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Mathematical modeling and parameter estimation are critical steps in the optimization of
biotechnological processes. In the 1,3-propanediol (1,3-PD) production by glycerol fermentation
process under anaerobic conditions, 3-hydroxypropionaldehyde (3-HPA) accumulation would
arouse an irreversible cessation of the fermentation process. Considering 3-HPA inhibitions to
cells growth and to activities of enzymes, we propose a novel mathematical model to describe
glycerol continuous cultures. Some properties of the above model are discussed. On the basis of
the concentrations of extracellular substances, a parameter identification model is established to
determine the kinetic parameters in the presented system. Through the penalty function technique
combined with an extension of the state space method, an improved genetic algorithm is then
constructed to solve the parameter identification model. An illustrative numerical example shows
the appropriateness of the proposed model and the validity of optimization algorithm. Since it
is difficult to measure the concentrations of intracellular substances, a quantitative robustness
analysis method is given to infer whether the model is plausible for the intracellular substances.
Numerical results show that the proposed model is of good robustness.

1. Introduction

Microbial conversion of glycerol to 1,3-propanediol (1,3-PD) is particularly attractive in
that the process is relatively easy and does not generate toxic byproducts. 1,3-PD has
numerous applications in polymers, cosmetics, foods, lubricants, and medicines. Industrial
1,3-PD production has attracted attention as an important monomer to synthesize a new
type of polyester, polytrimethylene terephthalate (PTT) [1]. However, compared with
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chemical routes, microbial production is difficult to obtain a high 1,3-PD concentration. The
fermentation of glycerol by Klebsiella pneumoniae (K. pneumoniae) under anaerobic conditions
is summarized in Figure 1. In the reductive pathway, 3-hydroxypropionaldehyde (3-HPA) is
a toxic intermediarymetabolite and its accumulationwould arouse inhibitions to cells growth
and to activities of the enzymes (such as glycerol dehydratase (GDHt) and 1,3-propanediol
oxidoreductase (PDOR)) in glycerol metabolism [2–5].

It is critical to formulate the fermentation process using a precise mathematical model
in the optimization of biotechnological processes. An excess kinetic model for substrate
consumption and product formation was established in previous studies [7–10]. The models
have been studied for parameter identification [11] and optimal control [12–14] in fed-
batch fermentation process. However, the intermediate and intracellular substances or
enzymes of glycerol metabolism are not taken into consideration in those models. In fact,
some important intermediate substances (such as 3-HPA), intracellular substances (such
as 1,3-PD), and enzymes GDHt and PDOR play significant roles in glycerol metabolism.
A mathematical model of glycerol fermentation concerning enzyme-catalytic reductive
pathway and transports of glycerol and 1,3-PD across cell membrane was established in [6].
Although the achieved results are interesting, the effect of 3-HPA on cells growth is ignored.
Moreover, that model is based on an assumption that 3-HPA inhibits the activities of the
enzymes GDHt and PDOR all the time. In fact, there exists inhibitory effect of 3-HPA on cells
growth owing to its toxicity. In addition, only when the accumulation of 3-HPA reaches some
critical concentration, the inhibitions to enzymes can occur [3, 4].

Robustness is one of the fundamental characteristics of biological systems. By saying
that a system is robust we imply that a particular function or characteristic of the system is
preserved despite changes in the operating environment [15]. For robust biological systems,
we expect that mathematical models attempting to explain these systems should also be
robust [16]. In this paper, we are interested in the robustness to variations in kinetic
parameters and use it to validate the plausibility of the mathematical model. This topic
has been studied by the sensitivity analysis technique [17–19], that is, repeated simulations
by varying one parameter while holding all others fixed. However, single parameter
insensitivity may not be sufficient owing to interactions between several parameters.
Therefore, new methods are needed for studying multiparameter robustness.

Considering 3-HPA inhibitions to cells growth and to activities of the enzymes GDHt
and PDOR in glycerol metabolism, we propose a novel mathematical model to describe 1,3-
PD production by K. pneumoniae in continuous cultures. Some properties of the model, such
as existence and uniqueness of the solution, continuity of the solution in kinetic parameters,
and compactness of the set of feasible parameters, are discussed. Furthermore, a parameter
identification model is established to determine the kinetic parameters in the presented
system. Basing on the penalty function technique and an extension of the state space method,
an improved genetic algorithm (GA) is then constructed to solve the identification model.
Numerical example shows the appropriateness of the proposed system and the validity of
optimization algorithm. Finally, a quantitative robustness analysis method is given to infer
whether the model is robust, and numerical result shows that the proposed system is of good
robustness.

