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The MAPK/ERK pathway is a major signal transduction system which regulates many
fundamental cellular processes including the growth control and the cell death. As a result of these
roles, it has a crucial importance in cancer as well as normal developmental processes. Therefore, it
has been intensively studied resulting in a wealth of knowledge about its activation. It is also well
documented that the activation kinetics of the pathway is crucial to determine the nature of the
biological response. However, while individual biochemical steps are well characterized, it is still
difficult to predict or even understand how the activation kinetics works. The aim of this paper
is to estimate the stochastic rate constants of the MAPK/ERK network dynamics. Accordingly,
taking a Bayesian approach, we combined underlying qualitative biological knowledge in several
competing dynamic models via sets of quasireactions and estimated the stochastic rate constants
of these reactions. Comparing the resulting estimates via the BIC and DIC criteria, we chose
a biological model which includes EGFR degradation—Raf-MEK-ERK cascade without the
involvement of RKIPs.

1. Introduction

All cellular responses are regulated by various signal transduction pathways. The signal
transduction starts by an external stimulus, usually a ligand binding to a receptor at the
cell surface. They generate intracellular signals that are transmitted and integrated through
biochemical reactions. These biochemical reactions often include changes in gene expressions
and particular biological responses, which can include the cell reproduction, the motility, and
others. On the other hand, any malfunction in these mechanisms has a direct influence on
the expression or on the function of gene products which are components of these regulatory
mechanisms, hereby resulting in alterations of the biological responses and many illnesses
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such as heart disease, diabetes, and cancer [1]. Hence, knowledge about these pathways is
very helpful for understanding the behaviour of biological activities and identifying drug
targets which can be seen as the major aim of most of the biochemical and bioengineering
studies.

The MAPK (mitogen-activated protein kinase) also known as ERK (extracellular
signal-regulated kinase) pathway is one of the major signal transduction systems which are
involved in the cellular growth control of all eukaryotes from the cell reproduction to death.
The basic structure of the MAPK/ERK pathway includes a number of phosphorylations
on the protein level. These phosphorylations are directed by core components which are
Ras, Raf, MEK, and ERK proteins and regulatory components, such as ERK, RKIP, and
RSK proteins. The phosphorylations by core components transduce the signal from the
cell membrane to nucleus and the phosphorylations via regulatory components modulate
the efficiency and the duration of the signal transduction through the pathway. The
effects of these components are conducted by positive and negative feedback loops.
The functionality of the MAPK pathway gives rise to nonlinear behaviour, such as
ultrasensitivities, bistabilities, and periodic behaviour. Moreover, there is an influence of
the effect of scaffolding proteins and subcellular compartmentalisation which makes the
functionality of the system even more complex [2]. Because of these underlying features,
besides the execution of the large number of interactions at the protein level, the outcomes
of the signal transfer are stochastic in nature. Thus, the interaction maps of the proteins
or the simple representation of the system like given in Figure 4 at Appendix are not
enough tomake predictive statements about this network structure, although they do provide
us with a starting point for modelling the structure of the network. Hereby in order to
better understand the inside of such a stochastic system, we need to find a mathematical
model which can describe its behaviour and to estimate its model parameters. There are
different mathematical models which enable us to represent the complex biological systems
by linear and nonlinear ways [3–6] and to infer the model parameters stochastically [7].
Among modelling approaches, the nonlinear ones, which can be listed as the Langevin
[8], diffusion approximation [9, 10], and inhomogeneous poisson process [10], can capture
the actual randomness in the system by using the chemical master equation [11]. In these
approaches, the first two models explain the system by the same expression in the sense
that the former converts a deterministic model to stochastic one by adding a noise term
in the equation [8]. Then it solves this extended model, that is, noise-added deterministic
model, by Itô or Stratonovich integrals [11, 12]. On the other hand, the latter converts a
stochastic expression to the differential equations via the Fokker-Planck equation [11]. The
final approach, which is the inhomogeneous poisson process model, is based on the Gillespie
technique which can exactly simulate the biological network stochastically [13]. However,
since it is computationally demanding in inference of the model parameters, currently it is
implemented for toy systems [10]. Therefore in this study we consider to implement the
nonlinear diffusion approximation to model a realistically large MAPK/ERK pathway as
it enables us to estimate the parameters via convex optimization techniques. In particular,
we perform the Markov chain Monte Carlo methods for the inference of the NP hard
problem.

Indeed for the purpose of estimation, there are several alternative methods. One of
them is the application of the parallel computing [14]. In a Bayesian setting the parallelization
technique can be effective in simple situations when the model parameters are conditionally
independent on one another. Whereas it is not useful when the blocks of dependent variables
are large [10, 14], like in our biochemical system. Another recent alternative is the method
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discussed in [6]. They propose two approaches. The first approach is to use the reversible
jump methods along with Metropolis-Hastings acceptance schemes and the second is to
implement the block updating methods based on the use of Poisson process approximations
and random walk schemes. From their analysis in the Lotka-Volterra model [10], they
show that both methods are promising in efficiency; however, further extensions for the
implementations in complex networks are needed. For the inference of the complex network
dynamics, [15] suggests the application of the deterministic Michaelis-Menten model whose
measurements possess independent log-normally distributed location and scale parameters.
The estimates of model parameters are computed by the discretized maximum likelihood
method via a piecewise constant step function in the small time interval. On the other hand,
[16] uses a regression model whose regression coefficients are different for all genes for the
given transcription factor activities (TFAs). The inference of the parameters is conducted by
optimizing the likelihood of observations via scaled conjugate gradient algorithm. In this
estimation as the number of model parameters becomes very large due to the assumption of
different TFAs for each gene, a dimension reduction technique is implemented by putting a
Gaussian prior on the transcription factors as the constraints in the marginalization of the
likelihood function. Apart from these techniques there are some other approaches which
are based mainly on the ordinary differential equations (ODEs) and hybrid methods which
solve the nonlinear structure of the equilibrium state in ODE by adding noise terms [8, 17].
For instance, [18] implements ODE methods in conjunction with a Bayesian setting for
the inference of a simple MAPK system. Reference [19] estimates the model parameters
of the JAK2-STAT5 pathway by ODEs whose model is represented by power-law terms,
resulting in noninteger kinetic orders. In that study these kinetic orders, which are the model
parameters in this case, are solved via the genetic algorithm. The aim of this paper is to
check the global structure of the MAPK/ERK system on western blot time-course data of
a subset of proteins [20] by stochastic approach. As stated beforehand, we consider a diffusion
approximation techniquewhich enables to deal with the realistic complexity while maintaining
the computational efficiency. In fact, the diffusion method uses continuous time and requires
infinite information to describe a finite sample path, when the measurements are discrete
and are only partially observed. Thus, we implement a discretized version of the diffusion
approximation called the Euler-Maruyama approximation. This discretizes time, but keeps the
continuous structure of measurements. The details of this method are described in [21].
But in this paper, different from the study in [21], we consider that the randomness in the
model is also caused by the measurement error in the western-blotting dataset. Therefore
as described in Section 3, we construct a more realistic model for the inference and change
the updating stages of MCMC computation accordingly. Moreover in the calculation we
use very limited observations for both the time points and species which enables us to
check both the applicability of our proposal mathematical model and inference algorithm.
Furthermore, in this study we suggest biologically plausible descriptions for the pathway
and select the best-fitted model for our dataset by model-selection criteria and in the end
we evaluate whether the selected model can really validate the biological findings about
the system. Hereby in Section 2 we describe alternative models for the pathway structure.
Section 3 outlines the formulation of the Euler-Maruyama approximation by means of the
hierarchical model and gives details about the MCMC updates of the system. In Section 4.1
we describe the available western blot dataset and in Section 4.2 we present the results and
compare the models via several information criteria. Finally, in Section 5, we conclude the
outputs.
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2. System and Methods

Due to its importance, the MAPK pathway has been studied intensively. Hence there are a
number of sources that provide knowledge about this system. Most of this information is
qualitative, and only a small part of it has been captured in an explicit set of reactions. Here
we combine this qualitative information to present the steps of the activation of the pathway
as a list of quasi reactions. A novelty of our approach is the usage of multiple state variables
to deal with molecules for which different localizations in the cell are an intricate part of
the dynamic process and to handle proteins that have different binding sites and various
phosphorylation states. For expressing the translocation of proteins to the membrane, we use
the notation m. On the other hand, the different levels of the phosphorylation are denoted
by distinct abbreviations in the sense that p or p1 show the monophosphorylation, whereas
p2 indicates the double-phosphorylation of a protein. For instance, in the following set of
equations:

(a) Raf + PP2A c1−−→ Raf.I + PP2A;

(b) Raf.I + Ras.GTP c2−−→ Raf.Im + Ras.GTP;

(c) MEK.p2 + ERK
c3−−→ MEK.p2 + ERK.p1;

(d) MEK.p2 + ERK.p1 c4−−→ MEK.p2 + ERK.p2;

we describe the interaction between PP2A and inactive Raf proteins by Reaction (a).
This expression implies that the PP2A protein takes away the inhibitory phosphorylate
of the inactive Raf (Raf) which enables Raf to activate. The underlying inactive and
monophosphorylated Raf (Raf.I) is translocated by the recruitment of the active Ras
(Ras.GTP) from the cytosol to the cell membrane (Raf.Im) as denoted by Reaction (b). The
activation of the ERK protein is shown by Reactions (c) and (d). Here the inactive ERK
protein is double-phosphorylated via the active MEK (MEK.p2) with two steps, where
ERK.p1 and ERK.p2 illustrate the mono- and double-phosphorylation of ERK proteins in
the corresponding reactions. Using this representation we describe the pathway via 51
species involving 34 major proteins. Similarly, we use 94 reactions where 65 of them reflect
changes in activities and translocations of species and the rest shows their degradations after
dissociation. In biochemical reactions the probability per unit time of each event is stated by
a stochastic rate constant. Here those constants are denoted as ci’s (i = 1, . . . , 94) which are
the parameters to be estimated.

For inferring ci, we implementMCMC algorithmswithin a Bayesian framework. These
algorithms enable us to deal with the challenges of genomic measurements, that is, missing
data and a limited knowledge of the complete network structure. Moreover, they are able to
include the uncertainty coming from various sources of variations [18].

We define various alternative models for the MAPK system by either combining
several reactions in a single equation, hereby simplifying the system via reducing the number
of total reactions, or by separating the pathway into small parts in such a way that the
resulting modules will still be able to explain the biological relationships in the experiments.
We suggest 5 models by using the listed totals below. But when generating these totals, we
accept several assumptions by considering that the data are gathered by western blot: (i) the
weight of protein complexes is heavier than the weight of single proteins, whereas (ii) single
proteins have the same weight regardless whether they are mono/double-phosphorylated:



Mathematical Problems in Engineering 5

Model 1

Model 2 Model 3

Model 4

Model 5

Figure 1: Simple representation of the relationship between nested structure of the five suggested
MAPK/ERK pathway models.

(a) Total Ras = Ras.GDP + Ras.GTP,

(b) Total Raf = Raf + Raf.I + Raf.Im + Raf.Am,

(c) Total MEK = MEK +MEKS +MEKF +MEK.p2,

(d) Total ERK = ERK + ERK.p2 for Models 1 and 2,

(e) Total ERK = ERK + ERK.p1 + ERK.p2 for Models 3, 4, and 5,

where Ras.GDP and Ras.GTP represent inactive and active Ras substrates, respectively.
MEKS and MEKF denote MEK proteins phosphorylated by PAK and ERK proteins, in the
given order. Raf.I and Raf.Im designate the inactive Raf in the cytosol and near the cell
membrane, respectively, and finally Raf.Am indicates the active Raf near the cell membrane.
Due to the available measured totals we face a convolution problem, for example, with
respect to Raf, Raf.I, Raf.Im, MEK, MEKS, and MEKF proteins in all models. Models 3, 4,
and 5 also have this problem with ERK and ERK.p1 proteins. To use the information from
those totals, we need additional constraints in inference. We assume that for observed time
points the number of molecules of MEK proteins should be equal to MEK = Total MEK −
(MEKS + MEKF + MEK.p2), where MEKS and MEKF are both positive. Also for most Raf
measurements we observe negative values after the substraction. Therefore, we completely
omit the information on the Total Raf from all models. All suggested models are listed as
below and their relationships are simply drawn in Figure 1. On the other hand, the complete
list of reactions for each model with the description of their associated proteins can be found
in Appendices B–G.

