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The nonlinear responses of ship rolling motion characterized by a roll damping moment are of
great interest to naval architects and ocean engineers. Modeling and identification of the nonlinear
damping moment are essential to incorporate the inherent nonlinearity in design, analysis, and
control of a ship. A stochastic nonparametric approach for identification of nonlinear damping
in the general mechanical system has been presented in the literature (Han and Kinoshits 2012).
The method has been also applied to identification of the nonlinear damping moment of a ship
at zero-forward speed (Han and Kinoshits 2013). In the presence of forward speed, however, the
characteristic of roll damping moment of a ship is significantly changed due to the lift effect. In
this paper, the stochastic inverse method is applied to identification of the nonlinear damping
moment of a ship moving at nonzero-forward speed. The workability and validity of the method
are verified with laboratory tests under controlled conditions. In experimental trials, two different
types of ship rolling motion are considered: time-dependent transient motion and frequency-
dependent periodic motion. It is shown that this method enables the inherent nonlinearity in
damping moment to be estimated, including its reliability analysis.

1. Introduction

Ship motions are defined by the six degrees of freedom that a ship can experience at sea.
Among them, rollingmotion, which is defined by a rotational motion around the longitudinal
axis of a ship, has been attracting considerable research attention over the years because large
roll motions might be a serious threat to the safety of a ship such as ship capsizing or structure
failure. Therefore, an appropriate model to describe the rolling motion is crucial for accurate
predictions of ship’s roll response in a given sea state.
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There are considerable studies on the modeling of the rolling motion [1–20]. The
rolling motion of a ship can be characterized by analyzing components of moments such as
moment of inertia, damping and restoring moments. Among them, the roll damping moment
is considered as the most important component due to difficulties in identifying its value. The
difficulties result from its nonlinearity due to the fluid viscosity and its dependence on the
forward speed. The usual practice of identifying roll damping moment of a ship is to use the
parametric method [8–14], which assumes the form of nonlinearity a priori. The coefficients
of the prescribed form of nonlinearity are then estimated by relating the loss in potential
energy over each cycle of the roll decay test with the energy dissipation as the damping. This
method gives quite accurate result but sometimes fails when one adopt inaccurate nonlinear
model because different types of nonlinear model produce different motion responses [15].

A large number of studies on this subject have been concentrated on the parametric
identification mentioned above. In contrast, there are few studies involving nonparametric
identification where the prior knowledge for the nonlinearities of damping moments is
not necessary. For example, Haddara and Hinchey [16] proposed a method, based on the
combination of the neural networks technique with the standard parametric identification,
for modeling nonlinear damping moment from free-roll decay curve. They also applied
the method to random roll responses measured during the sea trials to investigate roll
characteristics of full-scale ships at sea [17]. Roberts and Vasta [18] presented a stochastic
method for estimating the damping moment and the excitation spectrum using the Markov
model for the energy envelope of the response.

In recent years, inverse methods have been presented [1, 2, 19, 20] for the
nonparametric identification of damping moment of a ship. Conceptually, these methods
are based on inverse formalism originated from the transformation of an original nonlinear
motion equation for ship rolling motion in either a deterministic [19, 20] or stochastic manner
[1, 2]. The roll damping moment of a ship at zero-forward speed was identified from the
measurement of the responses of the system based on the inverse problem formulation [2, 20],
which is ill-posed in the sense that small variations in the input data can result in erroneous
inverse solution. Compared with the deterministic inverse method [19, 20], the stochastic
inverse method [1, 2] is robust and reliable in the sense that it can also provide a reliability
analysis of the identified results.

In the literature [2], the study on the application of the stochastic inverse method
was presented for the case of zero-forward speed. The inherent nonlinearity in damping
moment of a test ship at zero-forward speedwas successfully identified, including its credible
intervals as an indicator of reliability of identification. However, there is no guarantee that the
method can be applied to the case of nonzero-forward speed since the nonlinear characteristic
of roll damping has changed significantly due to the lift effect in the presence of the forward
speed. It is well known that the roll damping moment of a ship is also strongly dependent on
the forward speed [14].

