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Discrete network design is an important part of urban transportation planning. The purpose of
this paper is to present a bilevel model for discrete network design. The upper-level model aims
to minimize the total travel time under a stochastic demand to design a discrete network. In the
lower-level model, demands are assigned to the network through a multiuser traffic equilibrium
assignment. Generally, discrete network could affect path selections of demands, while the results
of the multiuser traffic equilibrium assignment need to reconstruct a new discrete network. An
iterative approach including an improved genetic algorithm and Frank-Wolfe algorithm is used to
solve the bi-level model. The numerical results on Nguyen Dupuis network show that the model
and the related algorithms were effective for discrete network design.

1. Introduction

With the development of cities, travel demand is high and widely spread. The capacity of
the current transport system remains limited to accommodate the increasing demand. It has
emerged as an important area for progress in handling effective transport planning, in which
some new links or roadway segments are added to expanding the current system capacity.
The discrete network design problem (DNDP) deals with the selection of link additions to
an existing road network, with a given demand from each origin to each destination. The
objective of DNDP is often to optimize a given system performance measure such as to
minimize total system travel cost, while accounting for the route choice behaviors of network
users. Farvaresh and Sepehri [1] presented a single-level mixed integer linear formulation for
discrete network design. Miandoabchi and Farahani [2] presented a discrete network design
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model, in which the concurrent design of street capacity, street direction, and lane allocations
for two-way street are optimized based on the reserve capacity maximization. In traditional
transportation network design, the travel demand is often assumed as a constant and users
are assumed to belong to a single class. However, the assumptions are inappropriate to real-
life applications.

Different forms may be adopted for different aims in those literatures; but uncertainty
in decision making and the diversity of the users are not considered. This paper seeks to
make two contributions to the literature. Firstly, when the travel demand is uncertainty,
uncertain optimization theory will be used. Secondly, when the users are diversity, they will
be classified and treated, respectively. Therefore, a bi-level model was proposed for traffic
network design. The upper-level model takes the travel time as the main consideration factor
to optimize the network design model. Considering the fact that the travel demand changes
along with the change of the network, the lower-level model assigns the users again in the
network optimized by the upper-level model.

The uncertain transportation network design model based on the stochastic program-
ming theory assumes that travel demand is a stochastic variable submitting to a known
probability distribution. At the same time, the optimal network plan will be obtained with
stochastic bi-level programming model. Patriksson [3] considered demand uncertainty in
stochastic bi-level programming model, in which the upper-level model is to minimize
expected value of the objective function, and the lower-level model is the equilibrium
conditions of variation inequality.

Ukkusuri and Waller [4] provided the chance constrained programming model and
two-phase compensation stochastic programming model for designing the transportation
network with a single end and uncertain OD demand. When traffic flow meets the dynamic
user equilibrium condition, cell transmission model (CTM) can be used, and the numerical
calculation shows that the suboptimal solutions will be obtained without considering
the uncertainty of demand. Karoonsoontawong and Waller [5] established a continuous
transportation network design model under the demand uncertainty. Assume that every
demand situation meets a dynamic user equilibrium to describe the traffic flow based on
the CTM model of Daganzo [6]. The model minimizes the weighted average of the expected
mean value and the expected risk to improve model robustness against demand uncertainty.
Yang [7] analyzed the behavior of equilibrium flows with elastic demand which can be
used to measure the demand and performance characteristics of the transportation networks.
Li et al. [8] attempted to present road toll design model for congested road networks
with uncertain demand. A heuristic algorithm based on the sample average approximation
approach and a sensitivity analysis is used to solve the network design model.

There are two types of methods dealing with multiuser problem in transportation
network design problem. One method is to classify users according to traffic mode
characteristics and vehicle types; then each category of users has different cost functions.
Similar study has been done by Smith [9]; and so forth. Another method assumes that
vehicle types of travelers are the same and have the same effect on traffic flow; but there
are differences in time value. According to the different way of study, time value distribution
can be assumed as discrete or continuous, corresponding to limited categories of users or
infinite categories of users. Research about multiuser network equilibrium based on discrete
time value has been done by Daganzo [6], Yang and Zhang [10]. Research about multiuser
network equilibrium based on continuous time value has been done by Dial [11].