Model 1. According to the current biological theory of theMAPKpathway [20], it is suggested
that RKIP and ERK proteins are the two main components which regulate the inhibitory
control of the system. We assume that this control can be directed without RKIP since the
complete activity, including the inhibitory control, of the pathway is still possible without
RKIP terms as long as ERK and its associated complexes exist in the system. This assumption
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enables the reduction in the number of substrates from 51 to 41 without altering the main
activation of the system.

Moreover, seeing that in biochemical reactions, the protein degradations are much
slower than the time periods during which biochemical activation and deactivation processes
take place, we consider that protein degradations are insignificant and can be canceled from
the reaction list. We also assume that some reactions can be combined into a single reaction if
they are executed almost simultaneously or if they introduce another variable which would
have no other function than to react with proteins in the given reaction. For instance, the
equations MEK.p2+ERK → MEK.p2+ERK.p1 and MEK.p2+ERK.p1 → MEK.p2+ERK.p2
are summarized as MEK.p2 + ERK → MEK.p2 + ERK.p2 resulting in the cancelation of
ERK.p1 proteins. By applying this simplification, we describe the system via 39 rather than
47 reactions, and 38 rather than 41 substrates in which 20 of them are linearly independent.
In our estimation, we particularly eliminate merely nonobserved substrates because of their
linear dependencies on other species (see Section 3), thereby all time-course observations
are used in calculations. So the estimation is conducted by 6 observed (Ras.GDP, Ras.GTP,
Raf.Am, MEK.p2, ERK, and ERK.p2) and 14 unobserved substrates.

Model 2. It is the extension of Model 1 by including the degradation of the EGF receptor
(EGFR). The EGFR degradation is the direct result of the MAPK activation by the
internalization into vesicles of this receptor, thereby can be important for the steady-state
description of the system. Thus, the inference is based on 40 reactions and 38 substrates in
which 21 of them are linearly independent and the same 6 substrates are used as observed.

Model 3. Model 1 is extended by describing all reactions rather than summarizing reaction
groups into a single equation. Apart from those changes, the model still excludes all
degradations and all reactions which have RKIP proteins or their complexes. In Model 3
the pathway is represented by 47 reactions and 41 substrates where 26 of them are linearly
independent and 5 (Ras.GDP, Ras.GTP, Raf.Am, MEK.p2, and ERK.p2) among 26 substrates
have observed measurements. All observed substrates are included in computations and the
elimination of substrates due to linear dependence is conducted among the nonobserved
ones. But different from previous models, the explicit measurements of ERK proteins are lost
because of the convolution between ERK and ERK.p1 proteins.

Model 4. It is an extension of Model 3 in the sense that the EGFR degradation is included into
the system because of the effect of the EGFR internalization as taken in Model 2. This results
in 48 reactions and 41 substrates. In the calculation we use 27 linearly independent substrates
where the common 5 substrates have real time-course measurements.

Model 5. This is the largest model such that the pathway includes all types of RKIP proteins,
accordingly its inhibitory control is regulated via both ERK and RKIP species. Moreover it
is assumed that the EGFR degradation is essential for the best MAPK description and the
system does not use any kind of summary reactions. Hence, the inference is conducted by
66 reactions and 51 substrates. But due to the elimination of linearly dependent ones, the
computation is done via 29 unobserved and 5 common observed proteins.

3. Algorithm

Under the assumption that the probability distribution of the number of molecules Y in each
species at time t, P(Y, t), is continuous, the stochastic model can be converted to a differential
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equation model. Indeed, P(Y, t) can be further expanded via a Taylor series expansion and
the change in states of each species at t is found by a Fokker-Planck approach, in which
a correlated noise term describes the stochastic behaviour of the model over and above
a deterministic drift term [11]. Under this condition a nonlinear Fokker-Planck equation,
which is converted from the continuous approximation of the chemical master equation, can
be written in terms of infinitesimal mean and second-moment rates of the jump in states.
By applying the Itô diffusion to the underlying Fokker-Planck equation, we get a diffusion
formulation of the system. In a diffusion process, a finitely observed sample path is strictly
speaking intractable. But under the assumption of discrete jumps at a large set of discrete
time points, we can employ the Euler-Maruyama approximation of the diffusion process
[10, 22, 23], which is one of the common techniques in stochastic modelling where the optimal
values of the model parameters are found from the convergence distribution of the MCMC
runs. Hereby the underlying model is described as follows:

ΔYt = μ(Yt,Θ)Δt + β1/2(Yt,Θ)ΔWt, (3.1)

in which μ(Y,Θ) = V ′h(Y,Θ) and β(Y,Θ) = V ′ diag{h(Y,Θ)}V are mean, or drift, and variance,
or diffusion, matrices, respectively, both depending on the state Y = (Y1, . . . , Yn) at time t and
the parameter vectorΘ = (c1, . . . , cr)

′ explicitly. n is the total number of substrates and r states
the total number of reactions in the system.ΔWt is an n-dimensional independent identically
distributed Brownian random vector over time Δt. V is the net effect matrix which is the
difference between the stoichiometric coefficients of products and reactants of each reaction.
Finally, h(Y,Θ) indicates the hazard, also called the rate law, of the reaction [10]. In these
expressions, the notation (′) denotes the transpose of the underlying matrix or vector.

In the estimation of the reaction rates of the MAPK system, we consider that the state
matrix Y is composed of both observed species X and unobserved or missing species Z at
given time point t, hereby Yt ≡ (Xt, Zt)

′ where each Y at t consists of totally n species as
previously stated. To sample the missing states given the parameters and the parameters
given all states, we use Metropolis-within-Gibbs steps. This algorithm is suitable for the cases
in which the Gibbs and Metropolis-Hasting algorithms can be used in a cycle [24]. In the
MCMC, furthermore, we apply data augmentation for the nonobserved states in the Euler
process by putting latent states within each pair of time point. In this way, the strong bias in
estimators caused by the large time steps in the Euler approximation is decreased in exchange
for some additional computational complexity. Herebywe augment the state matrix Y , whose
observations are not evenly spaced in time, in such a way as to make the resulting full state
equally spaced in time. We consider two different regimes with more and less dense states.
Accordingly, we add states in every 5 minutes and 10 minutes between each pair of totally 8
observed time points (Table 1) resulting in 37 and 77 time points, respectively, in observation
matrices of all suggested models.

Finally, in our model we assume that each observation at time t possesses a
measurement error, thereby, the model uncertainty originates from not only the stochasticity
of the protein interactions, but also the variabilities from the measurement error. The
application of this assumption in financial volatility models can be found in [25]. On the
other hand, [5] use this assumption for the inference of a simple model of prokaryotic
autoregulation. Here this assumption is inserted in our complex MAPK model by defining
every observation at t under measurement error,Wt, viaWt = Xt + σm, where σm denotes the
measurement error coming from normal distribution with mean 0 and variance, also called
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Table 1: Western blotting time-course dataset for the MAPK/ERK pathway [20].

Time (min) Ras.GTP Total Ras Raf.Am Total Raf
0 10 175 84 231
20 67 189 307 239
40 108 278 282 243
60 60 328 441 249
120 202 252 227 221
180 157 374 321 311
240 148 348 244 266
360 156 295 289 321
Time (min) MEK.p2 Total MEK ERK.p2 Total ERK
0 19 217 28 694
20 186 202 133 682
40 205 210 191 682
60 152 268 151 582
120 157 250 82 673
180 137 238 167 710
240 141 289 83 572
360 126 240 115 460

the tuning parameter, ϕ2 for all time and observed substrates, that is, σm ∼ N(0, ϕ2). In the
sampling, since the tuning parameter ϕ2 has an effect on the acceptance rate of σm, ϕ2 is
adjusted adaptively during the first 10,000 iterations of the burn-in period in the MCMC
algorithm. More details about this sampling and the augmentation of Y can be found in [21].

In inference of the parameters Θ = (c1, . . . , cr , σm), the positivity of rate constants ci
(i = 1, . . . , r) is maintained by independent exponential priors with rate 1. For the prior of
the measurement error σm, we select the inverse gamma with scale and location parameters
1 due to its conjugality of the normal distribution. Both densities produce flat and heavily
tailed prior distributions for the elements of Θ. In the update of the system, we use block
updates to sample the reaction rates ci. In our block scheme we divide the r-dimensional
vector of c into small and equally sized groups with a dimension d and then simulate each
d-dimensional group sequentially. The size of the block update dimension d in each model is
varied. We set d to 3, 4, and 5 for Models 1 and 2, Models 3 and 4, and Model 5, respectively.
After the update of rate constants, we update σm.

When we renew ci (i = 1, . . . , r), we begin to update Y column by column whose
entries are composed of partially observed and completely augmented data. The candidate
values of each Y column are generated from distinct transition kernels via the Metropolis-
within-Gibbs algorithm. We include the measurement error in the update of the partially
observed states Wt from a normal distribution with mean Xt and variance σm via Wt ∼
N(Xt, σm) ·Xt denotes the observed values of the substrates at the given time t as described in
advance. On the other side, the proposal of the completely augmented states is produced as
stated in [9]. In Appendix A we present the derivations of candidate generators for partially
observed states as an example of transition probabilities. At the end of the update Y , the
convergence of the chain is controlled and the algorithm is repeated until the convergence is
attained.

During the application of these MCMC methods to the five MAPK pathway models,
we suggest an updating scheme which is able to deal with any kind of dependency coming
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from the complexity of our system in the sampling process. We mainly divide the cause
of dependency into two parts, namely structural and incidental dependence. The former
is originated from the linear dependence of the substrates in the net effect matrix V ′V .
We eliminate these problematic species when starting the algorithm so that there is no
singularity problem in the calculation of the likelihood. The latter, on the other hand,
is caused by the singularity of β(Y,Θ) = V ′ diag{h(Y,Θ)}V or any numeric problems
resulting from h(Y,Θ) where h(Y,Θ) is the n-dimensional hazard vector of the system
for a given Y and Θ, and diag{h(Y,Θ)} represents the n × n diagonal matrix of h(Y,Θ).
To work with the incidental dependency we check whether a candidate value for either
missing states of Y or Θ causes a singularity in the diffusion if it were accepted. If
it preserves the nonsingularity, the acceptance probability is computed and the system
is updated in the usual way. Otherwise, the candidate value is rejected even before
calculating the acceptance probability. The details about this MCMC scheme can be found
in [21].

4. Implementation

4.1. Description of the Experimental Data

We use the experimental measurements of the protein levels and activities of Ras, Raf, MEK,
and ERK proteins from mitogen stimulated COS1 green monkey kidney cells. These cells can
easily be propagated in the cell culture and are commonly used for biochemical experiments.
The cells and their crude protein extracts contain many ten thousands of different proteins
such that the proteins of interest constitute only a small proportion of the mixture. Hence
the cell extracts usually need to be separated in order to be able to visualize the protein of
interest. In collecting the experimental protein data from the underlying cell extracts, the
technique of thewestern blotting, the immunoprecipitation, and the pulldown are widely utilized.
If the proteins in a sample of the dissolved cell are detected by separating proteins according
to their weights, the method is called the western blotting [26]. This method is used here to
measure MEK and ERK activities. If a further purification is required, in order to measure
enzymatic activities, the immunoprecipitation technique is used. So the protein of interest from
the crude is extracted and its enzymatic activities are assayed by the incubation with relevant
substrates in vitro. This is the way how the Raf activation is measured. A pulldown assay is a
variation of the immunoprecipitation in the sense that the purification of pulldown is done
by means of an assay specific to the binding side rather than a substance. In our data the
measurements of Ras proteins are collected by this technique [27].