This paper is organized as follows. In Section 2, the kinetic model is formulated to
describe continuous fermentation process, whose important properties are also discussed.
In Section 3, a parameter identification model is presented and an optimization algorithm
is developed. Section 4 explores the robustness analysis of the proposed dynamical system.
Finally, conclusions are provided.
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Figure 1: Anaerobic metabolism pathways of glycerol by K. pneumoniae [6].

2. Mathematical Model in Continuous Culture and Its Properties

2.1. Mathematical Model

During continuous fermentation of glycerol metabolism by K. pneumoniae under anaerobic
conditions, glycerol is fed to the reactor continuously. As stated in [6], we assume that

(H1) the transport of extracellular glycerol across cells membrane by passive diffusion
and by glycerol transport facilitator;

(H2) intracellular 1,3-PD is expected to be diffused from the intracellular environment to
the extracellular medium in the fermentative broth.

Let x(t) := (x1(t), x2(t), x3(t), x4(t), x5(t), x6(t), x7(t), x8(t)) ∈ R8 be the state vector,
and xi(t), i = 1, 2 . . . , 8, respectively denote the concentrations of biomass, extracellular
glycerol, extracellular 1,3-PD, extracellular acetic, extracellular ethanol, intracellular glycerol,
intracellular 3-HPA, and intracellular 1,3-PD at time t in reactor. D is the dilution rate, and
Cs0 is the initial glycerol concentration in feed.

Since 3-HPA is a toxic intermediary metabolite, its inhibition to the specific cellular
growth rate is introduced besides substrate and products inhibitions. Therefore, the specific
cellular growth rate μ [6] is modified as

μ = μm
x2

x2 + k∗
s

(
1 − x2

x∗
2

)(
1 − x3

x∗
3

)(
1 − x4

x∗
4

)(
1 − x5

x∗
5

)(
1 − x7

x∗
7

)
. (2.1)
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Under anaerobic conditions at 37◦C and pH 7.0, the maximum specific growth rate, μm, and
Monod constant, k∗

s , are 0.67 h−1 and 0.28mmol L−1, respectively. The critical concentrations
x∗
i , i = 2, 3, 4, 5, 7, are 2039, 1036, 1026, 360.9, and 300mmol L−1 [6], respectively.

The specific consumption rate of substrate q2, and the specific formation rates of
products q4 and q5 are expressed by the following equations based on previous works
[6, 8, 10]

q2 = k6 +
μ

k7
+ k8

x2

x2 + k9
,

q4 = − k10 + μk11 + k12
x2

x2 + k13
,

q5 = k14 + μk15 + k16
x2

x2 + k17
.

(2.2)

The governing equations based on mass balance [6, 10] can still be used to describe
the concentrations of substrate and products for glycerol metabolism, for example, biomass,
extracellular glycerol, extracellular 1,3-PD, acetate, ethanol, and intracellular glycerol which
are described by (2.3)–(2.7), respectively

ẋ1 =
(
μ −D

)
x1, (2.3)

ẋ2 = D(Cs0 − x2) − q2x1, (2.4)

ẋ3 = k1(x8 − x3)x1 −Dx3, (2.5)

ẋi = qix1 −Dxi, i = 4, 5, (2.6)

ẋ6 =
1
k2

(
k3x2

x2 + k4
+ k5(x2 − x6) − q2

)
− μx6. (2.7)

The reductive pathway is emphasized because 3-HPA is the key intermediate for 1,3-
PD production. 3-HPA accumulation during fermentation process can cause growth cessation
and low product formation [2, 4]. Moreover, when the accumulation of 3-HPA reaches some
critical concentration, the inhibitions to enzymes GDHt and PDOR can occur [3, 4]. So the
intracellular concentration change of 3-HPA can be described by

ẋ7 =
k18u1x6

k∗
m1(1 + IR+(x7 − a∗)((x7 − a∗)/k19)) + x6

− k20u2x7

k∗
m2 + x7(1 + IR+(x7 − a∗)((x7 − a∗)/k21))

− μx7,

(2.8)

where k∗
m1, k

∗
m2 are 0.53 and 0.14mmol L−1 [20, 21], respectively. a∗ is the critical concentration

of 3-HPA beyond which the inhibitions to the activities of GDHt and PDOR occur. Moreover,
in (2.8),

IR+(z) =

{
1, z > 0,
0, z ≤ 0.