In order to correct the inappropriate assumptions in traditional transportation network
design, in this paper, the OD trip demand elements are supposed as stochastic variables
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submitting to given probability distribution. Travelers are divided into different groups by
the value of time and a novel multiuser network design model is established. However, for
network design, it is difficult to be solved through classical optimization techniques [12].
Recently many studies have proved that heuristic algorithms are suitable for large-scale
transit network optimization problems, such as ant colony algorithm [13–15] and simulated
annealing algorithm [16].

Genetic algorithm (GA) is a search heuristic that based on the idea extracting from
the process of natural evolution. Recently many studies have proved that genetic algorithm
is suitable for solving network design problem. Pattnaik et al. [17] presented a GA-based
optimization method to design transit network, in which the total cost of user and operator
was to be minimized. Agrawal and Mathew [12] presented an optimization model for transit
network. The model was aiming to minimize the total system cost which included the
operating cost and the generalized travel cost. Bielli et al. [18] developed a heuristic based on
GA to design transit network. In the heuristic, a multicriteria analysis was used to estimate
the fitness values. Thus, in this paper, GA is also used to solve our discrete network design
problem.

This paper has been organized in the following way. Section 2 describes the travelers
time value and multiuser classification; Section 3 is about the optimization model, including
the problem formulations and the basic notations of variables; Section 4 describes genetic
algorithm and Frank-Wolfe algorithm for discrete network design problem. Numerical
analysis is carried out in Section 5, and lastly, the conclusions are drawn in Section 6.

2. Analysis of the Fundamental Factors

2.1. Traveler Time Value

In economics, social activities can be abstracted into production and consumption behavior.
The elements to describe different activities are often different, and time consumption is often
used to measure the activity efficiency. Time as a resource, its value should be reasonable
measured for better and efficient allocation. Time value represents time saving in terms of
money. Under a given space-time environment, the factors that affect time value mainly
include traveler characteristics, travel purpose, transportation modes, and other aspects.

In different conditions, the influence degree of each factor is different. Evaluation
of traveler time value is a comprehensive reflection of these factors. The following is the
introduction of the main factors that affect traveler time value.

(1) Traveler Characteristics

Different social and economic characteristics often affect traveler behavior. The income
level is the greatest effect among their characteristics. High-income passengers pay more
attention to quickness, comfort, safety, and service level than the travel fee while low-income
passengers tend to use more time to save money.

(2) Travel Purpose

Travel purpose is the motive of a trip. When travelers are confronted with different travel
purposes, there are often different choices for them to select and different choices with
different time and cost. For example, a trip for work has time constraint while a trip for
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shopping has more free time; so the time value for work is more than the time value for
shopping. In some special circumstances, such as the traffic accidents or emergency which
need medical assistance, time value is much higher than that of normal work trip.

(3) Transportation Mode

Traveler time value is not only related to travel purpose, but also transportation mode.
Different transportation modes have different speeds, convenience, and comfort, and those
differences affect travelers to select different transportation modes. When travelers choose
some transportation modes, they often consider those factors like travel time, travel cost, and
the auxiliary or additional travel time. For example, car can provide prompt door to door
service, so its time value is high. The bus needs more time not only aboard bus but also out
of bus for waiting and walking; so its time value is low.

(4) Other Factors

In addition to the influences of the above factors on traveler time value, travel distance, road
traffic conditions, vehicles conditions, and the service level [19], to a certain degree, also have
influences on the evaluation of travelers time value.

2.2. User Classification

There are two types of methods dealing with multiuser problem in transportation network.
Onemethod is to classify users according to transportationmodes and vehicle types, in which
each category of users has its cost function. In this paper, for the convenience of the study,
all the traveler time values are also categorized into two kinds: discrete and continuous. In
the same way, the users are considered as two kinds: limited categories of users and infinite
categories. This paper assumes that the difference among transportation network users is the
traveler time value, and the other characteristic is not considered.

3. Multiuser Discrete Network Design Model under
OD Demand Uncertainty

3.1. Basic Notations

The following are the notations used in the model formulation.

