozen and then
used in the retrieval mode for testing the capabilities of the system on the data not used in
learning. The testing data samples have been generated through the PSB program by placing
the parameter values not used in learning, by applying different parameters. A large number
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Table 2: Some sample testing data and output.

V Reqv Leqv Ceqv L.L. S.R. Lsat VPSB VRBF errorV TPSB TRBF errorT
1.208 0.003 0.0325 1.2825 180 20 0.34 1.6582 1.6793 1.2749 0.3673 0.3565 2.9517
1.234 0.003 0.0325 1.2825 240 20 0.34 1.9675 1.9838 0.8261 0.4661 0.4741 1.7205
1.257 0.003 0.0225 1.2825 220 20 0.3 1.8831 1.8657 0.9235 0.5154 0.5219 1.2694
1.269 0.003 0.0275 1.2825 220 20 0.38 2.1371 2.2158 3.6829 0.8831 0.8692 1.5736
1.292 0.003 0.0275 1.2825 160 20 0.26 1.8194 1.7917 1.5216 0.5747 0.5597 2.6128
1.328 0.003 0.0275 1.2825 240 20 0.38 2.2339 2.1944 1.7684 0.9075 0.8968 1.1805
1.354 0.003 0.0375 1.2825 180 20 0.34 2.0425 2.0850 2.0831 0.8573 0.8856 3.2985
1.381 0.003 0.0325 1.2825 240 20 0.34 2.3117 2.3954 3.6194 0.9812 0.9958 1.4918
1.296 0.0035 0.025 0.9781 190 10 0.32 1.8302 1.8234 0.3742 0.6035 0.6172 2.2657
1.296 0.0035 0.025 0.9781 190 70 0.32 1.6653 1.6342 1.8671 0.5387 0.5235 2.8243
1.301 0.0055 0.025 2.1956 190 50 0.32 1.7195 1.7059 0.7938 0.3995 0.4123 3.1984
1.282 0.0065 0.025 1.5869 190 50 0.32 1.7102 1.6852 1.4628 0.3567 0.3645 2.1864
1.294 0.0045 0.025 1.5869 190 90 0.32 1.6417 1.5735 4.1559 0.3126 0.3152 0.8215
1.279 0.0045 0.025 0.3694 190 90 0.32 1.6215 1.6556 2.1035 0.2369 0.2408 1.6478
1.306 0.0065 0.025 2.8044 190 30 0.32 1.7743 1.7253 2.7642 0.4734 0.4616 2.4961
V : voltage at shunt reactor bus before switching (p.u.), Reqv: equivalent resistance (p.u.), Leqv: equivalent inductance (p.u.),
Ceqv: equivalent capacitance (p.u.), L.L.: line length (km), S.R.: shunt reactor capacity (MVAR), Lsat: saturation curve slope
(p.u.), errorV : voltage error (%), and errorT : duration time error (%).

of testing data have been used to check the proposed solution in the most objective way at
practically all possible parameters variation. Percentage error is calculated as:

error(%) =
|ANN − PSB|

PSB
× 100. (5.3)

Results for a sample test data are presented in Table 2. Values in column VPSB are the absolute
values of peak voltage at bus 2 calculated by PSB program in p.u. where the VRBF values
are the values simulated by trained network. Also values in column TPSB are the values of
overvoltage duration calculated by PSB program in second and TRBF values are the values
simulated by trained network.

The proposed model tested with portion of 39-bus New England test system. Various
cases of shunt reactor energization are taken into account and corresponding peak and
duration values estimated from trained model.

6. Case Study

In this section, the proposed algorithm is demonstrated for two case studies that are a portion
of 39-bus New England test system, of which its parameters are listed in [28]. The simulations
are undertaken on a single-phase representation. In the proposed method, first, studied
system must be converted to equivalent circuit of Figure 1. In the other words, values of
equivalent resistance, equivalent inductance, and equivalent capacitance are determined and
used in trained artificial neural network to estimate overvoltages peak and duration.

Case 1. Figure 10 shows a one-line diagram of a portion of 39-bus New England test system
which is in restorative state. The generator at bus 35 is a black-start unit. In order to reduce the



12 Mathematical Problems in Engineering

G1

Bus 35 Bus 22

Zt35 22
Line22 21

Bus 21

Load 21

Line21 16
Bus 16

Load 16
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Figure 10: Studied system for Case 1.