In our dataset initially the expression levels of these proteins which do not change
over the time of the mitogen stimulation are examined as the control expressions and
then the measured activities are reflected as the relative changes between untreated and
mitogen-stimulated cells. The ODE method is successful in working with such changes
in concentrations but they are insufficient to present the stochastic manner of biological
activations [28, 29]. On the contrary, the stochastic methods enable to take these effects into
account by working with the number of molecules. By assuming that the measurements are
proportional to the true underlying number of proteinmolecules, we arbitrarily set the lowest
intensity in the order to 10molecules and extrapolate all other molecules from that proportion
as shown in Table 1. On the other hand, the actual time-course data without extrapolation are
represented in Table 5 and are plotted in Figure 5 in Appendix.
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Table 2: Stability of the PAM clustering of alternative MAPK/ERK pathway models via the posterior
means of model parameters for Δt = 5 and Δt = 10 with 5 clusters. The estimates are based on 15,000
MCMC runs after 85,000 burn-in runs.

Model Number of parameters Number of changes from Δt = 5 to Δt = 10
Model 1 39 1
Model 2 40 1
Model 3 47 5
Model 4 48 0
Model 5 66 1

Table 3: Computational time (where h, min, and sec stand for hour, minute, and second, resp.) for
estimating model parameters via 100,000MCMC runs of all models when Δt = 5 and Δt = 10 in R on
the 3.00GHz Dual Core Xeon processor with a single-trade application.

Model Δt = 5 Δt = 10
Real time Real time

1 42 h 35min 36 sec 21 h
2 45 h 23min 54 sec 22 h 53min 40 sec
3 52 h 26min 43 sec 27 h 35min 17 sec
4 56 h 01min 41 sec 28 h 52min 05 sec
5 91 h 46min 42 sec 26 h 57min 21 sec

4.2. Application to the Experimental Data

In inference of all models, the total number of iterations is chosen as 100,000 in which the
first 85,000 are taken as the burn-in. The full list of reactions and concerning estimations
are presented in Appendices B–F. From these results, first we check how strong the prior
distributions of parameters affect their probability distributions. For the practical purpose
we choose the Kolmogorov-Smirnov test in calculations, thereby compare MCMC outputs
of rate constants and measurement error to random variables generated from exponential
distribution with rate 1 and inverse gamma with parameters 1, respectively. The test statistics
indicate significant differences for all models, empirically implying that the selected prior
densities in fact cause no effect on the corresponding posterior densities. Then we compare
the estimates found at Δt = 5 and Δt = 10. Using PAM clustering [30] with k = 5 classes
(referring to very slow, slow, moderately slow, moderately fast, very fast) on the parameter
estimates, we evaluate their stabilities. Table 2 shows that the estimated values are very
stable between the two approximations. Moreover, from the analysis we see that although
the majority of model parameters possess good mixing in the sense that the acceptance ratios
are not less than our lower bound of 0.05, some of them own low mixing property such as
0.02 or 0.03. We consider that the sparsity of our dataset, high dependencies between species,
and the existence of latent states cause less-likely candidate values in MCMC runs although
the adaptive sampling plan during the first 10,000 MCMC runs enables us to get good tuning
parameters. Furthermore, from the comparison of the computational demands under both
Δt’s, it is observed that the increase of the augmented states by going from Δt = 10 to
Δt = 5 significantly raises the computational time (Table 3). On the other hand, from the
comparison of estimates, it is found that the correlations between MCMC runs are slightly
higher in Δt = 5 than in Δt = 10. Moreover we get better mixing in some of the estimates
under Δt = 5 which is consistent with [9] since the augmentation in latent states leads to
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Table 4: Results of BIC and DIC criteria for the alternative MAPK/ERK pathway models based on 500
MCMC samples when Δt = 5 by data in Table 1.

Model 1 Model 2 Model 3 Model 4 Model 5
BIC 183622.8 28450.14 76446.05 41631.55 136870.2
DIC 325701 46548.61 128999.5 66110.5 186086.0

higher dependencies between states. But we do not observe a complete improvement for
all rates under each model. We consider that the reason is relevant to the structure of our
observed time points. Because for our western blotting data, the number of augmented states
rises after the observed time point t = 60min (12 latent states from t = 60 to t = 180min and
24 latent states from t = 240 to t = 360min), hereby, the dependency between the parameters
and those states increases. On the other side, since the number of augmented states is not
large from t = 0 to t = 60min, the underlying augmentation does not very much results
in worsening the dependency among the updates of these particular states and estimates (4
latent states from t = 0 to t = 60min). Finally, it is seen that the estimated measurement
errors are very big with respect to the observations in Table 1. We consider that similar to the
estimates of reaction rates, the high correlation between the species as well as the sparsity
of the observed time points and observed species lead to low mixing property, thereby, high
measurement errors.

As a result of all these outcomes we think that though the current data are not very
reliable for finding the possible reaction rates of the MAPK system, the estimates can be still
used for the procedure of the model selection since the inference of all models is conducted
under the same challenges and the main interest from the estimation results is to investigate
whether any proposal model for the MAPK pathway (Section 2) suggests a better fit for the
available western blotting dataset (Table 1). Although there are a number of model selection
methods in literature, we choose the Bayesian information criteria (BIC) and deviance information
criteria (DIC) as the model selection methods since they give a distance of the data to each of
the alternative models which are not generalized from others, and enable us to compare all
models even if all of which are incorrect in a biological sense [31].

In inference, the number of associated substrates having the structural dependence
is different for each model. But considering our sparse western blotting measurements, we
particularly order the species for every model in such a way that none of the observed
substrate presented in Table 1 is discarded due to the structural dependency. In this way,
we can execute the complete measurements in Table 1 in our estimation, thereby implement
the comparison of both BIC and DIC via all data given in Table 1 in each alternative model.
In our analysis although we observe slightly high autocorrelation under Δt = 5 than the
estimates under Δt = 10, we still choose the results from Δt = 5 for the model selection
seeing that the estimates of the associated measurement errors are lower that the ones under
Δt = 10. Table 4 summarizes the test results based on MCMC outputs sampled from the
convergent parts of the chains which are taken as the last 15,000 runs for each model. In order
to select samples for the comparison, we check the autocorrelation functions (ACF) of each
substrate per model and take 500 thinned samples whose MCMC outputs have relatively less
correlations within each other. From the tabulated BIC and DIC values it is clear that Model
2 is the best fitting model for our western blot data. This model suggests that the system
does not include any kinds of RKIP proteins and its components, and can be described by
summarizing simultaneous reactions into a single equation. Moreover, it indicates that the
degradation of EGFR is essential in the description of this system.
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Table 5:Western blotting time-course dataset for the MAPK pathway collected from the School for Cancer
Studies in Glasgow University.

Time (min) Ras.GTP Total Ras Raf.Am Total Raf
0 35618 623520 300095 824192
20 240222 672847 1092111 850161
40 385132 989878 1005269 865119
60 212275 1169001 1570648 887820
120 718095 898817 810234 785545
180 559659 1332240 1142328 1105969
240 525533 1240655 867336 948456
360 555147 1049890 1028401 1141482
Time (min) MEK.p2 Total MEK ERK.p2 Total ERK
0 67914 772901 98683 2470824
20 662655 718812 472934 2430305
40 729792 748227 678992 2428199
60 539726 954104 536933 2071863
120 559206 889207 290295 2396161
180 487896 846376 594756 2529436
240 501463 1030196 295292 2038472
360 449943 856206 408216 1636536

In a biological sense Model 2 implies that the inhibited control of the Raf-MEK
pathway is directed via ERK, rather than ERK and RKIP, proteins by phosphorylating MEK
at T292 binding site or by phosphorylating SOS, as long as the EGR receptor triggers the
activation of the pathway. Moreover, the chains of reactions which produce, particularly,
Shc-Grb2-SOSm, Grb2-SOS, ERK.p2, and Ras.GTP are very quick in the sense that Raf.A-
Ras.GTPm, ERK.p1, and Shcm proteins, which are used in the production of those proteins,
cannot stay longer in the cell to count them as separate species. On the other hand although
the knowledge about the MAPK system claims the existence of all kinds of RKIP proteins in
the system [32–34], Model 2 describes the system without any RKIP species.

Once the selection of the best-fitted model we compare it with the proposal models
of the system in [35] which are suggested by [36–38]. The main differences among these
models are the function of the EGF receptor during the activation, the existence of Shc
substrates and negative-feedback loops. Among these alternative models, Model 2 supports
the model of [36]. The main feature of that model is the existence of the Ras activation
with Shc and without Shc species, the degradation of EGRF, and core cascade of ERK via
Raf and MEK. Moreover, different from this model, Model 2 includes the negative feedback
phosphorylation of SOS by active ERK and defines the systemwith less species and reactions.
Schoeberl et al. [36]model describes the pathway with 94 reactions and 125 reactions. On the
other hand to the best of our knowledge since none of this model is validated by a real time-
course dataset within a stochastic modelling, there have not yet any wet-data/approaches
which can verify Model 2 or other suggested models.

On the other hand, if we only evaluate the estimated values of reaction rates of
Model 2, we see that the dissociation type of reactions is the fast reactions and among other
dissociations, the ones within the inactive Raf and active Ras complex (reaction 15 in Model
2) as well as within the active ERK, RSK, and transcription factor (reaction 39 in Model 2)
have the highest speed. Whereas the reactions which regulate the Raf-MEK cascade by the
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Figure 2: Examples of the probability distribution (a, b, and c) and trace plots (d, e, and f) of reaction rates
2 (which indicates the simultaneous recruitment of Shc and Grb2-SOS complex from the cytosol to the cell
membrane by the recruitment of EGFR (a and d)), 16 (which shows the activation of MEK proteins by
active Raf (b and e)), and 38 (which refers to the dissociation of active ERK and RSK complex (c and f)) of
Model 2 under Δt = 5 after 85,000 burn-in runs.

inhibition of ERK (reactions 20 and 23 inModel 2) occur slowly. Figure 2 is shown as example
from the posterior distributions of some reaction rates and the trace plots of their MCMC
outputs. Figure 3, on the one hand, briefly describes Model 2. In this figure the thickness of
the interaction indicates the speed of the associated reactions.

On the other hand, [39] shows that the single element update of states causes poor
mixing due to the high correlation within the latent data. Thereby as an extension of this
study, we can investigate the possibility of block updates of missing states [40, 41] to get
better mixing. We consider that this suggested approach improves the current approximation
technique in the class of stochastic methods where the optimal solution of the system cannot
be found globally. Moreover, as shown in Figure 2, the curves may also imply fractal time
series [42, 43] in which the system can be also modelled via the fractional Brownian motion
(FBM). In FBM, the density of the time series has heavy-tailed distribution and indicates
slowly decreasing autocorrelation functions with power spectrum of power-law type that can
be observed as different cell signalling processes [44] as well as earthquake modelling and
financial time series analysis. The power-law spectrum is seen if the process shows the self-
similarity, that is, a time segment in the process presents the same behaviour as any segments
of other time scales, and stationarity of its increments in diffusion model [45, 46]. If the self-
similarity is found locally, rather than globally as in FBM, the system can be modelled by a
more general modelling approach, called the multifractional Brownian motion [45]. On the
other side if we deal with the change in increment of the Gaussian process, the system can
be described by the fractional Gaussian model (FGM) [47–50]. Hereby as the extension of the
diffusion modelling, the high correlation in the system can be solved by both FBM and FGM
models that are specifically designed for such short- or long-correlated time series datasets.
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Figure 3: Simple representation of theMAPK/ERK pathway viaModel 2 underΔt = 5. The thickness of the
arrow indicates the speed of the interaction. The thick arrows represent fast interactions (estimated reaction
rates have power 10−1), only simple arrows describe moderately slow reactions (estimated reaction rates
have power 10−2 or 10−3), and finally dotted lines show very slow reactions among substrates (estimated
reaction rates have power 10−4 or 10−5).