N: Transportation network nodes set

A: Transportation network links set

Or : The trip generation flow from the terminal r

Ds: The trip attraction flow from the terminal s

Prs: The routes set from the origin terminal r to the destination terminal s

xa: Traffic flow on link a

ta(x): Travel time impedance function of link a

frs
k
: Traffic flow on path k between OD pair r and s
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crsk : Traffic cost on path k between OD pair r and s

δrs
a,k

: When a belongs to path k which is between OD pair r and s, δ = 1; otherwise δ = 0

A: Set of new built or expanded links

ya: Decision variable of link a, ya ∈ {0, 1}, when link will be new built or expanded,
ya = 1; otherwise, ya = 0

Ca: Transport capacity of link a

La: Length of link a

Ga(ya): Cost of new built or expanded link a

B: Budget of all the new built or expanded links

Ω: All possible scenarios set of uncertain travel demand

ω: Any realization of uncertain travel demand

pω: Realization probability of uncertain travel demand scenario w

ρ: Mean and variance weight of travel time given by planning decision makers.

3.2. Multiuser Assumption

Each group of travelers has similar social and economic characteristics (such as income level).
If travelers can be divided into discrete I groups according to time value, the time value of
travelers i from the origin terminal r to the destination terminal s is set to girs when i ∈ I.
Thus, the user cost includes two parts. One is the cost of travel time value which is related to
route flow; the other is the toll fee τa, which is a constant. The sum of the cost from two parts
is changed as the variation of the travel time value. Formula (3.1) is the generalized cost of
the use of link a by i group users. Formula (3.2) is the time cost on path k between OD pair
r and s. Formula (3.3) is the expenses cost on path k between OD pair r ands. Formula (3.4)
generalized the cost of the use of path k between OD pair r and s by i group users:

gia(xa) = ta(xa) +
1
ψi
τa, ∀a ∈ A, i ∈ I, (3.1)

crsk =
∑

ta(xa)δrsa,k, ∀r ∈ R, s ∈ S, k ∈ K, (3.2)

τrsk =
∑

τaδ
rs
a,k, ∀r ∈ R, s ∈ S, k ∈ K, (3.3)

grsk,i = c
rs
k +

1
ψi
τrsk , ∀r ∈ R, s ∈ S, k ∈ Prs, i ∈ I. (3.4)

3.3. Multiuser Network Optimization Model under OD Demand Uncertainty

OD trip demand of each group travelers is supposed as a random variable submitting to the
given probability distribution. In practical calculation, when Monte-Carlo random sampling
is used to form a demand scenario set Ω, any demand scenario realization is w. OD trip
demand is qi,ωrs , where i is the set of groups of travelers. Scenario realization probability is pω.
Multiuser discrete network designmodel under OD trip demand uncertainty includes upper-
level model (3.5) and lower-level model (3.6), which are correlated by network improved
decision variable y and traffic flow x.



6 Mathematical Problems in Engineering

The upper-level model (3.5) is to minimize the system total travel time mean and
standard deviation with the random demand in all scenarios realization condition, when
planners choose new built and rebuilt links under the capital budget constraints. The lower-
level model (3.6) is the corresponding multiuser equilibrium of each demand scenario under
the improved decisions conditions decided by the upper-level model. On has

min Z(x,y) = ρ
∑

ω

pω
[
∑

a

xωa t
ω
a

(
xωa , ya

)
]
+
(
1 − ρ)

×
⎡

⎣
∑

ω

pω
{
∑

a

xωa t
ω
a

(
xωa , ya

) −
∑

ω

pω
[
∑

a

xωa t
ω
a

(
xωa , ya

)
]}2

⎤

⎦
1/2

,

(3.5)

s.t.
∑

a∈A
Ga

(
ya

) ≤ B, (3.5a)

ya ∈ {0, 1}, ∀a ∈ A, (3.5b)

where x = x(y) is implicit function of y, decided by lower-level model (3.6). On has

min T(x) =
∑
a

∫xωa
0 tωa (w)dw +

∑
a

∑
i∈I

1
ψi
xi,ωa τa (3.6)

s.t.
∑

k∈Prs
frs,ω
k,i

= qi,ωrs , ∀r ∈ R, s ∈ S, ∀i ∈ I, ω ∈ Ω (3.6a)

frs,ωk,i ≥ 0, ∀r ∈ R, s ∈ S, k ∈ Prs, i ∈ I, ω ∈ Ω (3.6b)

xi,ωa =
∑

r∈R

∑

s∈S

∑

k∈Prs
frs,ω
k,i

δrs,ω
ak

, ∀a, i ∈ I, ω ∈ Ω (3.6c)

xωa =
∑

i∈I
xi,ωa , ∀a, ω ∈ Ω. (3.6d)

Here, travel time of link a is described as BPR function.
The right balance between the mean and standard deviation is kept by weight factor

ρ (ρ ∈ [0, 1]), where ρ shows the prediction of the planners for the average performance of
uncertainty and the discrete degree of depart from the average performance. The bigger ρ
value is, the less the planners would like to select.