(2.9)
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u1 and u2 are the specific activities of GDHt and PDOR in vitro, which can be described by
the following equations:

u1 = k22 − k23μ − k24
x7

x7 + k25
,

u2 = k26 − k27μ − k28
x7

x7 + k29
.

(2.10)

The intracellular 1,3-PD concentration depends on the conversion of 3-HPA catalyzed
by PDOR whose activity is inhibited by the substrate, the diffusion from the intercellular to
the extracellular and the dilution effect on cell growth, so whose variation can be formulated
by

ẋ8 =
k20u2x7

k∗
m2 + x7(1 + IR+(x7 − a∗)((x7 − a∗)/k21))

− k30(x8 − x3) − μx8. (2.11)

Now, let k := (k1, k2, . . . , k30) be the kinetic parameter vector to be identified. Denote
u := (CS0, D) and let the right-hand sides of (2.3)–(2.7), (2.8), and (2.11) be f(x, u, k). Then,
the proposed mathematical model can be rewritten as the following nonlinear dynamical
system:

ẋ = f(x, u, k)
x(0) = x0,

t ∈ [0, T], (2.12)

where T is the steady-state moment of the continuous fermentation process.

2.2. Properties of the Dynamical System

To begin with, we introduce some symbols which will be used below. Let K ⊂ R30 be
the admissible set of the kinetic parameter vector k. Let x∗ := (0.001, 100, 0, 0, 0, 0, 0, 0) and
x∗ := (5, 2039, 1036, 1026, 360.9, 300,2039, 1036) denote the lower and upper bounds of the
state vector x, respectively. Let Wa :=

∏8
i=1[xi∗, x∗

i ] ⊂ R8
+ be the admissible set of x, and let

u ∈ U := [110.96, 1883] × [0.1, 0.5] be the admissible set of initial glycerol concentration in
feed medium Cs0 and dilution rate D.

For the system (2.12), we assume that

(H3) the set K ⊂ R30 is a nonempty bounded closed set;

(H4) the absolute difference between extracellular and intracellular 1,3-PD and that of
glycerol concentration is bounded, that is, ∃M1 > 0 and M2 > 0 such that

|x8(t) − x3(t)| ≤ M1, ∀t ∈ [0, T],

|x2(t) − x6(t)| ≤ M2, ∀t ∈ [0, T].
(2.13)

Under the assumptions (H3) and (H4), we can easily verify the following properties
of the velocity vector field f(x, u, k).

Property 1. For any k ∈ K and u ∈ U, the function f(x, u, k) is locally Lipschitz continuous in
x on Wa.
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Property 2. For any k ∈ K and u ∈ U, the function f(x, u, k) satisfies linear growth condition,
that is, there exist constants α, β > 0 such that

∥∥f(x, u, k)∥∥ ≤ α + β‖x‖, ∀x ∈ Wa, (2.14)

where ‖ · ‖ is Euclidean norm.

Proof. For given k ∈ K and u ∈ U, let C1 := μm, C2 := |k6| + μm/|k7| + |k8| +D, C3 := |k1|M1,
C4 := |k10|+μm|k11|+ |k12|, C5 := |k14|+μm|k15|+ |k16|, C6 := (1/|k2|)(|k3|+ |k5|M2+C2−D), C7 :=
|k18|(|k22|+ |k23|μm+ |k24|)+ |k20|(|k26|+ |k27|μm+ |k28|), C8 := |k20|(|k26|+ |k27|μm+ |k28|+ |k30|M1.
Let Li := Ci +D, i = 1, 3, 4, 5, L2 := max{DCs0, C2}, Li := max{Ci, μm}, i = 6, 7, 8. Then, we can
obtain

∣∣f1(x, u, k)∣∣ ≤ (
μ +D

)|x1| ≤ L1(‖x‖ + 1),
∣∣f2(x, u, k)∣∣ ≤ DCs0 +D|x2| +

∣∣q2∣∣|x1| ≤ L2(‖x‖ + 1),
∣∣f3(x, u, k)∣∣ ≤ M2|k1x1| +D|x3| ≤ L3(‖x‖ + 1),
∣∣fi(x, u, k)∣∣ ≤ ∣∣qi∣∣|x1| +D|xi| ≤ Li(‖x‖ + 1), i = 4, 5,
∣∣fi(x, u, k)∣∣ ≤ Ci + μxi ≤ Li(‖x‖ + 1), i = 6, 7, 8.

