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We present a novel application of the successive linearisation method to the classical Van der Pol
and Duffing oscillator equations. By recasting the governing equations as nonlinear eigenvalue
problems we obtain accurate values of the frequency and amplitude. We demonstrate that the
proposed method can be used to obtain the limit cycle and bifurcation diagrams of the governing
equations. Comparison with exact and other results in the literature shows that the method
is accurate and effective in finding solutions of nonlinear equations with oscillatory solutions,
nonlinear eigenvalue problems, and other nonlinear problems with bifurcations.

1. Introduction

The Van der Pol equation is

ẍ + x + ε
(
x2 − 1

)
ẋ = 0, x(0) = α, ẋ(0) = 0, (1.1)

where x defines the displacement of the periodic solution, α is the amplitude of the oscilla-
tions, and ε > 0 is a classical problem in nonlinear dynamics that models systems with self-
sustained oscillations. The equation is often studied for its rich set of oscillatory and chaotic
solutions (Atay [1]) and as prototype for testing numerical schemes since one of its attributes
is that for large ε, the equation is stiff with solutions exhibiting oscillations on a large time
scale.

Finding solutions of the Van der Pol equation using the perturbation series expansion
method generally fails since the solutions havemultiple time scales. Nonetheless, solutions in
the form of a Taylor series and numerical solutions are well documented in the literature, for
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example, Buonomo [2] presented a procedure for finding the periodic solutions as a power
series in powers of ε. Recent attempts to solve the Van der Pol equation include using, among
other methods, the decomposition method, Asadi Cordshooli and Vahidi [3], the parameter
expansion methods (Darvishi and Kheybari [4] Kimiaeifar et al. [5]), and the homotopy
analysis method, Li et al. [6].

We also consider the so-called Duffing oscillator in space, which is given in dimen-
sionless form as

x′′ + ε
(
x − x3

)
= 0, x(0) = 0, x(π) = 0, (1.2)

where the prime denotes differentiation with respect to the variable t and ε ≥ 0 is a given
parameter. The bifurcation of this equation for some values of ε was examined using norm
forms in Kahn and Zarmi [7] and the homotopy analysis method by Liao [8].

In this paper, we present a novel application of the successive linearisation method
to initial value problems and boundary value problems with oscillatory behaviour. We
demonstrate the application of this technique by finding solutions of the classical Van der
Pol and the Duffing oscillator equations. We calculate the amplitude and frequency of the
limit cycle of the Van der Pol equation and compare our results with known exact solutions
and other results from literature. In the case of the Duffing oscillator we obtain the bifurcation
diagrams and compare with exact solutions.

2. SLM Solution of Van der Pol Equation

In this section we present the basic description of the successive linearisation method (SLM)
that is used to obtain solutions of the nonlinear initial value problem (IVP), (1.1) and the
boundary value problem (BVP), (1.2). However, before the governing equation (1.1) is solved
it is converted into a boundary value problem by using the definition of period functions.
In its basic form, the SLM [10, 11] seeks to linearize and reduce the governing nonlinear
equation to a system of linear differential equations.

Following [12, 13] we introduce the transformation z = ωt, where ω is the frequency
of the oscillations. In addition we set x(t) = αu(t) so that the boundary conditions are
independent of α. The frequency ω and amplitude α are considered to be unknown param-
eters which will be determined by the SLM. Under these transformations, (1.1) becomes

ω2u′′ + u − εωu′ + εωα2u′u2 = 0, u(0) = 1, u′(0) = 0, (2.1)

where the primes denote differentiation with respect to z. Since ω and α are considered to be
unknown parameters, additional boundary conditions are required to fully solve (2.1). The
extra boundary conditions are derived by noting that the Duffing-Van der Pol equation (1.1)
has translational invariance, that is, if u(z) is a solution, then so is u(z + φ) for an arbitrary
constant φ. The limit cycle is automatically periodic with a period 2π . We therefore introduce
the following conditions:

u(2π) = 1, u′(2π) = 0. (2.2)
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We now seek a solution of the form:

u(z) = us(z) +
s−1∑
m=0

um(z), ω = ωs +
s−1∑
m=0

ωm, α = αs +
s−1∑
m=0

αm, s = 1, 2, 3, . . . , (2.3)

where us, ωs, αs are obtained iteratively by solving the linearized equations that result
from substituting (2.3) in the governing equation (2.1) and using u0, ω0, and α0 as initial
approximations. Substituting (2.3) in (2.1) and linearizing (neglecting nonlinear terms in ωs,
αs,us, u′

s and u′′
s) yield

a1,s−1(z)u′′
s + a2,s−1(z)u′

s + a3,s−1(z)us + a4,s−1(z)ωs + a5,s−1(z)αs = Rs−1(z), (2.4)