5. Conclusion

We have described the MAPK pathway by quasireactions and applied multiple parameter-
izations for the same protein in different localizations and different phosphorylations. This
reaction set has been used for estimating reaction rates of the real time-course data under
the assumption that the observed substrates possess the measurement errors. In inference
of the model parameters we have used the nonlinear Euler approximation combined with
a data augmentation step and implemented it within a Metropolis-within-Gibbs algorithm
by taking into account the singularity of the system at different stages of the estimation.
This method is one of the best-known mathematical methods in system and computational
biology. The alternative models for the western blot MAPK data were compared via BIC and
DIC techniques. Both results have shown Model 2 as the best-selected model which fits the
available experimental data. In this study even though we have been interested in the MAPK
pathway as a result of its leading role in the cellular life cycle, the methods which we have
developed for this system can be applied in the analysis of any large biochemical systems
with many genes used in the biochemical and bioengineering researches.

Appendices

A. Derivation of Candidate Generators for Partially Observed States

In order to estimate the stochastic reaction rate constants of the MAPK/ERK pathway
(Figure 4) when the states of the system are partially observed, we use the candidate
generators whose details of the derivations are presented as follows.
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Under the assumption that the observed values Wi = wi involves the measurement
error and generated by wi ∼ N(Xi, σm) where Xi = (Wi−1 + Wi+1)/2, the mean of Z∗

i

conditional on Wi = wi, denoted as ηZ∗
i
, is derived via

ηZ∗
i
= μz

i + δ

(
βzzi

)1/2

(
βww
i

)1/2 (wi −Xi) (A.1)

from the multivariate normal theories. Here μz
i = μ(Zi,Θ), βzzi = β(Yzz

i ,Θ), and βww
i =

β(Yww
i ,Θ). Moreover, Yzz

i = Zi
′ and Yww

i = Wi
′. In that equation, δ refers to the correlation

between Zi and wi and equals to δ = βzwi /[(βzzi )1/2(βww
i )1/2] in which βzwi = β(Yzw

i ,Θ) and
βwz
i = β(Ywz

i ,Θ). Furthermore, Yzw
i = (Zi,Wi)

′ and Ywz
i = (Wi,Zi)

′, while (′) describes the
transpose of the given vector. By substituting δ into (A.1), we get

ηZ∗
i
= μz

i +
βzwi

(
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)1/2(
βww
i

)1/2

(
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)1/2

(
βww
i

)1/2 (wi −Xi)

= μz
i + βzwi

(
βww
i

)−1(wi −Xi),

(A.2)

where βww
i has full rank [51].

Since in our estimation μz
i = (Zi−1+Zi+1)/2 is similar to the idea ofXi, μz

i−1 = μ(Zi−1,Θ),
and μz

i+1 = μ(Zi+1,Θ), hereby (A.2) can be written as

ηZ∗
i
=

1
2
(Zi−1 + Zi+1) + βzwi−1

(
βww
i−1

)−1
(
wi − 1

2
[Wi−1 +Wi+1]

)
. (A.3)

On the other hand, in order to derive the conditional variance of Z∗
i , ΣZ∗

i
, under

Wi = wi, we use

ΣZ∗
i
= βzzi

(
1 − δ2

)

= βzzi

(

1 − βzwi βwz
i

βww
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= βzzi − βzzi
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(A.4)

from the consequence of the multivariate normal theory. In (A.4) seeing that βzzi = Δtβzzi−1,
βww
i = Δtβww

i−1 , and βzwi = Δtβzwi−1, the final ΣZ∗
i
is found via

ΣZ∗
i
= Δtβzzi−1 −Δtβzwi−1

(
Δtβww

i−1
)−1Δtβwz

i−1

= Δtβzzi−1 −Δtβzwi−1
(
βww
i−1

)−1
βwz
i−1,

(A.5)

in which βzwi−1 = β(Yzw
i−1 ,Θ) and βwz

i−1 = β(Ywz
i−1 ,Θ). βww

i−1 , similar to βww
i , has full rank [51].
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Table 6: List of proteins used in inference of the reaction rates of Model 1.

Independent
Ras.GDP, Ras.GTP, Raf, Raf.I, Raf.Am, MEK, MEKF , MEK.p2
ERK, ERK.p2, ERK.p2-TF.p2, ERK.p2-RSK.A, Grb2, Shc, SOS,

Grb2-SOS, Grb2-SOSm, c-Fos, c-Fos.RNA, MKP.

Dependent
Raf.Im, Raf.I-Ras.GTPm, MEKS, ERK.p2-RSK.A-TF.p2, Grb2m,
Shc-Grb2-SOSm, Shc-Grb2m, c-Fos.p, c-Fos.DNA, MKP.DNA,

MKP.RNA, EGFR, TF, GAP, PP2A, PAK, PP5, RSK.

Therefore, from Yi = (wi,Zi), the candidate generator ofZi conditional onWi = wi, q(· |
wi, Yi−1, Yi+1,Θ), which converges pointwise to π(· | Yi−1, Yi+1,Θ) when Δt → 0 is sampled
from

Z∗
i ∼ N

(
ηZ∗

i
,ΣZ∗

i

)
(A.6)

with mean ηZ∗
i
= (1/2)(Zi−1 + Zi+1) + βzwi−1(β
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i−1 )

−1(wi − (1/2)[Wi−1 + Wi+1]) and variance
ΣZ∗

i
= (1/2)Δt(βzzi−1−βzwi−1(βww

i−1 )
−1βwz

i−1). The candidate Y
∗
i which is combination of both proposal

wi and Z∗, sequentially, that is, Y ∗ ≡ (w∗, Z∗)′, is accepted according to the acceptance
probability

α
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= min

{
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)

}

. (A.7)

B. Description of Model 1 and Related Estimations

For the estimation of the stochastic reaction rate constants, we use the western blotting data
presented in Table 5 and plotted in Figure 5. The data are gathered from the School for
Cancer Studies in the University of Glasgow and are already published in the study of [20].
In inference of the parameters in all suggested MAPK/ERKmodels, we arbitrarily equate the
lowest intensity to 10 molecules and extrapolate the remaining proportionally.

We use the following list of reactions for estimating the reaction rates of Model 1. The
estimated rates and associated statistics are summarized in Table 7. The list of substrates, on
the other hand, is given in Table 6.

(1) Grb2 + SOS → Grb2-SOS

(2) EGFR + Shc + Grb2-SOS → EGFR + Shc-Grb2-SOSm

(3) EGFR + Grb2-SOS → EGFR + Grb2-SOSm

(4) Shc-Grb2-SOSm → Shc + Grb2-SOS

(5) Grb2-SOS → Grb2 + SOS

(6) Shc-Grb2-SOSm + Ras.GDP → Shc-Grb2-SOSm + Ras.GTP

(7) Grb2-SOSm + Ras.GDP → Grb2-SOSm + Ras.GTP

(8) Ras.GTP → Ras.GDP

(9) GAP + Ras.GTP → GAP + Ras.GDP
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(10) Raf + PP2A → Raf.I + PP2A

(11) Raf.I + Ras.GTP → Raf.Im + Ras.GTP

(12) Raf.Im + Ras.GTP + PAK → Raf.Am + Ras.GTP + PAK

(13) PP5 + Raf.Am → PP5 + Raf.Im

(14) Raf.Im → Raf

(15) Raf.I-Ras.GTPm → Raf.Im + Ras.GTP

(16) Raf.Am +MEK → Raf.Am + MEK.p2

(17) PAK + MEK → PAK +MEKF

(18) MEKF + Raf.Am → MEK.p2 + Raf.Am

(19) MEK.p2 + ERK → MEK.p2 + ERK.p2

(20) ERK.p2 + MEK → ERK.p2 +MEKS

(21) MEKS + Raf.Am → MEK.p2 + Raf.Am

(22) ERK.p2 + Shc-Grb2-SOSm → ERK.p2 + Shc-Grb2m + SOS

(23) ERK.p2 + Grb2-SOSm → ERK.p2 +Grb2m + SOS

(24) Shc-Grb2m → Shc + Grb2

(25) Grb2m → Grb2

(26) ERK.p2 + TF → ERK.p2-TF.p2

(27) ERK.p2-TF.p2 + c-Fos.DNA → ERK.p2-TF.p2 + c-Fos.DNA + c-Fos.RNA + c-Fos

(28) ERK.p2 + c-Fos → ERK.p2 + c-Fos.p

(29) ERK.p2-TF.p2 +MKP.DNA → ERK.p2-TF.p2 + MKP.DNA + MKP.RNA + MKP

(30) MKP + ERK.p2 → MKP + ERK

(31) ERK.p2 + RSK → ERK.p2-RSK.A

(32) ERK.p2-RSK.A + TF → ERK.p2-RSK.A-TF.p2

(33) ERK.p2-RSK.A-TF.p2 + c-Fos.DNA → ERK.p2-RSK.A-TF.p2 + c-Fos + c-Fos.DNA +
c-Fos.RNA

(34) ERK.p2-RSK.A + c-Fos → ERK.p2-RSK.A + c-Fos.p

(35) ERK.p2-RSK.A-TF.p2 +MKP.DNA → ERK.p2-RSK.A-TF.p2 +MKP +MKP.DNA +
MKP.RNA

(36) MKP + ERK.p2-RSK.A → MKP + ERK + RSK

(37) ERK.p2-TF.p2 → ERK.p2 + TF

(38) ERK.p2-RSK.A → ERK.p2 + RSK

(39) ERK.p2-RSK.A-TF.p2 → ERK.p2-RSK.A + TF
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Table 7: Posterior means (μ), standard deviations (σ), and acceptance ratios (p) for the estimated rate
constants ci for Model 1 from the western blotting data when Δt = 5 and Δt = 10 time unit, respectively.
The estimates are based on 15,000 MCMC runs after 85,000 burn-in runs.

