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Three different polygon morphing methods are examined. The first one is based on the utilization
of the trimmed skeleton of the symmetric difference of the source and target polygons as an
intermediate polygon. The second one reduces the problem to the problem of morphing com-
patible planar triangulations and utilizes the representation of planar triangulations as a matrix
constructed using barycentric coordinates of the planar triangulation’s vertices relative to their
neighbors. The third and last one describes the polygon by the parametric curve representation
based on estimated Fourier parameters and thus transfers the morphing process to Fourier
parametric space. The different features and comparative results of these methods are shown by
the tests with different examples. Thesemethods are used for generating a set of polygonal sections
from two nonplanar polygonal sections which are nearly planar in 3D before constructing a three-
dimensional object from these nonplanar sections.

1. Introduction

Morphing ormetamorphosis is usually defined as the gradual, smooth, and continuous trans-
formation of a source object into a target object [1, 2]. Morphing is used in a variety of
applications such as computer graphics, computer animation, industrial design, geometric
modelling, and medicine.

The morphing problem has been examined in many domains, such as two-dimen-
sional images [3–5], polygons and polylines [1, 6–12], free-form curves [13], polyhedra and
volumetric representations [6, 14, 15]. The morphing process for polygons and polyhedras
consists of solving two main problems. The first one, known as the vertex correspondence
problem, is to generate a correspondence between geometric elements of the source and
target objects. The second one, known as the vertex path problem, is to find paths that
corresponding geometric elements travel during the morphing process. In this work, three
different morphing methods for polygons with some correspondence between their vertices
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are compared, and a morphing method for nonplanar polygonal sections in 3D without
correspondence between their vertices is generated.

Several approaches have been described on the polygon morphing problem. Shapira
and Rappoport [11] presented a polygonmorphing technique that takes into account both the
interiors and the boundaries of the polygons. This is achieved by representing the interiors
of the polygons with compatible skeletons which are called star skeletons and applying the
morphing to the parametric description of these skeletons. The generation of corresponding
skeletons of two polygons is used, and though theoretically possible for all shapes, it seems
natural for similar shapes, but uncertain for rather different shapes. Alexa et al. [1]morphed
the interiors of the polygons rather than their boundaries to achieve locally least distorting
intermediate polygons. They compatibly triangulated the source and target polygons and
developed the vertex paths during the morph in an attempt to maintain compatibility and
preserve shape. Firstly they apply an algorithm to divide the source and target polygons into
separate isomorphic triangles. Then, they develop a method for interpolating the locations
of corresponding boundary and interior vertices along their paths from the source to the
target polygons. Blanding et al. [6] described the skeleton-based polygon morphing and then
generalized the same procedure directly to three dimensions. They used the trimmed skeleton
of the symmetric difference of the source and target polygons as intermediate polygons.
Gotsman and Surazhsky [9] described polygon morphing using compatible triangulation
to reduce the polygon morphing problem to the problem of morphing compatible planar
triangulations and utilized the representation of planar triangulations as a matrix constructed
using barycentric coordinates of the planar triangulation’s vertices relative to their neighbors.
Chen and Sun [7] described polygon morphing using Fourier parametrization to define the
polygon by the parametric curve representation based on estimated Fourier parameters and
thus transfer the morphing process to Fourier parametric space. In this work, the last three
polygon morphing methods mentioned above are examined, and the last one is used for
morphing nonplanar sections which are nearly planar in 3D.

2. Polygon Morphing

Given a source polygon P0 and a target polygon P1 with a correspondence between their
vertices, the morphing procedure can be defined by the continuous function P : t → Pt,
0 ≤ t ≤ 1, where P(0) = P0 and P(1) = P1 are the source and target polygons, and for
all 0 < t < 1, P(t) = Pt are intermediate polygons. Additionally, the intermediate polygon
P(t) = Pt is similar to P(0) = P0 as t → 0 and similar to P(1) = P1 as t → 1.