In this paper, the multiuser discrete network design problem under demand
uncertainty can be shown in Figure 1.
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Figure 1: The optimized process of discrete network design problem.

4. Solution Approach

4.1. Multiuser Traffic Equilibrium Assignment

Using Frank-Wolfe method to solve multiuser equilibrium model consists of the following
steps.

Step 1. Initialization: according to {t0a = ta(0)} and {τa}, 0-1 traffic assignment based on
generalized cost is conducted to each group of users demand {qirs}when n = 1.

Step 2. Updating travel time on each link: determining generalized cost gina (xna) of each group
of users on each link when tna = ta(xna), for all a.

Step 3. Searching for iterative direction: conduct 0-1 traffic assignment according to
generalized cost {gina (xna)} to each group of users and get a set of additional traffic flow {yina }.
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Figure 2

Step 4. Searching for iteration step length λn based on min0≤λn≤1T(x
in + λn(yin − xin)): to seek

λn until it meets min0≤λn≤1T(x
in + λn(yin − xin)).

Step 5. Updating road traffic flow on each link:

x
i(n+1)
a = xina + λn

(
yina − xina

)
, ∀a, i; xn+1a = xna + λn

(
yna − xna

)
, ∀a. (4.1)

Step 6. Convergence test: if {xn+1a } already meets specified convergence criteria, calculation
stops and {xn+1a } are the balance solutions. Otherwise update n = n + 1, return to Step 2.

4.2. GA for Multiuser Discrete Transportation Network Design

GA is inspired by evolutionary biology like inheritance, selection, crossover, and mutation.
Based on a fitness function, GA attempts to retain relatively good genetic information
from generation to generation. GA has been used for solving approximately combinatorial
optimization problems [20]. In this paper, GA is adopted to solve multiuser discrete
transportation network design model under demand uncertainty. The following is the steps
of GA.

(1) Encoding

For a discrete network design, the added links or expanded links are to assign to the current
network. Thus, an integer-coded scheme is selected to represent the alternative links in
this paper, and a chromosome example is as shown in Figure 2, where “0” represents the
corresponding link remaining the current situation while “1” represents the links need to add
new links or be expanded. For example, the chromosome is 1100110000 which represents that
route no. 1, 2, 5, and 6 needs to add new links or be expanded. The other routes remain the
current situation.

(2) Fitness Function

Generally, GA is optimal searching method to find the maximum fitness of the individual
chromosome. Therefore, a constant Q is introduced to transform our objective function to a
maximum fitness function and the chromosomes are evaluated as follows:

M
(
f
)
=
Q

Z
, (4.2)

whereM(f) is the fitness function and Q is a constant.
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(3) Selection

The basic part of the selection process is to stochastically select from one generation to create
the basis of the next generation. The requirement is that the fittest individuals have a greater
chance of survival than weaker ones. That is, the better the chromosomes are, the more
chances to be selected they have. Therefore, the Roulette wheel selection method is used
for the selection of chromosomes in this paper. In addition, to increase the performance of
GA, elitism is used for selection. That is, if the elitism parameter was set to R; then the top R
chromosomes in the population are copied to the next generation.

(4) Crossover

Crossover is a genetic operator that exchanges genetic information between two parents’
chromosomes to produce two new children chromosomes. The crossover operator occurs
during evolution according to a given crossover rate pc. In this paper, in crossover
operation, the two links are selected, based on a simple arithmetic crossover [20], from
the parent chromosomes and exchange the two links, and then generate two new children
chromosomes:

gentk,I = αigen
t−1
k,I + (1 − αk)gent−1k,II ,

gentk,II = αigen
t−1
k,II + (1 − αk)gent−1k,I ,

(4.3)

where gent−1k,I ,gen
t−1
k,II is a pair of “parent” chromosomes; gentk,I ,gen

t
k,II is a pair of “children”

chromosomes; αk is a random number between (0,1); k ∈ [1, 2, 3] (kis the total genes for the
crossover operation).