Reaction Δt = 5 unit Δt = 10 unit
μ σ p μ σ p

c1 1.008 × 10−2 1.219 × 10−3 0.133 1.030 × 10−2 1.291 × 10−3 0.070
c2 7.707 × 10−3 1.148 × 10−3 0.134 5.344 × 10−3 8.487 × 10−4 0.070
c3 8.061 × 10−3 1.441 × 10−3 0.134 2.808 × 10−2 4.336 × 10−3 0.070
c4 1.583 × 10−2 1.280 × 10−2 0.170 1.115 × 10−2 9.342 × 10−3 0.110
c5 3.920 × 10−3 3.551 × 10−3 0.170 5.615 × 10−3 4.142 × 10−3 0.110
c6 1.936 × 10−3 1.729 × 10−3 0.170 4.269 × 10−2 2.200 × 10−3 0.110
c7 1.495 × 10−2 9.222 × 10−4 0.116 8.626 × 10−5 8.144 × 10−5 0.152
c8 4.863 × 10−2 3.140 × 10−2 0.116 1.170 × 10−2 1.055 × 10−2 0.152
c9 8.207 × 10−2 2.955 × 10−2 0.116 7.175 × 10−2 1.221 × 10−2 0.152
c10 1.323 × 10−2 3.806 × 10−3 0.067 2.417 × 10−2 2.847 × 10−3 0.069
c11 6.802 × 10−5 1.906 × 10−5 0.067 1.466 × 10−4 2.753 × 10−5 0.069
c12 1.911 × 10−1 4.272 × 10−3 0.067 1.143 × 10−1 4.948 × 10−3 0.069
c13 9.018 × 10−2 2.693 × 10−3 0.063 5.981 × 10−2 2.650 × 10−3 0.082
c14 3.771 × 10−2 1.019 × 10−2 0.063 1.268 × 10−1 1.976 × 10−2 0.082
c15 3.075 4.708 × 10−2 0.063 5.404 1.265 × 10−1 0.081
c16 5.820 × 10−4 4.940 × 10−5 0.095 7.620 × 10−4 5.648 × 10−5 0.087
c17 2.593 × 10−1 1.173 × 10−3 0.093 7.053 × 10−1 6.147 × 10−4 0.084
c18 1.126 × 10−4 1.629 × 10−5 0.095 1.220 × 10−4 6.378 × 10−6 0.087
c19 4.486 × 10−3 2.599 × 10−4 0.080 2.544 × 10−4 9.265 × 10−6 0.015
c20 1.053 × 10−3 1.274 × 10−4 0.080 3.734 × 10−4 6.867 × 10−5 0.015
c21 7.311 × 10−3 5.164 × 10−4 0.080 1.140 × 10−2 2.944 × 10−4 0.015
c22 2.370 × 10−3 2.846 × 10−4 0.081 1.008 × 10−3 1.792 × 10−4 0.062
c23 3.346 × 10−5 9.889 × 10−6 0.081 1.804 × 10−4 2.893 × 10−5 0.063
c24 4.694 × 10−1 4.176 × 10−3 0.081 2.526 × 10−1 2.539 × 10−3 0.062
c25 3.046 × 10−2 4.346 × 10−3 0.020 2.373 × 10−1 3.101 × 10−2 0.116
c26 5.659 × 10−5 3.625 × 10−5 0.020 6.631 × 10−4 1.615 × 10−4 0.116
c27 1.614 × 10−3 6.033 × 10−4 0.020 3.801 × 10−3 1.908 × 10−3 0.116
c28 4.537 × 10−5 1.401 × 10−5 0.054 2.085 × 10−5 1.327 × 10−5 0.061
c29 1.878 × 10−1 5.200 × 10−3 0.054 3.369 × 10−2 2.679 × 10−3 0.061
c30 5.698 × 10−1 3.673 × 10−2 0.054 1.398 × 10−2 8.928 × 10−4 0.061
c31 5.442 × 10−2 2.554 × 10−3 0.050 4.812 × 10−2 2.139 × 10−3 0.137
c32 4.123 × 10−1 2.216 × 10−2 0.050 4.021 × 10−1 2.590 × 10−2 0.137
c33 1.584 × 10−3 1.401 × 10−3 0.050 9.498 × 10−3 5.594 × 10−3 0.137
c34 1.787 × 10−4 1.531 × 10−4 0.075 5.371 × 10−4 2.169 × 10−4 0.103
c35 5.809 × 10−3 5.354 × 10−3 0.075 5.067 × 10−2 1.478 × 10−2 0.104
c36 1.825 × 10−1 1.468 × 10−2 0.075 1.458 × 10−1 6.914 × 10−3 0.103
c37 8.745 × 10−3 2.396 × 10−3 0.034 3.347 × 10−2 7.648 × 10−3 0.118
c38 9.191 × 10−3 8.221 × 10−3 0.034 1.433 × 10−2 1.313 × 10−2 0.119
c39 3.930 1.817 × 10−1 0.034 4.362 2.063 × 10−1 0.118
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C. Description of Model 2 and Related Estimations

In Model 2, basically, we use the same reaction list given for Model 1. But different from that
model, we also add the reaction of the EGFR degradation which is denoted by EGFR → ∅
as the 40th reaction. The estimated rate constants concerning Model 2 and other statistics are
summarized in Table 8. Apart from the EGF receptor, the list of substrates and their classes are
the same as given in Table 6. Under this model the EGF receptor is counted as independent,
rather than dependent, term.

D. Description of Model 3 and Related Estimations

We apply the following list of reactions to infer the reaction rates of Model 3. The estimated
reaction rates and calculated statistics are presented in Table 9. Table 10 gives the list of
substrates used in inference.

(1) Grb2 + SOS → Grb2-SOS

(2) EGFR + Shc → EGFR + Shcm

(3) EGFR + Grb2-SOS → EGFR + Grb2-SOSm

(4) Shcm + Grb2-SOSm → Shc-Grb2-SOSm

(5) Shc-Grb2-SOSm → Shcm + Grb2-SOSm

(6) Shcm → Shc

(7) Grb2-SOSm → Grb2-SOS

(8) Grb2-SOS → Grb2 + SOS

(9) Shc-Grb2-SOSm + Ras.GDP → Shc-Grb2-SOSm + Ras.GTP

(10) Grb2-SOSm + Ras.GDP → Grb2-SOSm + Ras.GTP

(11) Ras.GTP → Ras.GDP

(12) GAP + Ras.GTP → GAP + Ras.GDP

(13) Raf + PP2A → Raf.I + PP2A

(14) Raf.I + Ras.GTP → Raf.Im + Ras.GTP

(15) Raf.Im + Ras.GTP → Raf.I-Ras.GTPm

(16) Raf.I-Ras.GTPm + PAK → Raf.A-Ras.GTPm + PAK

(17) Raf.A-Ras.GTPm → Raf.Am + Ras.GTP

(18) PP5 + Raf.Am → PP5 + Raf.Im

(19) Raf.Im → Raf

(20) Raf.I-Ras.GTPm → Raf.Im + Ras.GTP

(21) Raf.Am +MEK → Raf.Am + MEK.p2

(22) PAK + MEK → PAK +MEKF

(23) MEKF + Raf.Am → MEK.p2 + Raf.Am

(24) MEK.p2 + ERK → MEK.p2 + ERK.p1

(25) MEK.p2 + ERK.p1 → MEK.p2 + ERK.p2
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Table 8: Posterior means (μ), standard deviations (σ), and acceptance ratios (p) for the estimated rate
constants ci for Model 2 from the western blotting data when Δt = 5 and Δt = 10 are time units,
respectively. The estimates are based on 15, 000MCMC runs after 85, 000 burn-in runs.

Reaction Δt = 5 unit Δt = 10 unit
μ σ p μ σ p

c1 1.228 × 10−2 1.246 × 10−3 0.064 9.575 × 10−3 1.589 × 10−3 0.028
c2 2.015 × 10−3 2.131 × 10−4 0.064 6.589 × 10−4 1.036 × 10−4 0.028
c3 5.250 × 10−3 7.264 × 10−4 0.064 3.804 × 10−3 6.289 × 10−4 0.028
c4 1.251 × 10−2 1.151 × 10−2 0.159 4.674 × 10−2 2.835 × 10−2 0.125
c5 4.588 × 10−3 4.039 × 10−3 0.159 2.363 × 10−3 2.087 × 10−3 0.125
c6 1.024 × 10−2 3.350 × 10−3 0.159 2.825 × 10−3 2.120 × 10−3 0.125
c7 9.500 × 10−3 6.363 × 10−4 0.119 6.488 × 10−3 4.798 × 10−4 0.136
c8 2.775 × 10−2 1.612 × 10−2 0.119 3.552 × 10−2 9.800 × 10−3 0.136
c9 8.103 × 10−2 1.749 × 10−2 0.119 1.430 × 10−2 9.956 × 10−3 0.136
c10 1.814 × 10−2 3.106 × 10−3 0.086 4.775 × 10−2 4.988 × 10−3 0.075
c11 1.756 × 10−4 2.908 × 10−5 0.086 1.837 × 10−4 2.674 × 10−5 0.075
c12 1.951 × 10−1 3.997 × 10−3 0.085 1.192 × 10−1 4.119 × 10−3 0.075
c13 8.965 × 10−2 2.181 × 10−3 0.083 8.328 × 10−2 2.475 × 10−3 0.110
c14 8.266 × 10−2 1.329 × 10−2 0.083 1.696 × 10−1 2.793 × 10−2 0.110
c15 3.546 1.096 × 10−1 0.082 2.837 1.250 × 10−1 0.110
c16 5.263 × 10−4 6.079 × 10−5 0.098 1.197 × 10−3 6.928 × 10−5 0.071
c17 4.428 × 10−1 1.440 × 10−3 0.097 6.341 × 10−1 6.820 × 10−4 0.070
c18 1.536 × 10−4 7.442 × 10−6 0.098 8.151 × 10−5 4.562 × 10−6 0.071
c19 2.526 × 10−3 1.375 × 10−4 0.056 2.330 × 10−4 9.969 × 10−6 0.033
c20 7.068 × 10−4 8.094 × 10−5 0.056 8.367 × 10−4 1.139 × 10−4 0.033
c21 7.988 × 10−3 3.053 × 10−4 0.056 6.698 × 10−3 6.198 × 10−4 0.033
c22 2.948 × 10−3 3.035 × 10−4 0.075 1.318 × 10−3 1.973 × 10−4 0.067
c23 2.803 × 10−4 4.000 × 10−5 0.075 2.004 × 10−4 3.455 × 10−5 0.067
c24 5.324 × 10−1 5.017 × 10−3 0.074 2.570 × 10−1 4.554 × 10−3 0.067
c25 1.632 × 10−1 9.574 × 10−3 0.058 2.024 × 10−1 1.598 × 10−2 0.122
c26 3.513 × 10−4 7.545 × 10−5 0.058 2.492 × 10−4 9.149 × 10−5 0.122
c27 5.338 × 10−3 2.018 × 10−3 0.058 3.546 × 10−3 2.618 × 10−3 0.122
c28 3.300 × 10−5 2.190 × 10−5 0.044 4.668 × 10−5 1.335 × 10−5 0.080
c29 5.371 × 10−2 3.414 × 10−3 0.044 4.370 × 10−2 4.481 × 10−3 0.080
c30 3.244 × 10−1 1.549 × 10−2 0.044 2.038 × 10−2 1.001 × 10−3 0.080
c31 7.509 × 10−2 3.647 × 10−3 0.055 4.297 × 10−2 2.031 × 10−3 0.110
c32 5.220 × 10−1 2.315 × 10−2 0.055 2.528 × 10−1 1.250 × 10−2 0.110
c33 7.916 × 10−3 5.697 × 10−3 0.055 1.641 × 10−2 7.164 × 10−3 0.111
c34 7.036 × 10−4 3.411 × 10−4 0.108 1.560 × 10−4 1.302 × 10−4 0.073
c35 1.228 × 10−2 9.204 × 10−3 0.108 1.454 × 10−2 9.950 × 10−3 0.073
c36 2.565 × 10−1 1.107 × 10−2 0.108 1.111 × 10−1 7.249 × 10−3 0.073
c37 1.090 × 10−2 3.086 × 10−3 0.086 1.454 × 10−2 4.631 × 10−3 0.105
c38 9.962 × 10−3 9.301 × 10−3 0.086 1.094 × 10−2 9.427 × 10−3 0.105
c39 3.960 1.188 × 10−1 0.085 3.215 1.444 × 10−1 0.105
c40 4.201 × 10−3 7.856 × 10−4 0.077 4.977 × 10−3 1.099 × 10−3 0.094
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Table 9: Posterior means (μ), standard deviations (σ), and acceptance ratios (p) for the estimated rate
constants ci for Model 3 from the western blotting data when Δt = 5 and Δt = 10 are time units,
respectively. The estimates are based on 15,000 MCMC runs after 85,000 burn-in runs.