In this paper, attention is focused on the real practical application of the stochastic
inverse method [1] to identification of nonlinear damping moment of a ship moving with
“non-zero” forward speeds. For this purpose, we first derive a stochastic inverse model by
defining nonlinear damping moment as a nondeterministic parameter, which is multivariate
random variable. This stochastic inverse modeling method is then applied to the laboratory
tests to assess workability and practicability. Two different motions, transient motion and
forced periodic motion, are considered with various trial conditions. The unique features
of the method can be summarized in the following sense: firstly, it is nonparametric, that
is, it does not require a prescribed form of nonlinearity unlike the conventional parametric
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Figure 1: The schematic of the experiment.

methods. Secondly, it also offers a way of quantification of confidence level of identified
solution given noisy data since the method is based on a stochastic inverse model.

The outline of this paper is as follows. The stochastic inverse model for nonlinear
damping of a ship is derived in Section 2. Experimental setups are explained in Section 3.
Section 4 presents analysis results of experimental data. Concluding remarks are made in
Section 5.

2. Problem Formulation

2.1. Governing Equation for Ship Rolling Motion

It is assumed that the rolling motion φ of a ship moving at a forward speed V , illustrated in
Figure 1, is governed by the following nonlinear differential equation of motion:

(I + ΔI)φ̈(t) + B
(
φ, φ̇; t

)
+K
(
φ; t
)
= M(t), (2.1)

where I is the actual mass moment of inertia,ΔI is the addedmass moment of inertia, B(φ, φ̇)
is the nonlinear roll damping moment, K(φ) is the restoring moment, and M(t) is the roll-
excitation moment. In the above equation, an overdot denotes a differentiation with respect
to time.

The roll dampingmoment is expressed as a positive nonlinear function of the roll angle
and angular velocity. The roll damping moment B(φ, φ̇) is also affected by the forward speed
of the ship since a lift effect occurs due to the presence of the forward speed. The restoring
moment K(φ), which is expressed as an antisymmetric function of the roll angle, is induced
by hydrostatic pressure exerted by a fluid at equilibrium due to the force of gravity. If the
amplitude of roll angle is sufficiently small, then it is often expressed as the multiplication of
the displacement of a ship and the distance between metacentric height and center of gravity
GM, that is,K(φ) = ρg∇·GMφ. In this study, our attention is restricted to the small amplitude
motion.
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2.2. Inverse Setting for the Nonlinear Damping Moment

From the mathematical manipulation based on the concept of variation of parameters, the
following relationship is obtained [1, 2, 19, 20]:

g
(
φ; t
)
=
∫ t

0

x1(τ)x2(t) − x1(t)x2(τ)
(I + ΔI)W(τ)

{
B
(
φ, φ̇; t

)}
dτ, (2.2)

whereW ≡ |x1ẋ2 −x2ẋ1| and x1, x2 are chosen to satisfy the following equations, respectively:

(I + ΔI)ẍ1 + ρg∇ ·GMx1 = 0, x1(0) = 1, ẋ1(0) = 0,

(I + ΔI)ẍ2 + ρg∇ ·GMx2 = 0, x2(0) = 0, ẋ2(0) = 1.
(2.3)

The left hand side of (2.2) is given by

g
(
φ; t
)
= φ(t) − αx1(t) − βx2(t) −

∫ t

0

x1(τ)x2(t) − x1(t)x2(τ)
(I + ΔI)W(τ)

M(τ)dτ, (2.4)

where α = φ(0) and β = φ̇(0).
The purpose of the study is to inversely identify the nonlinear dampingmoment given

a measured response data φ. For a set of measured roll response data φi = φ(ti) during 0 < t <
T , the following system is given for the unknown nonlinear damping Bj = B(τj), j = 1, . . . , n:

gi =
∑

τj<ti

HijBj , i = 1, . . . , m, (2.5)

where

Hij = Δτ
x1
(
τj
)
x2(ti) − x1(ti)x2

(
τj
)

(I + ΔI)W
(
τj
) , (2.6)

gi = φ(ti) − αx1(ti) − βx2(ti) −
∑

τj<ti

Δτ
x1
(
τj
)
x2(ti) − x1(ti)x2

(
τj
)

(I + ΔI)W
(
τj
) M

(
τj
)
. (2.7)

The identification of the nonlinear damping can be achieved by inverting the
matrix system (2.5) from the observable parameter gi. This identification procedure can be
considered as the inverse problem [21–23] since its aim is to find the cause from the effect of
the physically observable data.