subject to the boundary conditions

us(0) = 0, u′
s(0) = 0, us(2π) = 0, u′

s(2π) = 0, (2.5)

where

a1,s−1 =

(
s−1∑
m=0

ωm

)2

,

a2,s−1 = −ε
s−1∑
m=0

ωm + ε

(
s−1∑
m=0

ωm

)(
s−1∑
m=0

um

)2( s−1∑
m=0

αm

)2

,

a3,s−1 = 1 + 2ε

(
s−1∑
m=0

ωm

)(
s−1∑
m=0

αm

)2( s−1∑
m=0

u′
m

)(
s−1∑
m=0

um

)
,

a4,s−1 = 2
s−1∑
m=0

ωm

s−1∑
m=0

u′′
m − ε

s−1∑
m=0

u′
m + ε

(
s−1∑
m=0

αm

)2( s−1∑
m=0

um

)2( s−1∑
m=0

u′
m

)
,

a5,s−1 = 2ε

(
s−1∑
m=0

ωm

)(
s−1∑
m=0

αm

)(
s−1∑
m=0

u′
m

)(
s−1∑
m=0

um

)2

,

Rs−1 = −
(

s−1∑
m=0

ωm

)2 s−1∑
m=0

u′′
m + ε

(
s−1∑
m=0

ωm

)(
s−1∑
m=0

u′
m

)
−

s−1∑
m=0

um

− ε

(
s−1∑
m=0

ωm

)(
s−1∑
m=0

um

)2( s−1∑
m=0

u′
m

)(
s−1∑
m=0

αm

)2

.

(2.6)

The linearized system (2.4) was solved using the Chebyshev collocation spectral method.
We used the transformation z = (τ + 1)/2 to map [0, 2π] to [−1, 1]. The solution space is
discretized using the Chebyshev-Gauss-Lobatto collocation points

τj = cos
(
πj

N

)
, j = 0, 1, . . .N, (2.7)
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which are the extrema of the Nth order Chebyshev polynomial

TN(τ) = cos
(
Ncos−1τ

)
. (2.8)

We approximated the derivatives of the unknown variables us at the collocation points as the
matrix vector product:

dus

dz
=

N∑
k=0

Djkus(τk) = DUs, j = 0, 1, . . . ,N, (2.9)

where D = D/π , with D being the Chebyshev derivative matrix and U is the vector function
of us at the collocation points τj (see, for example, [14, 15]). The entries ofD can be computed
in different ways. In this work we use the method proposed by Trefethen [15] in the cheb.m
MATLAB m-file. If we denote the entries of the derivative matrixD by Djk, we can apply the
spectral collocation method, with derivative matrices on the linearized equation (2.4) and the
boundary conditions (2.5) to obtain the linear matrix system:

As−1Us + a4,s−1ωs + a5,s−1αs = Rs−1, (2.10)

where

As−1 = a1,s−1D2 + a2,s−1D + a3,s−1, (2.11)

and ar,s−1, (r = 1, 2, 3) are the diagonal matrices corresponding to ar,s−1(τj). The vectors ar,s−1,
(r = 4, 5) are of size (N + 1) × 1 and they correspond to ar,s−1(τj). The appropriate boundary
conditions are

us(τN) = 0, us(τ0) = 0,
N∑
k=0

D0kus(τk) = 0,
N∑
k=0

DNkus(τk) = 0. (2.12)

After imposing the conditions (2.12) on (2.10) we obtain the following matrix system:

⎡
⎢⎢⎢⎢⎢⎢⎣

As−1

a4,s−1(τ1)
...

a4,s−1(τN−1)

a5,s−1(τ1)
...

a5,s−1(τN−1)
D01 · · · D0N−1 0 0
DN1 · · · DNN−1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

us(τ1)
...

us(τN−1)

ωs

αs

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Rs−1(τ1)
...

Rs−1(τN−1)

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (2.13)

The boundary conditions us(τN) = 0 and us(τ0) = 0 appearing in (2.12) have been imposed
by deleting the first and last rows of As−1 and Rs−1. Two additional rows are also added
to accommodate the two derivative boundary conditions. Thus, starting from the initial
approximations u0(z), ω0, and α0, the subsequent solutions for us(z), ωs, αs (s = 1, 2, 3 . . .)
can be obtained by solving the matrix system (2.13).
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2.1. SLM Solution of the Duffing Equation

The exact solution of (1.2) is given (see [7, 8]) in terms of the relation between α and L as

L = 2
∫α

0

dt√
α2 − z2 − (α4 − z4

)
/2

, (2.14)

which gives the exact solution

ε1/2 =
2

π
√
1 − α2/2

K

(
α2

2 − α2

)
, (2.15)

where K(ζ) is the complete elliptic integral of the first kind.
To obtain an approximate solution of (1.2), it is convenient to introduce the following

transformations [8]:

α = v
(π
2

)
, v(t) = αu(t). (2.16)

Substituting in (1.2), we have

u′′ + ε
(
u − α2u3

)
= 0, u(0) = u(π) = 0. (2.17)

Since α is unknown in (2.17), we require an additional boundary condition to be able to solve
(2.17). The extra boundary condition can be obtained from (2.16) as

u
(π
2

)
= 1. (2.18)

Equations (2.17) and (2.18) form an eigenvalue problem with α being the unknown eigen-
value. We now look for solutions u(t) and α in the form

u(t) = us(t) +
s−1∑
m=0

um(t), α = αs +
s−1∑
m=0

αm, s = 1, 2, 3, . . . , (2.19)

where us and αs are unknown functions. Substituting (2.19) in (2.17) and neglecting nonlinear
terms give

u′′
s + b1,s−1us + b2,s−1αs = Ps−1, (2.20)

subject to the boundary conditions

us(0) = 0, us

(π
2

)
= 0, us(π) = 0, (2.21)
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where

b1,s−1 = ε − 3ε

(
s−1∑
m=0

um

)2( s−1∑
m=0

αm

)2

,

b2,s−1 = −2ε
(

s−1∑
m=0

αm

)(
s−1∑
m=0

um

)3

,

Ps−1 = −
s−1∑
m=0

u′′
m − ε

s−1∑
m=0

um + ε

(
s−1∑
m=0

um

)3( s−1∑
m=0

αm

)2

.

(2.22)

The linearized system (2.20) was solved using the Chebyshev collocation spectral method
described in the previous section. Using the spectral method and the transformation z =
π(τ + 1)/2 to map [0, π] to [−1, 1] gives

Bs−1Us + b2,s−1αs = Ps−1, (2.23)

with the boundary conditions

us(τN) = 0, us(τN/2+1) = 0, us(τ0) = 0, (2.24)

where

Bs−1 = D2 + b1,s−1, (2.25)

and br,s−1, (r = 1, 2) are the diagonal matrices corresponding to br,s−1(τj). After imposing the
conditions (2.24) on (2.23)we obtain the following matrix system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bs−1

b2,s−1(τ1)
...

b2,s−1(τN/2−2)
0

b2,s−1(τN/2)
...

b2,s−1(τN−1)
0 · · · 0 1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

us(τ1)
...

us(τN/2−2)
us(τN/2−1)
us(τN/2)

...
us(τN−1)

αs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ps−1(τ1)
...

Ps−1(τN/2−2)
0

Ps−1(τN/2)
...

Ps−1(τN−1)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.26)

Starting from suitable initial approximations, u0 and α0, (2.26) can be used to find approxi-
mate u and α.

3. Results and Discussion

In this section we present solutions of the Van der Pol equation (1.1) and Duffing oscillatory
equation (1.2) obtained using the SLM solution procedure outlined in the previous sections.
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Table 1: Comparison of the results of the frequency and amplitude by the proposed SLM approach with
the exact results and the homotopy analysis method results of Chen and Liu [9] when ε = 1.

Chen and Liu [9] SLM results
Order ω α Order ω α

10 0.94295340115 2.00861561331 2 0.93782084070 2.01344273793
20 0.94295586899 2.00861988872 4 0.94295585006 2.00861985316
50 0.94295584744 2.00861986087 6 0.94295584744 2.00861986087
100 0.94295584744 2.00861986087 8 0.94295584744 2.00861986087
Exact 0.94295584744 2.00861986087 Exact 0.94295584744 2.00861986087

Table 2: Comparison of the frequency by the SLM approach with Buonomo [2] and the HAM, Chen and
Liu [9].

(SLM)i ε

0.3 0.6 1.2 1.5 1.8
2 0.9944195093 0.9781496961 0.8970288929 0.7933396502 0.7274495579
4 0.9944198444 0.9782168788 0.9211217519 0.8871147446 0.7394634260
6 0.9944198444 0.9782168788 0.9211220869 0.8854079093 0.8498705704
8 0.9944198444 0.9782168788 0.9211220869 0.8854079098 0.8482341694
10 0.9944198444 0.9782168788 0.9211220869 0.8854079098 0.8482341695

Buonomo [2] 0.9944198444 0.9782168788 0.9211220869 0.8854079098 0.8482341695

(HAM [9])

10 0.9944198397 0.8855524710 0.8485246885
20 0.9944198444 0.8854094218 0.8482487089
50 0.9944198444 0.8854079098 0.8482341635
100 0.9944198444 0.8854079098 0.8482341695

The initial approximations were obtained using physical considerations and the given bound-
ary conditions. For (1.1), the initial approximation used is u0 = cos(z) while for the Duffing
equation (1.2) u0 = sin(t)was used. In both cases the initial values of all eigenvalues were set
to be 1. The number of collocations points used was N = 200 and N = 100 for the Van der
Pol and Duffing equations, respectively. To determine the accuracy and performance of our
method, the results were compared against previous results in literature and exact solutions
for selected parameter values. In particular, for the Van der Pol equation, the present results
were compared to the exact solution and the homotopy analysis method results reported
in [9] and against the power series solution results of [2] when ε is small. For the Duffing
equation we compared with the exact solution (2.15).