Reaction Δt = 5 unit Δt = 10 unit
μ σ p μ σ p

c1 6.480 × 10−3 9.529 × 10−4 0.079 7.552 × 10−3 1.218 × 10−3 0.072
c2 1.573 × 10−2 2.645 × 10−3 0.079 3.697 × 10−2 5.668 × 10−3 0.072
c3 1.933 × 10−2 3.191 × 10−3 0.079 5.075 × 10−2 7.618 × 10−3 0.072
c4 2.432 × 10−3 4.300 × 10−4 0.055 7.508 × 10−3 1.107 × 10−3 0.136
c5 9.854 × 10−3 6.114 × 10−3 0.055 1.807 × 10−2 1.304 × 10−2 0.136
c6 1.818 × 10−3 1.349 × 10−3 0.055 5.590 × 10−3 4.128 × 10−3 0.136
c7 1.026 × 10−3 9.363 × 10−4 0.089 8.907 × 10−3 7.014 × 10−3 0.109
c8 2.913 × 10−3 2.128 × 10−3 0.089 2.330 × 10−3 2.240 × 10−3 0.109
c9 1.076 × 10−1 6.713 × 10−3 0.089 3.215 × 10−2 4.551 × 10−3 0.109
c10 7.288 × 10−4 5.691 × 10−4 0.140 4.344 × 10−3 7.679 × 10−4 0.077
c11 1.403 × 10−1 1.724 × 10−2 0.140 1.665 × 10−2 1.008 × 10−2 0.077
c12 3.147 × 10−2 1.805 × 10−2 0.140 4.509 × 10−2 1.067 × 10−2 0.077
c13 1.479 × 10−2 2.592 × 10−3 0.061 3.214 × 10−2 4.592 × 10−3 0.047
c14 1.508 × 10−4 2.329 × 10−5 0.061 2.011 × 10−4 2.734 × 10−5 0.047
c15 9.137 × 10−2 1.831 × 10−3 0.061 7.562 × 10−2 1.470 × 10−3 0.047
c16 10.575 1.435 × 10−1 0.094 10.816 1.745 × 10−1 0.128
c17 1.659 3.287 × 10−2 0.095 2.395 5.379 × 10−2 0.130
c18 6.626 × 10−2 1.319 × 10−3 0.095 5.601 × 10−2 1.078 × 10−3 0.131
c19 9.251 × 10−2 1.660 × 10−2 0.085 1.731 × 10−1 1.378 × 10−2 0.140
c20 5.994 × 10−2 3.102 × 10−2 0.085 6.973 × 10−1 1.754 × 10−2 0.140
c21 1.380 × 10−3 1.449 × 10−4 0.085 1.317 × 10−3 1.326 × 10−4 0.140
c22 6.498 × 10−1 3.442 × 10−3 0.055 4.784 × 10−1 6.560 × 10−3 0.038
c23 3.882 × 10−4 1.288 × 10−5 0.055 2.441 × 10−4 9.155 × 10−6 0.038
c24 4.990 × 10−2 6.690 × 10−4 0.055 3.156 × 10−2 3.652 × 10−4 0.038
c25 1.931 × 10−3 2.731 × 10−5 0.077 9.613 × 10−4 1.230 × 10−5 0.039
c26 4.488 × 10−3 2.598 × 10−4 0.077 5.208 × 10−3 2.491 × 10−4 0.039
c27 4.509 × 10−2 9.108 × 10−4 0.076 2.618 × 10−2 6.999 × 10−4 0.039
c28 1.512 × 10−3 1.737 × 10−4 0.103 1.345 × 10−3 1.984 × 10−4 0.082
c29 1.550 × 10−4 2.810 × 10−5 0.103 1.673 × 10−4 3.721 × 10−5 0.082
c30 7.065 × 10−2 4.044 × 10−3 0.103 2.363 × 10−1 1.072 × 10−2 0.082
c31 6.694 × 10−2 1.036 × 10−2 0.099 9.402 × 10−2 2.632 × 10−2 0.108
c32 5.092 × 10−4 1.303 × 10−4 0.099 1.150 × 10−3 3.009 × 10−4 0.108
c33 2.767 × 10−2 4.969 × 10−3 0.099 6.271 × 10−3 4.227 × 10−3 0.108
c34 3.111 × 10−2 2.389 × 10−3 0.087 4.709 × 10−2 7.590 × 10−3 0.061
c35 1.008 × 10−4 2.577 × 10−5 0.087 3.904 × 10−5 9.106 × 10−6 0.061
c36 2.658 × 10−1 1.694 × 10−2 0.087 7.654 × 10−3 3.130 × 10−3 0.061
c37 1.177 × 10−1 1.146 × 10−2 0.167 4.725 × 10−2 7.708 × 10−3 0.107
c38 6.363 × 10−2 2.699 × 10−3 0.167 3.570 × 10−2 1.259 × 10−3 0.106
c39 6.107 × 10−1 1.369 × 10−2 0.167 3.344 × 10−1 6.586 × 10−3 0.106
c40 1.659 1.671 × 10−2 0.048 2.942 4.605 × 10−2 0.016
c41 1.266 × 10−2 1.137 × 10−2 0.049 4.349 × 10−2 2.590 × 10−2 0.016
c42 1.375 × 10−4 1.298 × 10−4 0.049 6.450 × 10−5 5.661 × 10−5 0.016
c43 5.018 × 10−3 4.666 × 10−3 0.127 2.916 × 10−2 1.795 × 10−2 0.081
c44 6.514 × 10−1 1.299 × 10−2 0.126 4.693 × 10−1 1.356 × 10−2 0.081
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Table 9: Continued.

Reaction Δt = 5 unit Δt = 10 unit
μ σ p μ σ p

c45 1.776 × 10−2 3.850 × 10−3 0.127 2.496 × 10−2 6.222 × 10−3 0.081
c46 9.937 × 10−1 6.743 × 10−2 0.235 1.927 6.363 × 10−2 0.231
c47 27.171 3.838 × 10−1 0.234 33.065 4.008 × 10−1 0.230

Table 10: List of proteins used in inference of the reaction rates of Model 3.

Independent

Ras.GDP, Ras.GTP, Raf, Raf.I, Raf.Im, Raf.Am, MEK, MEK.p2,
MEKF , ERK, ERK.p2, ERK.p2-TF.p2, ERK.p2-RSK.A, Grb2,
Shc, SOS, Grb2-SOS, Grb2-SOSm, c-Fos, c-Fos.RNA, c-Fos.p,

MKP, MKP.RNA

Dependent
Raf.I-Ras.GTPm, MEKS, ERK.p2-RSK.A-TF.p2, Shc-Grb2-SOSm,
Grb2m, Shc-Grb2m, c-Fos.DNA, MKP.DNA, EGFR, TF, GAP,

PP2A, PAK, PP5, RSK

(26) ERK.p2 + MEK → ERK.p2 +MEKS

(27) MEKS + Raf.Am → MEK.p2 + Raf.Am

(28) ERK.p2 + Shc-Grb2-SOSm → ERK.p2 + Shc-Grb2m + SOS

(29) ERK.p2 + Grb2-SOSm → ERK.p2 +Grb2m + SOS

(30) Shc-Grb2m → Shc + Grb2

(31) Grb2m → Grb2

(32) ERK.p2 + TF → ERK.p2-TF.p2

(33) ERK.p2-TF.p2 + c-Fos.DNA → ERK.p2-TF.p2 + c-Fos.DNA + c-Fos.RNA

(34) c-Fos.RNA → c-Fos

(35) ERK.p2 + c-Fos → ERK.p2 + c-Fos.p

(36) ERK.p2-TF.p2 +MKP.DNA → ERK.p2-TF.p2 + MKP.DNA + MKP.RNA

(37) MKP.DNA → MKP

(38) MKP + ERK.p2 → MKP + ERK

(39) ERK.p2 + RSK → ERK.p2-RSK.A

(40) ERK.p2-RSK.A + TF → ERK.p2-RSK.A-TF.p2

(41) ERK.p2-RSK.A-TF.p2 + c-Fos.DNA → ERK.p2-RSK.A-TF.p2 + c-Fos.DNA + c-
Fos.RNA

(42) ERK.p2-RSK.A + c-Fos → ERK.p2-RSK.A + c-Fos.p

(43) ERK.p2-RSK.A-TF.p2 + MKP.DNA → ERK.p2-RSK.A-TF.p2 + MKP.DNA +
MKP.RNA

(44) MKP + ERK.p2-RSK.A → MKP + ERK + RSK

(45) ERK.p2-TF.p2 → ERK.p2 + TF

(46) ERK.p2-RSK.A → ERK.p2 + RSK

(47) ERK.p2-RSK.A-TF.p2 → ERK.p2-RSK.A + TF
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Table 11: Posterior means (μ), standard deviations (σ), and acceptance ratios (p) for the estimated rate
constants ci for Model 4 from the western blotting data when Δt = 5 and Δt = 10 are time units,
respectively. The estimates are based on 15,000 MCMC runs after 85,000 burn-in runs.

Reaction Δt = 5 unit Δt = 10 unit
μ σ p μ σ p

c1 6.275 × 10−3 7.015 × 10−4 0.035 5.172 × 10−3 7.401 × 10−4 0.082
c2 8.505 × 10−3 1.047 × 10−3 0.035 5.261 × 10−3 8.486 × 10−4 0.082
c3 1.076 × 10−2 1.238 × 10−3 0.035 1.069 × 10−2 1.605 × 10−3 0.082
c4 1.034 × 10−2 1.391 × 10−3 0.131 6.510 × 10−3 1.077 × 10−3 0.101
c5 6.702 × 10−3 5.856 × 10−3 0.131 1.161 × 10−2 8.984 × 10−3 0.101
c6 4.523 × 10−3 3.628 × 10−3 0.131 3.256 × 10−3 2.676 × 10−3 0.101
c7 2.405 × 10−3 2.375 × 10−3 0.109 5.338 × 10−3 3.998 × 10−3 0.166
c8 4.204 × 10−3 3.283 × 10−3 0.109 6.539 × 10−3 4.417 × 10−3 0.166
c9 7.614 × 10−3 3.965 × 10−3 0.109 2.167 × 10−2 5.495 × 10−3 0.166
c10 1.763 × 10−2 1.320 × 10−3 0.129 2.370 × 10−3 6.406 × 10−4 0.096
c11 4.517 × 10−2 2.905 × 10−2 0.129 3.211 × 10−2 6.630 × 10−3 0.096
c12 8.207 × 10−2 2.937 × 10−2 0.129 1.061 × 10−2 8.291 × 10−3 0.096
c13 1.918 × 10−2 2.491 × 10−3 0.048 2.476 × 10−2 3.477 × 10−3 0.081
c14 1.158 × 10−4 1.811 × 10−5 0.048 2.473 × 10−4 3.824 × 10−5 0.081
c15 6.026 × 10−2 1.525 × 10−3 0.048 5.419 × 10−2 1.825 × 10−3 0.081
c16 6.167 1.020 × 10−1 0.066 6.075 7.451 × 10−2 0.106
c17 5.960 × 10−1 1.728 × 10−2 0.067 8.225 × 10−1 2.239 × 10−2 0.106
c18 3.473 × 10−2 8.592 × 10−4 0.066 2.956 × 10−2 7.683 × 10−4 0.106
c19 8.612 × 10−2 1.231 × 10−2 0.123 2.013 × 10−1 1.239 × 10−2 0.099
c20 2.490 × 10−1 2.893 × 10−2 0.122 1.264 1.641 × 10−2 0.098
c21 1.187 × 10−3 1.356 × 10−4 0.122 8.140 × 10−4 8.502 × 10−5 0.099
c22 9.444 × 10−1 2.770 × 10−3 0.015 7.763 × 10−1 8.637 × 10−4 0.070
c23 2.168 × 10−4 9.382 × 10−6 0.015 1.207 × 10−4 8.157 × 10−6 0.071
c24 6.633 × 10−3 2.008 × 10−4 0.015 8.142 × 10−3 8.785 × 10−4 0.071
c25 4.634 × 10−4 1.107 × 10−5 0.030 3.176 × 10−4 1.465 × 10−5 0.064
c26 4.655 × 10−3 2.715 × 10−4 0.030 2.646 × 10−3 1.518 × 10−4 0.064
c27 2.156 × 10−2 6.485 × 10−4 0.030 2.119 × 10−2 5.370 × 10−4 0.064
c28 2.741 × 10−3 3.529 × 10−4 0.077 1.479 × 10−3 2.521 × 10−4 0.083
c29 1.245 × 10−4 3.052 × 10−5 0.077 6.407 × 10−5 1.792 × 10−5 0.083
c30 5.922 × 10−1 1.230 × 10−2 0.076 6.416 × 10−1 5.345 × 10−3 0.082
c31 4.891 × 10−2 1.112 × 10−2 0.081 4.869 × 10−2 1.459 × 10−2 0.058
c32 5.505 × 10−4 1.569 × 10−4 0.081 1.088 × 10−4 6.024 × 10−5 0.058
c33 3.075 × 10−3 2.056 × 10−3 0.081 5.887 × 10−3 1.378 × 10−3 0.058
c34 1.558 × 10−2 1.467 × 10−3 0.042 4.978 × 10−2 6.273 × 10−3 0.093
c35 2.073 × 10−5 1.425 × 10−5 0.042 3.354 × 10−5 1.084 × 10−5 0.093
c36 1.284 × 10−3 7.211 × 10−4 0.042 5.664 × 10−3 1.168 × 10−3 0.093
c37 1.236 × 10−1 1.241 × 10−2 0.134 9.668 × 10−2 1.080 × 10−2 0.064
c38 1.109 × 10−2 1.147 × 10−3 0.133 2.377 × 10−2 1.442 × 10−3 0.064
c39 2.599 × 10−1 6.477 × 10−3 0.133 1.124 × 10−1 5.128 × 10−3 0.064
c40 5.226 × 10−1 9.351 × 10−3 0.005 1.008 5.664 × 10−2 0.083
c41 2.507 × 10−2 1.084 × 10−2 0.005 7.539 × 10−3 5.025 × 10−3 0.083
c42 1.118 × 10−4 4.154 × 10−5 0.005 1.158 × 10−4 8.790 × 10−5 0.083
c43 7.870 × 10−3 4.093 × 10−3 0.012 5.404 × 10−3 4.543 × 10−3 0.051
c44 1.206 × 10−1 3.997 × 10−3 0.012 1.013 × 10−1 1.766 × 10−2 0.051
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Table 11: Continued.