(2.15)

Finally, set L′ := max{Li, i ∈ I8 := {1, 2, . . . , 8}}, then we have (2.14) holds with α = β = 2
√
2L′.

The proof is completed.

Then, the existence and uniqueness of the solution for the system (2.12) can be
confirmed in the following theorem.

Theorem 2.1. For any k ∈ K and u ∈ U, the system (2.12) with given initial state x0 ∈ Wa has a
unique solution denoted by x(·;u, k). Moreover, x(t;u, k) is continuous in k on K.

x(t;u, k) = x0 +
∫ t

0
f(x(s), u, k)ds, ∀t ∈ [0, T]. (2.16)

Proof. The proof can be obtained from Properties 1, and 2 and the theory of ordinary
differential equations [22].

Given x0 ∈ Wa, we define the solution set S0 of the system (2.12) as follows:

S0 :=
{
x(·;u, k) | x(t;u, k) is a solution of the system (2.12)

corresponding to k ∈ K and u ∈ U for any t ∈ [0, T]
}
.

(2.17)

Since the concentrations of biomass, glycerol, 3-HPA, and products are restricted in Wa

during the actual continuous cultures, the set of admissible solutions is

S := {x(·;u, k) ∈ S0 | x(t;u, k) ∈ Wa ∀t ∈ [0, T]}. (2.18)
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Furthermore, let the set of feasible parameter vectors corresponding to S be

F := {k ∈ K | x(·;u, k) ∈ S}. (2.19)

From Theorem 2.1 and the above definitions, we have the following result.

Theorem 2.2. The feasible parameter set F defined by (2.19) is a compact set.

Proof. In view of the compactness of K, we obtain that F is a bounded set. Moreover, for
any sequence {ki}∞i=1 ∈ K, there exists at least a subsequence {k̂i} ⊆ {ki} such that k̂i → k̂

as i → ∞. It follows from Theorem 2.1 that x(·;u, k̂i) ∈ S0 and x(·;u, k̂) ∈ S0. Since Wa is a
compact set, we must conclude that x(·;u, k̂) ∈ S, which implies the closeness of set F. The
proof is completed.

3. Parameter Identification Model and Optimization Algorithm

3.1. Parameter Identification Model

Now, we determine the kinetic parameter k in K by constructing an identification problem
as follows.

Let l be the total number of experiments carried out under different dilution rates and
initial glycerol concentrations. For given uj = (Cj

s0, D
j), j ∈ Il, we have the experimental

steady-state data of extracellular substances in continuous cultures. Denote the steady-state
concentrations of biomass, extracellular glycerol, extracellular 1,3-PD, acetate, and ethanol as
y
j

1, y
j

2, y
j

3, y
j

4, y
j

5, correspondingly. Let y
j := (yj

1, y
j

2, y
j

3, y
j

4, y
j

5) ∈ R5
+, j ∈ Il.

In particular, the stable state of a dynamical system (2.12) in the following
identification problem is actually referred to the approximate stability defined as follows.

Definition 3.1. For given uj ∈ U, a state vector x(Tj ;uj , k) is said to be an approximately stable
solution within a precision ε > 0 if there exists k ∈ K such that x(·;uj, k) is a solution of the
system (2.12) satisfying

∥∥∥f(x(Tj
)
, uj , k

)∥∥∥ < ε, (3.1)

where ‖ · ‖ is the Euclidean norm, and Tj = inf{tε : ‖f(x(t), uj , k)‖ < ε for all t ∈ [tε, T]}.

Since the orders of magnitude for concentrations involved are different, we adopt the
average relative error between the computational values x(Tj ;uj , k) and the experimental
data yj at steady-state moments Tj , j ∈ Il, as the criterion

J(k) :=
1
5

5∑
m=1

∑l
j=1

∣∣∣xm

(
Tj ;uj, k

) − y
j
m

∣∣∣
∑l

j=1 y
j
m

. (3.2)
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To determine the parameter values of the system (2.12), a parameter identification
problem, in which J(k) is taken as the cost function, can be formulated as

min J(k)

s.t.
∥∥∥f(x(Tj

)
, uj , k

)∥∥∥ < ε, j ∈ Il,

k ∈ F.