(5) Mutation

Like the crossover, the mutation operator is also associated with a mutation rate (Pm) to
determine whether or not the mutation operator is to be applied to the chromosome. An
arithmetic mutation like the crossover is designed, and then a new offspring chromosome is
acquired by mutation operator.

Assume a chromosome is G = (gent1, . . . ,gen
t
k
, . . . ,gentm), if the gent2 was selected for

the mutation, the mutation can be shown in (4.4):

G′ =
(
gent−11 , . . . ,gentk, . . . ,gen

t−1
m

)
,

gentk =

{
gent−1k + Δ

(
t,gentkmax − gent−1k

)
, if random(0, 1) = 0,

gent−1
k

+ Δ
(
t,gent−1

k
− gent

kmin

)
, if random(0, 1) = 1 .

(4.4)

The function Δ(t, y) returns a value between [0, y] given in (4.5).

Δ
(
t, y

)
= y ×

(
1 − r(1−t/Tmax)λ

)
, (4.5)



10 Mathematical Problems in Engineering

Origin terminal

Origin terminal

 Destination terminal

Destination terminal

1

1

2

2

3

3

4

4 6

6

5
5 7 8

7 9

18

9

8

10

10

11

11

12

12 14

13

13

21 22

20
17

23
19

16

15

24

25

Figure 3: The networks of Nguyen Dupuis.
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Figure 4: The solution of scenario I.

where r is a random number between [0, 1]; Tmax is the maximum number of generations;
here λ = 3. This property causes this operation to make a uniform search in the initial space
when t is small and a very local one in later stages.

5. Case Studies

5.1. Network Structure

In this paper, the test network of Nguyen and Dupuis [21] is used as a case study. This
network has 13 nodes, 19 links, and 4 OD pairs. The basic structures of this network is
shown in Figure 3, in which a red node is the symbol for a travel demand generation point,
a blue node is the symbol for a travel demand attract point, a solid line is the symbol for
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Table 1: The attribute of the Nguyen Dupuis network.

Link Free flow time Existing capacity Planning capacity Construction cost
1 12 250 500 100
2 12 250 500 100
3 12 250 500 100
4 24 150 250 100
5 12 250 500 100
6 12 250 500 100
7 12 250 500 100
8 12 250 500 100
9 12 250 500 100
10 12 250 500 100
11 12 250 500 100
12 12 250 500 100
13 24 150 250 100
14 12 250 500 100
15 12 250 500 100
16 12 250 500 100
17 12 250 500 100
18 36 150 250 100
19 12 250 500 100
20 24 0 250 100
21 24 0 250 100
22 24 0 250 100
23 24 0 250 100
24 12 0 500 100
25 24 0 250 100

Table 2: The data of OD.

Category Number Trip generation
and attraction

Truncation normal distribution of trip
generation and attraction

Trip generation site 1 O1 TN(O1, μO1)
4 O4 TN(O4, μO4)

Trip attraction site 2 D2 TN(D2, μD2)
3 D3 TN(D3, μD3)

a existing road, and a dotted line is the symbol for a road to be built. Table 1 shows the
basic information of the network, including free flow time, traffic capacity under the present
situation, traffic capacity under planning situation, construction cost, and so forth. Table 2
is OD trip demand information, including deterministic demand and truncated normal
distribution travel demand.

5.2. Calculation Results

This network is assumed to have three types of users, and the OD trip demand of each type of
users submits to truncation normal distribution; time value is set to 0.5, 1, and 2, respectively.
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Figure 6: The solution of scenario III.

There are 25 routes for new links and expanding links. So the parameters in genetic algorithm
are set as the following. That is population size as 40, evolutional generation range as 100,
chromosome length as 25, crossover probability as 0.8, and mutation probability as 0.01
(Table 3).
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Figure 7: The solution of scenario IV.

Table 3: The parameters of the scenario.