2.1. Skeleton-Based Polygon Morphing

Skeleton-based polygonmorphingmethod [6] is based on utilization of the trimmed skeleton
of the symmetric difference of the source and target polygons as intermediate polygons.

Each boundary point of the intermediate polygon generated by the morphing process
can be defined as points equidistant from the nearest points of the source and target polygons.
Similarly, skeletons consist of points minimally equidistant from two boundary points of a
given shape. Therefore the skeleton of a shape that incorporates the boundaries of both the
source and target polygons can be used for constructing middle polygon generated on the
morphing process.
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Figure 1: The main steps of skeleton-based polygon morphing. Two rectangles P0 and P1 are combined by
taking their symmetric difference (a) and the resulting shape is skeletonized (b) and trimmed (c) to obtain
the intermediate polygon P1/2.

In this method, firstly the intermediate polygon P(1/2) = P1/2 is computed by using
the source polygon P(0) = P0 and the target polygon P(1) = P1 as shown in Figure 1. To
achieve this, first the skeleton of the symmetric difference of a combination of the source and
target polygons is computed. Then, the intermediate polygonP(1/2) = P1/2 is generated from
the skeleton by applying a trimming operation to the skeleton. Similiary, the intermediate
polygon P(1/4) = P1/4 is generated by using the polygons P(0) = P0 and P(1/2) = P1/2, and
the intermediate polygon P(3/4) = P3/4 is generated by using the polygons P(1/2) = P1/2

and P(1) = P1. The same process is applied recursively until a desired sequence of interme-
diate polygons is produced.

2.2. Polygon Morphing Using Compatible Triangulation

Polygon morphing method using compatible triangulation [9] reduces the problem to the
problem of morphing compatible planar triangulations.

The first task in polygon morphing using compatible triangulation is to compatibly
triangulate the interiors of the given source polygon P0 and the target polygon P1 with the
matching vertices. Then the polygons P0 and P1 are enclosed by identical convex polygons
Q0 and Q1, and subsequently the annuli between Q0 and P0 and between Q1 and P1

are compatibly triangulated as shown in Figure 2. These two compatible triangulations
with common convex boundary are represented by matrices constructed using barycentric
coordinates of the these triangulation’s vertices relative to their neighbors. The next step is to
generate the convex combination morph between these two compatible triangulations with
common convex boundary to produce desired intermediate compatible triangulation with
common convex boundary. Finally, all edges of these intermediate triangulations which do
not belong to polygons P0 and P1 are discarded to obtain the desired intermediate polygon.
Given polygons P0 and P1 with matching vertices, an overview of all the steps of the method
of polygon morphing using compatible triangulation is shown in Table 1.

2.3. Polygon Morphing Using Fourier Parametrization

Polygon morphing method using Fourier parametrization [7] describes the polygon by the
parametric curve representation based on estimated Fourier parameters and thus transfers
the morphing process to Fourier parametric space.

In this method, firstly the polygon coordinates are transformed to local coordinates,
and then polygons are divided into matching segments using the correspondence between
their vertices. The Fourier parametrization for each matching segment is computed, and the
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Figure 2: Compatible triangulations of the interiors of P0 and the annuli between Q0 and P0 (a) and
compatible triangulations of the interiors of P1 and the annuli between Q1 and P1 (b).

Table 1: The main steps of the method of morphing polygons P0 and P1 using compatible triangulation.

(1) Compatibly triangulate the interiors of P0 and P1 with the matching vertices.
(2) Enclose P0 and P1 by identical convex polygons Q0 and Q1, respectively.
(3) Compatibly triangulate the annuli between Q0 and P0 and between Q1 and P1, respectively.
(4) Morph the two compatible triangulations using the method of morphing compatible triangulation.
(5) Discard all edges of the two triangulations not belonging to P0 and P1.

Fourier parameters are linearly interpolated to generate intermediate Fourier parametriza-
tions. Lastly, the intermediate polygons are constructed using the interpolated Fourier param-
eters. Given polygons P0 and P1 with matching vertices, an overview of all the steps of the
method of polygon morphing using Fourier parametrization is shown in Table 2.