(PIP)

Following the above properties, we can conclude the following theorem.

Theorem 3.2. For uj ∈ U, j ∈ Il, there exists k∗ ∈ F in (PIP) such that J(k∗) ≤ J(k), for all k ∈ F.

3.2. Optimization Algorithm

In (PIP), the constraint k ∈ F actually involves the constraint of continuous state, that is,
x∗ ≤ x(t;uj, k) ≤ x∗, t ∈ [0, T j], k ∈ K, j ∈ Il. In this section, we will develop a computational
method for solving our proposed parameter identification problem (PIP). By means of the
penalty function technique and an extension of state space method, we transcribe (PIP) into
an optimization problem only with box constraint. First of all, we introduce a new state
variable z satisfying

ż = g(x(t)), t ∈
[
0, T j

]
, j ∈ Il

z(0) = 0,
(3.3)

where g(x(t)) := [x(t) − x∗]+ + [x∗ − x(t)]+, and [x̃]+ :=
∑8

i=1(max{x̃i, 0})2.
Obviously, the process x(t;uj, k) satisfies the constraint of continuous state if and only

if z(Tj) = 0, j ∈ Il. Furthermore, denote the cost function in (PIP) by

J̃λ,μ(k) := J(k) + λ
l∑

j=1

∥∥∥f(x(Tj
)
, uj , k

)∥∥∥ + μ
l∑

j=1

z
(
Tj
)
, (3.4)

where λ and μ are penalty factors. Then (PIP) can be rewritten as

min J̃λ,μ(k)

s.t. k ∈ K.

(
PIP(λ,μ)

)

As a result,
(
PIP(λ,μ)

)
is an optimization problem only with the box constraint and

equivalent to (PIP) as λ → +∞ and μ → +∞.
Since J̃λ,μ(k) is nondifferentiable, we construct an improved genetic algorithm (GA) to

solve
(
PIP(λ,μ)

)
taking advantage of the problem’s characteristic. Let k̃ := (k1, k2, . . . , k30) ∈

K. In the improved genetic algorithm, we take k̃ as the individual, and (3.4) as the fitness
function. Now, we describe the algorithm in detail as follows.
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Algorithm 3.3. We have the following steps:

Step 1. Initialize population size N, the maximal iterations H, penalty factors λ
and μ, precision ε, parameters N1, α1, and α2. Set h = 0 and randomly generate N

individuals by uniform distribution, that is, k̃i(h) ∈ K, i = 1, 2, . . .N. Let P(h) =
{k̃i(h) | i = 1, 2, . . . ,N}.
Step 2. Compute the fitness value J̃λ,μ(k̃i(h)) by taking k̃i(h) into the systems (2.12)
and (3.3).

Step 3. Generate the crossover offspring dm(h) (m = 1, 2, . . . ,N1) by arithmetic
crossover and evaluate their fitness values J̃λ,μ(dm(h)).

Step 4. The individual produced by crossover is operated with normality variation
until the produced one is in K. The mutation offspring is denoted by gm(h) (m =
1, 2, . . . ,N1). Compute their fitness values J̃λ,μ(gm(h)).

Step 5. Form the next generation P(h + 1) by selecting the best N individuals from
the N + 2N1 ones.

Step 6. Set h = h + 1, λ = α1λ, and μ = α2μ, if either h > H or no progress is made in
the last generations, then output the best individual and stop, otherwise go to Step
3.