Reaction Δt = 5 unit Δt = 10 unit
μ σ p μ σ p

c45 1.165 × 10−2 2.332 × 10−3 0.012 6.044 × 10−3 1.799 × 10−3 0.051
c46 2.027 × 10−1 1.903 × 10−2 0.011 4.904 × 10−1 4.001 × 10−2 0.066
c47 16.171 3.979 × 10−1 0.011 15.218 6.651 × 10−1 0.065
c48 3.350 × 10−3 6.139 × 10−4 0.011 3.205 × 10−3 7.732 × 10−4 0.066

E. Description of Model 4 and Related Estimations

In Model 4, apart from the additional reaction of the EGFR degradation as the 48th reaction,
we apply the same list of reactions presented for Model 3. Similarly we use the same list
of substrates stated for Model 3. But in this case the receptor of the EGF protein (EGFR)
is grouped with the independent, rather than dependent, species as found in Model 2. The
estimates of rate constants and corresponding statistics are given in Table 11.

F. Description of Model 5 and Related Estimations

We take the following list of reactions to infer the rate constants of Model 5. Apart from
those reactions of activations, we list all associated degradations of the proteins after their
dissociations in Table 12. Table 14 summarizes the estimated model parameters merely via
the following reactions list. On the other hand, the substrates used in inference are listed in
Table 13.

(1) Grb2 + SOS → Grb2-SOS

(2) EGFR + Shc → EGFR + Shcm
(3) EGFR + Grb2-SOS → EGFR + Grb2-SOSm
(4) Shcm + Grb2-SOSm → Shc-Grb2-SOSm
(5) Shc-Grb2-SOSm → Shcm + Grb2-SOSm
(6) Shcm → Shc

(7) Grb2-SOSm → Grb2-SOS

(8) Grb2-SOS → Grb2 + SOS

(9) Shc-Grb2-SOSm + Ras.GDP → Shc-Grb2-SOSm + Ras.GTP

(10) Grb2-SOSm + Ras.GDP → Grb2-SOSm + Ras.GTP

(11) Ras.GTP → Ras.GDP

(12) GAP + Ras.GTP → GAP + Ras.GDP

(13) Raf + PP2A → Raf.I + PP2A

(14) Raf.I + Ras.GTP → Raf.Im + Ras.GTP

(15) Raf.Im + Ras.GTP → Raf.I-Ras.GTPm

(16) Raf.I-Ras.GTPm + PAK → Raf.A-Ras.GTPm+ PAK

(17) Raf.A-Ras.GTPm → Raf.Am + Ras.GTP

(18) PP5 + Raf.Am → PP5 + Raf.Im
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Table 12: List of degradations after dissociations of proteins used in Model 5.

EGFR → ∅
Grb2 → ∅
SOS→ ∅
Shc → ∅
Ras.GDP → ∅
GAP → ∅
Raf → ∅
Raf.I → ∅
Raf.Am → ∅
PP2A → ∅
PAK → ∅
PP5 → ∅
MEK → ∅
MEKF → ∅
MEKS → ∅
MEK.p2 → ∅
RKIP → ∅
Raf.I-RKIP → ∅
PKC → ∅
ERK → ∅
ERK.p1 → ∅
ERK.p2 → ∅
TF → ∅
c-Fos.RNA → ∅
c-Fos → ∅
MKP.RNA → ∅
MKP → ∅
c-Fos.p → ∅
RSK → ∅

Table 13: List of proteins used in inference of the reaction rates of Model 5.

Independent

Ras.GDP, Ras.GTP, Raf, Raf.I, Raf.Am, Raf.A-Ras.GTPm, Raf.I-RKIP,
Raf.I-RKIPm, Raf.I-RKIP-Ras.GTPm, MEK, MEKF , MEKS, MEK.p2,

MEK-RKIP, MEKF-RKIP, MEKS-RKIP, ERK, ERK.p1, ERK.p2,
ERK.p2-TF.p2, ERK.p2-RSK.A, Grb2, Shc, Shcm, SOS, Grb2-SOS,

Grb2-SOSm, c-Fos, c-Fos.RNA, c-Fos.p, MKP, MKP.RNA, EGFR, RKIP

Dependent
Raf.Im, Raf.I-Ras.GTPm, MEK.p2-RKIP, ERK.p2-RSK.A-TF.p2, Grb2m,
Shc-Grb2-SOSm, Shc-Grb2m, MKP.DNA, TF, GAP, PP2A, PAK, PP5,

PKC, RSK, c-Fos.DNA, RKIP.p
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Table 14: Posterior means (μ), standard deviations (σ), and acceptance ratios (p) for the estimated rate
constants ci for Model 5 from the western blotting data when Δt = 5 and Δt = 10 are time units,
respectively. The estimates are based on 15,000MCMC runs after 85,000 burn-in runs.

Reaction Δt = 5 unit Δt = 10 unit
μ σ p μ σ p

c1 1.863 × 10−2 2.259 × 10−3 0.054 1.081 × 10−2 1.429 × 10−3 0.056
c2 1.049 × 10−2 1.398 × 10−3 0.054 9.110 × 10−3 1.413 × 10−3 0.056
c3 2.290 × 10−2 2.565 × 10−3 0.054 1.684 × 10−2 2.156 × 10−3 0.056
c4 1.088 × 10−2 1.552 × 10−3 0.103 1.265 × 10−2 2.397 × 10−3 0.159
c5 1.195 × 10−2 9.738 × 10−3 0.103 2.233 × 10−2 1.618 × 10−2 0.159
c6 4.142 × 10−3 3.592 × 10−3 0.103 9.326 × 10−3 7.210 × 10−3 0.159
c7 4.841 × 10−3 4.184 × 10−3 0.122 4.965 × 10−3 4.746 × 10−3 0.058
c8 2.631 × 10−3 2.500 × 10−3 0.122 4.854 × 10−3 4.021 × 10−3 0.058
c9 1.196 × 10−1 4.568 × 10−3 0.121 2.617 × 10−2 3.437 × 10−3 0.058
c10 3.140 × 10−4 3.268 × 10−4 0.085 7.943 × 10−4 6.569 × 10−4 0.047
c11 1.028 × 10−1 1.711 × 10−2 0.085 2.136 × 10−2 8.948 × 10−3 0.047
c12 2.822 × 10−2 1.665 × 10−2 0.085 1.347 × 10−2 9.215 × 10−3 0.047
c13 4.479 × 10−2 6.623 × 10−3 0.067 3.345 × 10−2 7.950 × 10−3 0.083
c14 3.440 × 10−4 3.996 × 10−5 0.067 2.313 × 10−4 5.119 × 10−5 0.083
c15 8.938 × 10−2 1.747 × 10−3 0.067 4.783 × 10−2 1.240 × 10−3 0.083
c16 10.798 1.331 × 10−1 0.099 6.339 1.025 × 10−1 0.082
c17 1.423 4.093 × 10−2 0.099 7.644 × 10−1 4.013 × 10−2 0.082
c18 7.969 × 10−2 1.293 × 10−3 0.100 3.156 × 10−2 8.331 × 10−4 0.082
c19 2.100 × 10−1 3.106 × 10−2 0.174 1.387 × 10−1 1.687 × 10−2 0.151
c20 1.077 2.345 × 10−2 0.172 7.927 × 10−1 2.210 × 10−2 0.151
c21 1.347 × 10−2 4.106 × 10−4 0.173 3.572 × 10−3 1.593 × 10−4 0.151
c22 1.501 × 10−2 4.068 × 10−3 0.044 8.299 × 10−3 2.298 × 10−3 0.021
c23 6.456 × 10−5 1.406 × 10−5 0.044 1.800 × 10−5 7.040 × 10−6 0.021
c24 2.835 × 10−1 7.494 × 10−3 0.044 6.827 × 10−2 2.363 × 10−3 0.021
c25 1.413 × 10−4 2.416 × 10−5 0.066 5.732 × 10−5 2.288 × 10−5 0.053
c26 2.421 × 10−4 4.300 × 10−5 0.066 1.039 × 10−4 3.061 × 10−5 0.053
c27 8.674 × 10−2 8.586 × 10−3 0.066 2.961 × 10−1 9.671 × 10−3 0.053
c28 2.198 × 10−3 4.130 × 10−4 0.056 6.217 × 10−4 8.434 × 10−5 0.001
c29 1.642 × 10−4 4.870 × 10−5 0.056 1.869 × 10−5 9.271 × 10−7 0.001
c30 8.056 × 10−3 2.117 × 10−4 0.056 1.682 × 10−3 4.059 × 10−5 0.001
c31 1.677 × 10−1 3.631 × 10−2 0.132 2.503 × 10−1 3.450 × 10−2 0.088
c32 1.327 × 10−2 4.927 × 10−4 0.131 5.607 × 10−3 7.904 × 10−4 0.089
c33 4.389 × 10−2 6.062 × 10−3 0.132 2.056 × 10−2 5.418 × 10−3 0.089
c34 2.663 × 10−2 5.283 × 10−3 0.078 1.750 × 10−2 4.730 × 10−3 0.053
c35 2.251 × 10−1 3.812 × 10−2 0.078 1.992 7.295 × 10−2 0.052
c36 2.270 × 10−2 4.079 × 10−3 0.078 1.182 × 10−2 2.967 × 10−3 0.053
c37 2.059 × 10−2 3.057 × 10−3 0.092 1.122 × 10−2 2.647 × 10−3 0.051
c38 12.505 2.846 × 10−1 0.091 8.464 2.842 × 10−1 0.051
c39 12.649 2.135 × 10−1 0.091 7.507 4.391 × 10−1 0.051
c40 6.416 × 10−2 8.716 × 10−4 0.048 6.051 × 10−3 4.100 × 10−4 0.031
c41 1.381 × 10−3 3.770 × 10−5 0.048 3.411 × 10−4 1.213 × 10−5 0.031
c42 4.706 × 10−1 3.624 × 10−3 0.048 9.657 × 10−1 1.126 × 10−3 0.031
c43 1.138 × 10−1 4.391 × 10−3 0.073 2.301 × 10−2 1.193 × 10−3 0.034
c44 1.805 × 10−2 6.337 × 10−4 0.073 5.759 × 10−3 2.667 × 10−4 0.033
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Table 14: Continued.