Scenario User demand Mutation coefficient μ Budget level Risk coefficient ρ Sample size
I 100/150/100 0 1000 1 1
II 50/250/50 0 1000 1 1
III 250/50/50 0 1000 1 1
IV 50/50/250 0 1000 1 1
V 100/150/100 0.2 1000 1 50
VI 100/150/100 0.5 1000 1 50
VII 100/150/100 0.2 1000 0.5 50
VIII 350 0 1000 1 1

The evolution process under deterministic OD trip demand is shown in Figures 4, 5,
6, and 7. The evolution process under uncertain OD trip demand is shown Figures 8, 9, and
10. The evolution process with only one type of users is shown in Figure 11.

Table 4 shows the calculation results of multiuser discrete transportation network
under OD trip demand uncertainty, from which we can obtain the following conclusion.

(1) Scenario I and scenario VIII have the same total demand of all OD pairs, while
scenario VIII has only one type of users and scenario I has three types of users.
Results show that network planning scheme based onmultiuser equilibriummodel
is different from that of single user model, and the total travel time of the system
based on multiuser equilibrium model is higher.

(2) Contrasting from scenario I to scenario IV, OD trips of each type of users are
different. The calculation results show that the OD trips proportion of different
users to the total amount of the network has a significant impact on the planning
scheme. In the transportation planning practice, the trip amount of different users



14 Mathematical Problems in Engineering

0 10 20 30 40 50 60 70 80 90 100
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

The  Minimum value
The population mean

Generation

T
he

 fi
tn

es
s 

va
lu

e

×105

Figure 8: The solution of scenario V.

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

0 10 20 30 40 50 60 70 80 90 100

The  Minimum value
The population mean

Generation

T
he

 fi
tn

es
s 

va
lu

e

×105

Figure 9: The solution of scenario VI.

should be determined according to social and economic characteristics of the
region’s inhabitants to provide amore powerful support for transportation network
planning decision.

(3) Scenario V and scenario VI show the network planning results under the target
function of system expected total travel time under OD trip uncertainty. It shows
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Figure 11: The solution of scenario VIII.

that the greater the OD demand uncertainty degree is, the greater the mean of the
system total travel time is.

(4) Scenario V and scenario VII have the same degree of OD trip uncertainty. Risk
preference of decision makers influences the final network planning scheme.
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Table 4: The solution of the sample.

Scenario The fitter chromosome Newly built roads Extension roads Fitness value

I
011101010110
0000101010000 21, 22, 23, 25 2, 4, 5, 11, 13, 15 1.05 ∗ 105

II
100101010100
0001101010001 20, 23, 25 2, 4, 10, 11, 13, 15, 19 1.07 ∗ 105

III
110101011100
0000100100010 20, 21, 23, 25 2, 3, 4, 11, 14, 18 1.05 ∗ 105

IV
001101110100
0000011010100 22, 23, 25 1, 2, 4, 12, 13, 15, 17 1.11 ∗ 105

V
110000001100
0100001100111 20, 21 3, 4, 8, 13, 14, 17, 18, 19 1.14 ∗ 105

VI
000101010101
0001101100010 23, 25 2, 4, 6, 10, 11, 13, 14, 18 1.39 ∗ 105

VII
101101010101
0000001010001 20, 22, 23, 25 2, 4, 6, 13, 15, 19 6.91 ∗ 104

VIII 111100011100
0000001110000

20, 21
22, 23

2, 3, 4
13, 14, 15 9.15 ∗ 104

6. Conclusions

In this paper, a discrete transportation network design problem is investigated, in which the
trip generation flow and trip attraction flow are supposed as stochastic variables submitting
to the given probability distribution. When travelers are divided into different groups by
travel time value, a novel multiuser discrete network design model based on demand
uncertainty is established. Genetic algorithm and Monte-Carlo simulation algorithm are
integrated to solve the bi-level model for discrete network design. Calculation results on
Nguyen Dupuis network show that user heterogeneity has a significant impact on network
planning outcome under uncertain conditions. Furthermore, it can be found that GA is a
potential tool for multiuser discrete transportation network design problem.

Acknowledgments

This work was supported by the Ph.D. Programs Foundation of Ministry of Education of
China (20070003065), National High Technology Research and Development Program 863
(2007AA11Z202 and 2007AA11Z233).

References

[1] H. Farvaresh and M. M. Sepehri, “A single-level mixed integer linear formulation for a bi-level
discrete network design problem,” Transportation Research E, vol. 47, no. 5, pp. 623–640, 2011.