2.4. Results and Discussion

The morphing problem can be solved by using a lot of different methods, but some con-
straints or desirable properties can be given for morphing procedure. Firstly, if the target
polygon is a translation or rotation of the source polygon, then the intermediate polygons
should also be an appropriate translation or rotation of the source polygon. Secondly, the
area of the polygon generated by morphing should change smoothly as the source polygon
turns into the target polygon. As Figure 3 shows, among the examined three methods,
polygon morphing method using Fourier parametrization is the only one which guarantees
these properties. Thirdly, if the source and target polygons are closed and simple, then the
intermediate polygons should also be closed and simple. Figure 3 shows that all of the
examined methods achieve this property. The comparative results of these methods are
shown in the following experiments. The results of all methods seem natural for similar
shapes, but the results of skeleton-based polygon morphing method seem ambiguous for
rather different shapes.

As a distinction from the other two methods, skeleton-based polygon morphing
method is capable of morphing between two polygons with different topologies, as shown in
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Table 2: The main steps of the method of morphing polygons P0 and P1 using Fourier parametrization.

(1) Transform the coordinates of P0 and P1 with matching vertices to local coordinates.
(2) Approximate the matching segments with the Fourier parameters.
(3) Interpolate the local origins.
(4) Interpolate the Fourier parameters.
(5) Reconstruct the interpolated intermediate polygons.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Several comparative examples of skeleton-based polygonmorphingmethod (a), (d), (g), polygon
morphing method using compatible triangulation (b), (e), (h), and polygon morphing method using
Fourier parametrization (c), (f), (i).

Figure 4, where the source polygon consists of multiple parts and the target polygon consists
of a single part. This method can also be generalized directly to three dimensions. While
relative position, orientation, and combination of the source and target polygons can change
the results of skeleton-based polygon morphing, the matching vertices between the source
and target polygons can have a dramatic effect on the results of polygon morphing method
using compatible triangulation and using Fourier parametrization.

3. Morphing of Nonplanar Sections

In mining, for 3D orebody modelling, three-dimensional objects are generated from nonpla-
nar sections by building 3D triangulated or tetrahedral models. In the case where nonplanar
sections are away from each other, three-dimensional models cannot be smooth as shown in
Figure 5. To build higher quality 3D models, these nonplanar sections should be morphed to
generate intermediate sections. Polygon morphing method using Fourier parametrization is
utilized for morphing two nonplanar sections which are nearly planar.

To morph nonplanar sections which are nearly planar, firstly the source and target
nonplanar sections are triangulated separately. The nonplanar section is specified in 3D, even
though the triangulation is 2D. Thus, the nonplanar section is transformed in a plane, the
transformed section is triangulated, and the topology of this triangulation is used for the
original nontransformed section. To find a plane for triangulation, the most appropriate face
of the oriented bounding box of the the nonplanar section can be used. These steps of the
triangulation of the nonplanar section are shown in Figure 6.
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Figure 4: Skeleton-based morphing of two polygons with different topologies.
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Figure 5: Nonplanar sections (a) and their three-dimensional models (b) which are used in 3D orebody
modelling.

Let the triangulations of the source and target nonplanar sections consist of the s and t
triangles, respectively, and let the normal vectors of the triangles of the source triangulations
be n0

0, n
1
0, . . . , n

s
0, and let the normal vectors of the triangles of the target triangulations be

n0
1, n

1
1, . . . , n

t
1. Then, the source nonplanar section is transformed in the face D0 of the source-

oriented bounding box which has the minimum angle with the line with the normal vector
n0 = (n0

0 + n1
0 + · · · + ns

0)/s, and similarly the target nonplanar section is transformed in the
face D1 of the target-oriented bounding box which has the minimum angle with the line
with the normal vector n1 = (n0

1 + n1
1 + · · · + nt

1)/t. Thus, these transformed planar sections
can be specified in 2D. Then, each transformed section in 2D is separately parametrized
proportionally to arclength as g : [0, 1] → R