3.3. Numerical Results

According to the actual continuous fermentation process, the initial state x0 =
(0.1115 gL−1, 495mmol L−1 , 0, 0, 0, 0, 0, 0) and 22 groups of the experimental steady-state
data are used. Here, 10 groups of experimental steady-state data under substrate-limited
conditions and 12 groups of experimental steady-state data under substrate-sufficient
conditions. The critical value a∗ is taken as the value in [23]. Moreover, the admissible set
of parameter vectors K is taken as the decrements and increments of 0.9 times the kinetic
parameter values in [6]. By applying Algorithm 3.3, we obtained the optimal parameter
vector k∗ of the system (2.12) under the substrate-limited and the substrate-sufficient
conditions shown in Table 1. Accordingly, the cost function values, respectively, are 1.204 ×
10−2 and 1.585 × 10−2 under the above two cases. Here, all the computations are performed
in Visual C++ 6.0 and numerical results are plotted by MATLAB 7.10.0. In particular, the
ODEs in the computation process are numerically calculated by improved Euler method
[24] with the relative error tolerance 10−4. The parameters used in Algorithm 3.3 are
H = 1000, N = 50, N1 = 30, λ = μ = 1, ε = 0.001, and α1 = α2 = 1.1,
respectively. It should be noted that these parameters are derived empirically after numerous
experiments. The comparison of three extracellular substances concentrations, that is,
biomass, extracellular glycerol, and extracellular 1,3-PD, between experimental steady-state
data and computational results under substrate-limited conditions are shown in Figures 2,
3, and 4. Furthermore, The comparisons of three extracellular substance concentrations, that
is, biomass, extracellular glycerol, and extracellular 1,3-PD, between experimental steady-
state data and computational results under substrate-sufficient conditions are also shown
in Figures 5, 6, and 7. From the above figures, we can see that the simulation results
can approximate the experimental steady-state data well. Thus, the mathematical model
considering 3-HPA inhibitions to cells growth and to activities of enzymes can well describe
the continuous fermentation process.
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Table 1: The optimal parameter vector in the system (2.12).

Conditions Optimal parameter vector k∗

(16.93, 0.015, 375.9, 0.134, 9.5, 162.8,
0.013, 0.014, 0.518, 0.135, 6.239, 203.6,

Substrate-limited condition 37.5, 0.042, 18.43, 3.13, 0.006489,18.83,
12.82, 1.843, 52.03, 10.91, 5.045, 2.983,
0.567, 0.087, 1.852, 6.225, 0.346, 0.138)
(36.37, 0.287, 456, 0.878, 0.5, 162.8,
0.036, 0.087, 2.235, 2.216, 11.25, 282.1,

Substrate-sufficient condition 39.12, 0.629, 9.841, 3.854, 0.006678,
13.09, 10.77, 0.590, 62.83, 7.833, 17.39,

5.624, 0.353, 0.6145, 0.836, 8.094, 1.254, 0.138)

4. Robustness Analysis of the Model

For robust biological systems, we expect that mathematical models that attempt to explain
these systems should also be robust. Robustness of the model is analyzed in this section. In
view of the glycerol dissimilation mechanism, we assume that

(H5) for each x0 ∈ Wa, k ∈ F and given u ∈ U, there exists an approximate stable solution
of the system (2.12).

4.1. Mathematical Measurement of Robustness

Robustness can be defined as a system’s characteristic that maintains one or more of
its functions under external and internal perturbations [15]. In this study, the substance
concentrations at steady-state moments are viewed as the quantitative descriptors of the
system and the perturbations are the parameters variations in F.

Let U be a finite set whose elements are drawn from U by random distribution. Since
the state vector of the system (2.12) takes u ∈ U as the input parameter, we define the
representative steady-state vector as

x
(
tk; k

)
:=

1∣∣∣U∣∣∣
∑
u∈U

x
(
tu,k;u, k

)
, (4.1)

where

tu,k := inf
{
tε |

∥∥f(x(t), u, k)∥∥ < ε for k ∈ F, u ∈ U, ∀t ∈ [tε, T]
}
,

tk := max
u∈U

{
tu,k | x

(
tu,k;u, k

)
is an approximately steady-state vector of (2.12)with k ∈ F

}
,

(4.2)

and |U| denotes the cardinal number of the set U.
Let PS(k, δ) := {k̃ | ‖k̃ − k‖ ≤ δ, k ∈ F} be the feasible space of the perturbation

parameter vector, where δ > 0 is sufficiently small positive number tomeasure themagnitude
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Figure 2: The concentrations of biomass change with respect to fermentation time under substrate-limited
conditions for u = (295, 0.25).

of the parameter disturbances. Furthermore, let P be a perturbation set which is composed of
elements randomly generated from PS(k, δ). Denote the set of the representative steady-state
vector corresponding to the varied parameters by

SP :=
{
x
(
tk; k

)
| k ∈ P

}
. (4.3)

For the representative steady-state vectors in SP, we are interested in their deviations from
the representative steady-state vector corresponding to the optimal parameter vector k∗.
Define the expectation of the ith component of these deviations as follows:

UPi :=
1
|P|

∑
k∈P

(
xi

(
tk; k

)
xi

(
tk∗ ; k∗) − 1

)2

, i ∈ I8. (4.4)

Based on the above analyses, a mathematical definition of biological robustness can be
stated as follows.