Table 3: Case 1, some sample testing data and output.

V L L S R VPSB VRBF errorV TPSB TRBF errorT
1.1516 158 25 1.5844 1.5501 2.1672 0.2407 0.2486 3.2816
1.1621 170 25 1.6162 1.6044 0.7314 0.2915 0.2878 1.2762
1.2491 194 63 1.7104 1.7697 3.4694 0.4042 0.3851 4.7228
1.2491 194 40 1.7567 1.7339 1.2951 0.4529 0.4637 2.3751
1.3318 210 78 1.8975 1.8060 4.8216 0.5374 0.5522 2.7495
1.3518 226 10 2.0649 2.1235 2.8357 0.6835 0.6601 3.4293
1.4303 235 55 2.2143 2.2524 1.7224 0.7651 0.7529 1.5907
1.4458 245 37 2.3096 2.3296 0.8639 0.9169 0.8906 2.8659
V : voltage at reactor bus before switching (p.u.), L L: line length (km), S R: shunt reactor capacity (MVAR), errorV : voltage
error (%), and errorT : duration time error (%).

steady state overvoltage of no load transmission line, a reactor is connected at bus 19. When
the reactor is energized, harmonic overvoltages can be produced because of its nonlinear
magnetization characteristics.

First, equivalent circuit of this system is determined and values of equivalent
resistance, equivalent inductance, and equivalent capacitance are calculated, that is, this
system is converted to system of Figure 1. In this case, values of equivalent resistance,
equivalent inductance, and equivalent capacitance are 0.00291, 0.02427, and 2.474 p.u.,
respectively. For testing trained ANN, values of voltage at reactor bus (bus 19), line length,
and shunt reactor capacity are varied and in each state, overvoltage peak and duration values
are calculated from trained ANN and system of Figure 10. Table 3 contains some sample
results of test data of Case 1.

Case 2. As another example, the system in Figure 11 is examined. In the next step of the
restoration, unit at bus 6 must be restarted. In order to reduce the steady state overvoltage
of no load transmission lines, the reactor at bus 6 should be energized. In this condition,
harmonic overvoltages can be produced.

After converting this system to equivalent circuit of Figure 1, that is, after calculating
equivalent circuit seen from bus 5, various cases of reactor energization are taken into
account and corresponding overvoltages peak and duration are computed from PSB program
and trained ANN. In this case, values of equivalent resistance, equivalent inductance, and
equivalent capacitance are 0.00577, 0.02069, and 0.99 p.u., respectively. Summary of few
results are presented in Table 4. It can be seen from the results that the ANN is able to learn
the pattern and give results to acceptable accuracy.

7. Conclusion

In this paper, a radial basis function-based method is presented to study switching
overvoltages during shunt reactor energization. Also, a new approach is proposed to reduce
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Figure 11: Studied system for Case 2.

Table 4: Case 2, some sample testing data and output.

V L L S R VPSB VRBF errorV TPSB TRBF errorT
1.1442 150 70 1.5011 1.5268 1.7135 0.1936 0.1881 2.8214
1.1561 165 45 1.5453 1.5356 0.6281 0.2375 0.2268 4.5184
1.2302 178 30 1.6769 1.6141 3.7428 0.3469 0.3557 2.5369
1.2514 200 30 1.7481 1.7206 1.5746 0.3952 0.3902 1.2657
1.3326 215 23 1.9507 1.9955 2.2974 0.5104 0.5214 2.1624
1.3326 215 17 1.9914 1.9295 3.1108 0.5536 0.5612 1.3751
1.4165 230 17 2.1652 2.2251 2.7659 0.6742 0.6407 4.9752
1.4327 242 10 2.2479 2.2811 1.4782 0.7593 0.7809 2.8395
V : voltage at reactor bus before switching (p.u.), L L: line length (km), S R: shunt reactor capacity (MVAR), errorV : voltage
error (%), and errorT : duration time error (%).

time-domain simulations based on worst switching angle and remanent flux determination.
In addition, since equivalent circuit parameters of the network are used as ANN inputs,
developed ANN is applicable to every studied system. The results from this scheme are close
to results from the conventional method and helpful in predicting the overvoltage of the other
case studies within the range of a training set. The proposed ANN approach is tested on a
partial 39-bus New England test system. This method omits time-consuming time-domain
simulations and it is suitable for real time applications during system restoration. Also it can
be used as a training tool for the operators.
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