[2] E.Miandoabchi and R. Z. Farahani, “Optimizing reserve capacity of urban road networks in a discrete
network design problem,” Advances in Engineering Software, vol. 42, no. 12, pp. 1041–1050, 2011.

[3] M. Patriksson, “Robust bi-level optimization models in transportation science,” Philosophical
Transactions of the Royal Society of London A, vol. 366, no. 1872, pp. 1989–2004, 2008.



Mathematical Problems in Engineering 17

[4] S. V. Ukkusuri and S. T. Waller, “Linear programming models for the user and system optimal
dynamic network design problem: formulations, comparisons and extensions,” Networks and Spatial
Economics, vol. 8, no. 4, pp. 383–406, 2008.

[5] A. Karoonsoontawong and S. T. Waller, “Robust dynamic continuous network design problem,”
Transportation Research Record, vol. 2029, pp. 58–71, 2007.

[6] C. F. Daganzo, “Stochastic network equilibrium with multiple vehicle types and asymmetric,
indefinite link cost jacobians,” Transportation Science, vol. 17, no. 3, pp. 282–300, 1983.

[7] H. Yang, “Sensitivity analysis for the elastic-demand network equilibrium problem with applica-
tions,” Transportation Research B, vol. 31, no. 1, pp. 55–70, 1997.

[8] Z.-C. Li, W. H. K. Lam, S. C. Wong, and A. Sumalee, “Environmentally sustainable toll design for
congested road networks with uncertain demand,” International Journal of Sustainable Transportation,
vol. 6, no. 3, pp. 127–155, 2012.

[9] M. J. Smith, “The marginal cost taxation of a transportation network,” Transportation Research B, vol.
13, no. 3, pp. 237–242, 1979.

[10] H. Yang and X. Zhang, “Multiclass network toll design problem with social and spatial equity
constraints,” Journal of Transportation Engineering, vol. 128, no. 5, pp. 420–428, 2002.

[11] R. B. Dial, “Bicriterion traffic assignment: basic theory and elementary algorithms,” Transportation
Science, vol. 30, no. 2, pp. 93–111, 1996.

[12] J. Agrawal and T. V. Mathew, “Transit route network design using parallel genetic algorithm,” Journal
of Computing in Civil Engineering, vol. 18, no. 3, pp. 248–256, 2004.

[13] B. Yu, Z. Z. Yang, and B. Yao, “An improved ant colony optimization for vehicle routing problem,”
European Journal of Operational Research, vol. 196, no. 1, pp. 171–176, 2009.

[14] B. Yu, Z.-Z. Yang, P.-H. Jin, S.-H. Wu, and B.-Z. Yao, “Transit route network design using ant colony
optimization,” Transportation Research C, vol. 22, pp. 58–75, 2012.

[15] B. Yu and Z. Z. Yang, “An ant colony optimization model: the period vehicle routing problem with
time windows,” Transportation Research E, vol. 47, no. 2, pp. 166–181, 2011.

[16] F. Zhao and X. G. Zeng, “Simulated annealing-genetic algorithm for transit network optimization,”
Journal of Computing in Civil Engineering, vol. 20, no. 1, pp. 57–68, 2006.

[17] S. B. Pattnaik, S. Mohan, and V. M. Tom, “Urban bus transit route network design using genetic
algorithm,” Journal of Transportation Engineering, vol. 124, no. 4, pp. 368–375, 1998.

[18] M. Bielli, M. Caramia, and P. Carotenuto, “Genetic algorithms in bus network optimization,”
Transportation Research C, vol. 10, no. 1, pp. 19–34, 2002.

[19] B. Yu, W. H. K. Lam, and M. L. Tam, “Bus arrival time prediction at bus stop with multiple routes,”
Transportation Research C, vol. 19, no. 6, pp. 1157–1170, 2011.

[20] B. Yu, Z. Z. Yang, and C. T. Cheng, “Optimizing the distribution of shopping centers with parallel
genetic algorithm,” Engineering Applications of Artificial Intelligence, vol. 20, no. 2, pp. 215–223, 2007.

[21] S. Nguyen and C. Dupuis, “Efficient method for computing traffic equilibria in networks with
asymmetric transportation costs,” Transportation Science, vol. 18, no. 2, pp. 185–202, 1984.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