Definition 4.1. The robustness measurement of a modelMwith regard to steady states against
a set of parameter perturbations P is

RM
P :=

1
|Irob|

∑
i∈Irob

1
UPi

, (4.5)

where Irob is the state index set involved in robustness analysis.
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Figure 3: The concentrations of glycerol change with respect to fermentation time under substrate-limited
conditions for u = (295, 0.25).
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Figure 4: The concentrations of 1,3-PD change with respect to fermentation time under substrate-limited
conditions for u = (295, 0.25).

4.2. Algorithm and Numerical Results

On the basis of the definition of robustness, we develop an Algorithm 4.2 to compute the
robustness to variations of the optimal kinetic parameter vector k∗.
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Figure 5: The concentrations of biomass change with respect to fermentation time under substrate-
sufficient conditions for u = (330, 0.4).
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Figure 6: The concentrations of glycerol change with respect to fermentation time under substrate-
sufficient conditions for u = (330, 0.4).

Algorithm 4.2. We have the following steps:

Step 1. Generate N2 perturbation parameter vectors ks ∈ PS(k∗, δ), s = 1, 2, . . . ,N2

by random distributions domain.

Step 2. Compute the representative steady-state vectors corresponding to optimal
parameters and to perturbation parameters x(tk

∗
; k∗) and x(tk

s
; ks) according to

(4.1).
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Figure 7: The concentrations of 1,3-PD change with respect to fermentation time under substrate-sufficient
conditions for u = (330, 0.4).

Table 2: The robustness of the system (2.12) under substrate-limited and substrate-sufficient conditions.

Conditions Substrate-limited Substrate-sufficient
Values 3.97268 2.70685

Step 3. Evaluate the robustness by the mathematical measurement RM
P defined in

(4.5).

Step 4. Repeat Step 1, Step 2, and Step 3 for N3 times and compute the expectation
value of the generated sequence {RM

P }.

According to Algorithm 4.2, we have investigated the robustness of the system (2.12)
for the intracellular substances. Here, the number of perturbation parameters N2, precision
δ, the set Irob, and the repeating timesN3 take values 200, 0.05, {6, 7, 8}, and 100, respectively.
Computational results for the substrate-limited and substrate-sufficient cases are listed in
Table 2. Furthermore, the simulation curves for intracellular glycerol, 3-HPA and intracellular
1,3-PD under the substrate-limited and the substrate-sufficient conditions are illustrated in
Figures 8, 9, 10, 11, 12, and 13. From Table 2 and the numerical results, we can see that the
proposed model is of good robustness.

5. Conclusions

Glycerol bioconversion to 1,3-PD by K. pneumoniae in continuous cultures under anaerobic
conditions was investigated. Contrasting with the existing models, the paper proposed
a new mathematical model by considering 3-HPA inhibitory effects on cells growth and
on the activities of the enzymes GDHt and PDOR. Then, we discussed some properties
of the system. Furthermore, we presented a parameter identification model to determine
the kinetic parameters in the presented system. Since the identification model is subject
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Figure 8: Robustness simulations of intracellular glycerol concentration under substrate-limited conditions
for u = (295, 0.25).
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Figure 9: Robustness simulations of 3-HPA concentration under substrate-limited conditions for u =
(295, 0.25).
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Figure 10: Robustness simulations of intracellular 1,3-PD concentration under substrate-limited conditions
for u = (295, 0.25).
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Figure 11: Robustness simulations of intracellular glycerol concentration under substrate-sufficient
conditions for u = (330, 0.4).
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Figure 12: Robustness simulations of 3-HPA concentration under substrate-sufficient conditions for u =
(330, 0.4).
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Figure 13: Robustness simulations of intracellular 1,3-PD concentration under substrate-sufficient
conditions for u = (330, 0.4).
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to constraint of continuous state, we developed a computational approach to solve the
parameter identification model based on the penalty function technique and an extension
of the state space method. More importantly, a quantitative robustness analysis method was
given to infer whether the model is plausible. Numerical results showed that the proposed
system is of good robustness.
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