2, t �→ g(t) = (x(t), y(t)), and the Fourier para-
metrization for each curve is separately computed as

[
x(t)

y(t)

]
=

[
a0

c0

]
+

∞∑
n=1

([
an bn

cn dn

][
cos(2πnt)

sin(2πnt)

])
, (3.1)

where Fourier parameters are

a0 =
∫1

0
x(t)dt, an = 2

∫1

0
x(t) cos(2πnt)dt, bn = 2

∫1

0
x(t) sin(2πnt)dt,

c0 =
∫1

0
y(t)dt, cn = 2

∫1

0
y(t) cos(2πnt)dt, dn = 2

∫1

0
y(t) sin(2πnt)dt

(3.2)

for any n ∈ N − {0}, and upper left vertex of each transformed section in 2D is chosen as
initial vertex. The Fourier parameters are linearly interpolated to generate the intermediate
Fourier parametrizations, and the intermediate transformed sections in 2D are constructed
using the interpolated Fourier parameters. Let S be the number of intermediate nonplanar
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Figure 6: The main steps of the triangulation of the nonplanar section. The nonplanar section (a) is trans-
formed (c) into an appropriate face of the oriented bounding box (b), and the topology of the triangulation
of the planar projection section (d) is used to triangulate the original nontransformed section (e).

Table 3: The main steps of our method of morphing nonplanar sections.

(1) Triangulate the source and target nonplanar sections separately.
(2) Transform the source and target nonplanar sections in 2D using the triangulations.
(3) Establish initial vertex for each transformed section in 2D.
(4) Approximate each transformed section in 2D with Fourier parameters.
(5) Interpolate the normals and centers of planes which have the transformed source and target sections
in 2D.
(6) Interpolate Fourier parameters.
(7) Reconstruct the interpolated intermediate polygons.

sections, then the tth intermediate transformed sections in 2D are transformed into the plane
with normal

nt =
S − s + 1
S + 1

· n0 +
s

S + 1
· n1 (3.3)

and center

mt =
S − s + 1
S + 1

·m0 +
s

S + 1
·m1, (3.4)

where m0 and m1 are the center of the planes D0 and D1, respectively. Thus the intermediate
sections are obtained. An overview of all these steps to morph nonplanar sections is shown
in Table 3.

Figure 7 shows a set of intermediate sections generated from two nonplanar polygonal
sections in 3d, and Figure 8 shows a three-dimensional object of the source, target and
intermediate sections. the transformations of nonplanar sections can have an important effect
on the results of morphing nonplanar section, namely this method relies on having data
organized in nearly planar sections.

4. Conclusion

We have presented the different features and comparative results of three different morphing
methods which are skeleton-based polygon morphing, polygon morphing using compatible
triangulation, and polygon morphing using Fourier parametrization. According to results,
we developed a generalization of the intermediate sections from two nonplanar polygonal
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(a) (b)

Figure 7: Two different results of our method of morphing nonplanar sections.

Figure 8: Three-dimensional objects of the source, target, and intermediate sections.

sections in 3D which are nearly planar, before constructing a three-dimensional object from
these nonplanar polygonal sections to build higher quality 3D models. To achieve this,
firstly we needed to solve the vertex path problem. In the skeleton-based polygon morphing
method, the source and target objects are combined into a single object as desired instead
of generating a correspondence between the geometric elements of the source and target
objects. This process is important and has a major effect on the morph history generated.
But in mining, there are nonplanar sections with many different initial relative positions
and orientations in 3D. Therefore transformed combination of two nonplanar sections in
2D can be constructed, and polygon morphing method using Fourier parametrization is
utilized for morphing these two 2D sections, and so intermediate sections are obtained in 2D.
Then these intermediate sections are transformed to appropriate location between the source
and target nonplanar polygonal sections. In this manner, intermediate polygonal sections in
3D are generated on the morphing process of the source and target nonplanar polygonal
sections in 3D. Our method relies on having data organized in nearly planar sections, since
transformation of folded sections in 2D cannot be simple, and the method is based on the
transformations of nonplanar sections.
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