Reaction Δt = 5 unit Δt = 10 unit
μ σ p μ σ p

c45 6.633 × 10−4 2.036 × 10−5 0.074 1.478 × 10−4 6.480 × 10−6 0.033
c46 2.627 × 10−3 3.037 × 10−4 0.092 2.230 × 10−3 3.253 × 10−4 0.073
c47 4.044 × 10−4 5.053 × 10−5 0.092 1.440 × 10−4 3.287 × 10−5 0.073
c48 7.617 × 10−1 1.186 × 10−2 0.092 5.006 × 10−1 1.152 × 10−2 0.073
c49 2.143 × 10−1 2.466 × 10−2 0.109 7.972 × 10−2 1.902 × 10−2 0.119
c50 1.464 × 10−3 2.639 × 10−4 0.109 1.393 × 10−3 3.305 × 10−4 0.119
c51 2.311 × 10−2 4.525 × 10−3 0.109 7.878 × 10−3 3.686 × 10−3 0.119
c52 2.390 × 10−2 2.650 × 10−3 0.080 1.318 × 10−2 2.303 × 10−3 0.066
c53 1.566 × 10−4 2.367 × 10−5 0.080 5.894 × 10−5 2.746 × 10−5 0.066
c54 5.548 × 10−3 3.231 × 10−3 0.080 2.575 × 10−3 1.542 × 10−3 0.066
c55 4.864 × 10−2 6.391 × 10−3 0.181 3.724 × 10−2 8.192 × 10−3 0.154
c56 4.417 × 10−2 1.729 × 10−3 0.180 2.874 × 10−2 1.886 × 10−3 0.154
c57 3.768 × 10−1 6.189 × 10−3 0.180 2.040 × 10−1 7.410 × 10−3 0.153
c58 5.887 8.624 × 10−2 0.063 9.909 × 10−1 9.228 × 10−2 0.009
c59 2.541 × 10−2 1.612 × 10−2 0.063 4.889 × 10−2 1.827 × 10−2 0.009
c60 3.079 × 10−4 2.914 × 10−4 0.063 2.358 × 10−4 1.688 × 10−4 0.009
c61 2.863 × 10−2 1.563 × 10−2 0.156 2.475 × 10−2 9.511 × 10−3 0.045
c62 7.608 × 10−1 3.301 × 10−2 0.156 1.042 × 10−1 1.195 × 10−2 0.045
c63 3.469 × 10−2 6.047 × 10−3 0.156 3.585 × 10−2 7.826 × 10−3 0.045
c64 4.354 1.214 × 10−1 0.076 6.045 × 10−1 4.787 × 10−2 0.022
c65 35.422 5.094 × 10−1 0.076 20.302 8.049 × 10−1 0.022
c66 1.784 × 10−2 2.261 × 10−3 0.076 7.750 × 10−3 1.443 × 10−3 0.022

(19) Raf.Im → Raf

(20) Raf.I-Ras.GTPm → Raf.Im + Ras.GTP

(21) Raf.Am +MEK → Raf.Am + MEK.p2

(22) PAK + MEK → PAK +MEKF

(23) MEKF + Raf.Am → MEK.p2 + Raf.Am

(24) Raf.I + RKIP → Raf.I-RKIP

(25) Raf.I-RKIP + Ras.GTP → Raf.I-RKIPm + Ras.GTP

(26) Raf.I-RKIPm + Ras.GTP → Raf.I-RKIP-Ras.GTPm

(27) MEK + RKIP → MEK-RKIP

(28) MEKF + RKIP → MEKF-RKIP

(29) MEKS + RKIP → MEKS-RKIP

(30) MEK.p2 + RKIP → MEK.p2-RKIP

(31) PKC + Raf.I-RKIP → PKC + Raf.I + RKIP.p

(32) ERK.p2 + Raf.I-RKIP → ERK.p2 + Raf.I + RKIP.p

(33) Raf.I-RKIP-Ras.GTPm → Raf.I-RKIPm + Ras.GTP

(34) Raf.I-RKIPm → Raf.I-RKIP

(35) MEK-RKIP → MEK + RKIP
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(36) MEKF-RKIP → MEKF + RKIP

(37) MEKS-RKIP → MEKS + RKIP

(38) MEK.p2-RKIP → MEK.p2 + RKIP

(39) RKIP.p → RKIP

(40) MEK.p2 + ERK → MEK.p2 + ERK.p1

(41) MEK.p2 + ERK.p1 → MEK.p2 + ERK.p2

(42) MEK.p2-RKIP + ERK → MEK.p2-RKIP + ERK.p1

(43) MEK.p2-RKIP + ERK.p1 → MEK.p2-RKIP + ERK.p2

(44) ERK.p2 + MEK → ERK.p2 +MEKS

(45) MEKS + Raf.Am → MEK.p2 + Raf.Am

(46) ERK.p2 + Shc-Grb2-SOSm → ERK.p2 + Shc-Grb2m + SOS

(47) ERK.p2 + Grb2-SOSm → ERK.p2 +Grb2m + SOS

(48) Shc-Grb2m → Shc + Grb2

(49) Grb2m → Grb2

(50) ERK.p2 + TF → ERK.p2-TF.p2

(51) ERK.p2-TF.p2 + c-Fos.DNA → ERK.p2-TF.p2 + c-Fos.DNA + c-Fos.RNA

(52) c-Fos.RNA → c-Fos

(53) ERK.p2 + c-Fos → ERK.p2 + c-Fos.p

(54) ERK.p2-TF.p2 +MKP.DNA → ERK.p2-TF.p2 + MKP.DNA + MKP.RNA

(55) MKP.DNA → MKP

(56) MKP + ERK.p2 → MKP + ERK

(57) ERK.p2 + RSK → ERK.p2-RSK.A

(58) ERK.p2-RSK.A + TF → ERK.p2-RSK.A-TF.p2

(59) ERK.p2-RSK.A-TF.p2 + c-Fos.DNA → ERK.p2-RSK.A-TF.p2 + c-Fos.DNA + c-
Fos.RNA

(60) ERK.p2-RSK.A + c-Fos → ERK.p2-RSK.A + c-Fos.p

(61) ERK.p2-RSK.A-TF.p2 + MKP.DNA → ERK.p2-RSK.A-TF.p2 + MKP.DNA +
MKP.RNA

(62) MKP + ERK.p2-RSK.A → MKP + ERK + RSK

(63) ERK.p2-TF.p2 → ERK.p2 + TF

(64) ERK.p2-RSK.A → ERK.p2 + RSK

(65) ERK.p2-RSK.A-TF.p2 → ERK.p2-RSK.A + TF

(66) EGFR → ∅.
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G. List of Protein States Used in the MAPK Pathway

We use the following substrates in the description of the MAPK pathway with different
models.

(1) Ras protein states.

(a) Ras.GDP: the inactive Ras protein near the cell membrane.
(b) Ras.GTP: the active Ras near the cell membrane.

(2) Raf protein states

(a) Raf: the inactive and nonphosphorylated Raf protein in the cytosol.
(b) Raf.Am: the active Raf phosphorylated on the S338 and the S471 binding sites

near the cell membrane.
(c) Raf.A-Ras.GTPm: the complex of the active Raf and Ras.GTP near the cell

membrane.
(d) Raf.I: the inactive Raf phosphorylated on the S259 binding site in the cytosol.
(e) Raf.Im: the inactive Raf phosphorylated on the S259 binding site and recruited

from the cytosol to the cell membrane by the Ras.GTP protein.
(f) Raf.I-Ras.GTPm: the complex of the inactive Raf and Ras.GTP near the cell

membrane.
(g) Raf.I-RKIP: the complex of the inactive Raf and RKIP, whose binding site is

S338, in the cytosol.
(h) Raf.I-RKIPm: the complex of the inactive Raf and RKIP which is recruited to

the membrane by the Ras.GTP protein.
(i) Raf.I-RKIP-Ras.GTPm: the complex of the inactive Raf, RKIP, and Ras.GTP near

the cell membrane.

(3) MEK protein states.

(a) MEK: the inactive and nonphosphorylated MEK protein in the cytosol.
(b) MEKF : the inactive MEK in the cytosol which is monophosphorylated by the

activator PAK on the S298 binding site.
(c) MEKS: the inactive MEK in the cytosol which is monophosphorylated by the

active ERK on the T292 binding site.
(d) MEK.p2: the double-phosphorylated MEK (active MEK) on the S218 and S222

binding sites in the cytosol.
(e) MEK-RKIP: the complex of the MEK and RKIP proteins in the cytosol.
(f) MEKF-RKIP: the complex of the MEKF and RKIP proteins in the cytosol.
(g) MEKS-RKIP: the complex of the MEKS and RKIP proteins in the cytosol.
(h) MEK.p2-RKIP: the complex of the active MEK.p2 and RKIP proteins in the

cytosol.

(4) ERK protein states.

(a) ERK: the inactive and nonphosphorylated ERK protein in the cytosol.
(b) ERK.p1: the inactive, monophosphorylated ERK in the cytosol.
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(c) ERK.p2: the double-phosphorylated ERK (active ERK) in the cytosol.
(d) ERK.p2-RSK.A: the complex of the active ERK and active RSK, which is

activated by the ERK protein, in the nucleus.
(e) ERK.p2-RSK.A-TF.p2: the complex of the active ERK, active RSK, and double-

phosphorylated transcription factor in the nucleus.
(f) ERK.p2-TF.p2: the complex of the active ERK and a transcription factor (like

Elk or SAP proteins), which is double-phosphorylated by the active ERK, in
the nucleus.

(5) Grb2, Shc, and SOS protein states.

(a) Grb2: A protein in the cytosol.
(b) Grb2m: the Grb2 protein near the cell membrane after the dissociation of the

SOS protein by the active ERK.
(c) Grb2-SOS: the complex of the Grb2 and SOS proteins in the cytosol.
(d) Grb2-SOSm: the complex of the Grb2 and SOS proteins near the cell membrane,

where it is able to activate the Ras protein.
(e) Shc: a protein in the cytosol.
(f) Shcm: the Shc protein near the cell membrane after the activation of the EGF

receptor.
(g) Shc-Grb2m: the complex of the Shc and Grb2 proteins near the cell membrane

after the dissociation of the SOS protein by the active ERK.
(h) Shc-Grb2-SOSm: the complex of the Shc, Grb2, and SOS proteins near the cell

membrane, where it is able to activate the Ras protein.
(i) SOS: a protein, which is an exchange factor, in the cytosol.

(6) c-Fos and MKP protein states.

(a) c-Fos: a protein in the nucleus.
(b) c-Fos.DNA: the gene sequence of the c-Fos protein.
(c) c-Fos.p: the c-Fos gene phosphorylated by the ERK protein.
(d) c-Fos.RNA: the transcription of the c-Fos gene into the messenger RNA

(mRNA).
(e) MKP: a protein in the cytosol.
(f) MKP.DNA: the gene sequence of the MKP protein.
(g) MKP.RNA: the transcription of the MKP gene into mRNA.

(7) Other proteins

(a) EGF: a protein which triggers the activation of the pathway by attaching its
receptor (EGFR) in the cell membrane.

(b) EGFR: a receptor that is equated with activated tyrosine kinase receptors.
(c) GAP: a protein near the cell membrane.
(d) PAK: a protein near the cell membrane.
(e) PKC: a protein in cytosol.
(f) PP2A: a protein near the cell membrane or in cytosol.
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(g) PP5: a protein near the cell membrane.
(h) RKIP: a protein in the cytosol.
(i) RKIP.p: the RKIP monophosphorylated either by the PKC or ERK protein on

the binding sites S153 and S99, respectively.
(j) RSK: an inactive protein in the cytosol.
(k) RSK.A: the active RSK, which is activated by the ERK.p2 protein.
(l) TF: a transcription factor (like Elk or SAP proteins), which will be double-

phosphorylated by the active ERK, in the nucleus.
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