Table 1 shows a comparison of the amplitude and frequency of the Van der Pol
equation obtained using the successive linearisation method compared to the exact results
and recent solutions obtained using the homotopy analysis method (HAM). The parameter
ε = 1 has been kept fixed.We note firstly that only six iterations of the linearisationmethod are
sufficient to match the exact result to ten decimal places compared to at least fifty iterations
in the case of the homotopy analysis method, Chen and Liu [9]. This shows that the rate of
convergence of the present SLM approach is higher than that of the HAM.

Table 2 shows the effect of increasing the parameter ε on the accuracy and efficiency
of the successive linearisation method. The solutions are compared with the power series
solutions of Buonomo [2] and the homotopy analysis results of Chen and Liu [9]. For
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ẋ
(t
)

Figure 1: Limit cycle when ε = 0.5. Solid line: 6th order SLM solution. Circles: numerical solution.

Table 3: Comparison of the SLM results and the HAM and Homotopy-Padé [8] approximate results for α
at different orders p for α for ε = 10 and ε = 25.

HAM results [8] Homotopy-Padé [8] SLM results
p ε = 10 ε = 25 [p, p] ε = 10 ε = 10 p ε = 10 ε = 25
5 0.99833 1.01046 [2, 2] 0.99914 1.01167 1 1.01834916 1.00009888
10 0.99588 1.00313 [4, 4] 0.99651 1.00113 2 1.00142002 0.99994805
15 0.99624 1.00117 [6, 6] 0.99644 1.00012 3 0.99684045 0.99994004
20 0.99644 1.00049 [8, 8] 0.99644 0.99996 4 0.99643870 0.99993998
25 0.99644 1.00017 [10, 10] 0.99644 0.99994 5 0.99643534 0.99993998
30 0.99644 1.00000 [12, 12] 0.99644 0.99994 6 0.99643534 0.99993998

values of ε ≤ 0.6 only two iterations of the SLM are sufficient to give accuracy of up to 6
decimal places. However, as ε increases, more iterations are required to achieve the same
level of accuracy. We also note that the SLM requires fewer iterations to converge to the exact
solutions compared to the HAM.

Figure 1 shows the limit cycle generated using the SLM when ε = 0.5 compared with
numerical results generated using the MATLAB ode45 solver. It can be seen from the graph
that there is good agreement between the two results.

In Table 3 we give the SLM results of the unknown parameter α at different orders
when ε = 10 and ε = 15. The results are compared with the HAM and homotopy-Padé
results of [8]. The SLM converges much faster than both the HAM and the homotopy-Padé
technique. When ε = 10, convergence to 5 decimal places of accuracy is achieved after only 4
iterations in the SLM compared to 20 iterations and [6, 6] in the HAM and homotopy-Padé
techniques, respectively. We also note that convergence to 8 digits of accuracy is achieved
after only 5 iterations when ε = 10. When ε = 25, convergence to 5 decimal places is achieved
after only 3 iterations in the SLM compared to [10, 10] in the homotopy-Padé. The HAM
solution will not have converged to a 5-digit accurate solution after 30 iterations. This is an
advantage of SLMmethod over other nonperturbation techniques when solving BVPs of type
(1.2).
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Figure 2: Comparison of the exact solution (dots)with the 4th order SLM solution (line).

Figure 2 gives the bifurcation diagram in the (α, ε) plane and a further comparison
between the exact solution (2.15) and the fourth-order SLM result. It can be see from the
graph that there is good agreement between the two results. The two examples considered in
this paper show that the SLM is sufficiently robust to handle solutions of nonlinear problems
with oscillatory solutions. In Motsa and Sibanda [16], it has been shown that, with minor
modifications, the SLM can be easily extended to chaotic and hyperchaotic systems of initial
value problems.

4. Conclusion

We have presented a new application of the successive linearisation method to find solutions
of oscillatory systems. The application of the method has been demonstrated by solving the
Van der Pol and Duffing oscillatory equations. Using suitable transformations, the governing
equations were transformed to eigenvalue boundary value problems and solved iteratively
using the SLM. Comparison was made between exact analytical solutions of the governing
equations and against results in the literature. Our results show that the SLM rapidly
converges to the exact solutions and can be used as an efficient method for finding solutions
of boundary value problems, requiring only a few iterations to give accurate solutions. The
method can also be easily extended to other nonlinear oscillating systems and nonlinear
problems with bifurcations.
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