It is worth noting that the system (2.5) is given by discretizing the first-kind integral
operator (2.2). According to the inverse problem theory [21–23], the inverse of such systems
is very sensitive to small changes in the data. The data-driven nature of the inverse
problemmakes the inverse analysis more difficult because one should use the measured data
containing random errors arising from various sources of noise in the inverse setting. For
such systems, which are often called ill-posed, the usual inverse procedure yields erroneous
solutions which are physically meaningless.
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2.3. Stochastic Inversion

To ensure a stable solution procedure, the unknown damping moment B(φ, φ̇; t) will here be
modeled as a sequence of random variable U(t; ξ), U : Ω → R

n, where ξ is every possible
outcome of an arbitrary nonempty sample space Ω. Then, the random variable U can be
related to the directly observable quantity g by the Bayesian formula [23]:

p
(
U | g) ∝ p

(
g | U)p(U), (2.8)

where p(g | U) is the likelihood, p(U) is the prior probability density function, and p(U | g)
is the posterior probability density function.

Using adequate probabilistic models, the probabilistic expression (2.8) can be specified
more clearly. In the case where the measurement error is independent additive Gaussian
random noise with zero mean and standard deviation σ, the likelihood p(g | U) has the
form:

p
(
g | U) ∝

(
σ2
)−m/2

exp

(

−
∥∥HU − g

∥∥2
2

2 σ2

)

, (2.9)

where ‖ · ‖2 refers to Euclidean norm, andm is the number ofmeasurements. Using a pairwise
Markov random field model [23–25], the prior p(U) can be written as

p(U) ∝ λn/2 exp
(
−λ
2
UTWU

)
, (2.10)

where the matrix W ∈ R
n×n is defined by

Wij =

⎧
⎪⎪⎨

⎪⎪⎩

ni, i = j,

−1, i ∼ j,

0, otherwise,

(2.11)

where ni is the number of neighbors for the point i, and i ∼ j means that i and j are adjacent.
Thus, (2.8) can be specified as

p
(
Ug
) ∝
(
σ2
)−m/2

exp

(

−
∥∥HU − g

∥∥2
2

2σ2

)

λn/2 exp
(
−λ
2
UTWU

)
. (2.12)

The parameters σ and λ for the probabilistic model are also nondeterministic and difficult to
be known a priori. In the stochastic inversion, these uncertainties are naturally resolved by
expanding into the hierarchical model [23–25]:

p
(
U, λ, σ | g) ∝

(
σ2
)−(m/2+α2+1)

exp

(

−
∥∥HU − g

∥∥2 + 2β2
2σ2

)

λ(n/2+α1−1) exp

(

−λ
(
UTWU+β1

)

2

)

,

(2.13)
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where (α1, β1) is a pair of gamma distribution for λ, and (α2, β2) is a pair of inverse gamma
distribution for the prior of σ. Based on the hierarchical model (2.13), it is possible to
determine, at the same time, the stable inverse solution and the hyperparameters σ and λ
through a numerical sampling technique such as Markov chain Monte Carlo [1, 23–25].

2.4. MCMC Simulation

To extract information on the damping moment from the constructed stochastic inverse
model, it is necessary to employ the simulation technique such as Markov chain Monte
Carlo, whose aim is to draw an identical independent distributed set of samples from a target
density. The hierarchical model (2.13) with the given observable quantities can be explored
by the following hybrid algorithm which is designed by mixing Metropolis-Hastings steps in
the Gibbs sampler [1, 23–26].

(i) Initialize U(0) = {U(0)
1 , U

(0)
2 , . . . , U

(0)
n }, λ(0), and σ(0).

(ii) For i = 0 : NMCMC − 1

Sample U
(i+1)
1 from p(U1 | U(i)

2 , U
(i)
3 , . . . , U

(i)
n , λ(i), σ(i))

SampleU(i+1)
2 from p(U2 | U(i+1)

1 , U
(i)
3 , . . . , U

(i)
n , λ(i), σ(i))

...
Sample U(i+1)

n from p(Un | U(i+1)
1 , U

(i+1)
2 , . . . , U

(i+1)
n−1 , λ(i), σ(i))

Sample u1 from the uniform distribution on [0, 1]
Sample λ(∗) from q(λ(∗) | λ(i))
if u1 < min{1, p(λ(∗) | U(i+1), σ(i))q(λ(i)|λ(∗))/p(λ(i) | U(i+1), σ(i))q(λ(∗) |
Cλ(i))}, λ(i+1) = λ

(∗)

else λ(i+1) = λ
(i)

Sample u2 from the uniform distribution on [0, 1]
Sample σ(∗) from q(σ(∗) | σ(i))
if u2 < min{1, p(σ(∗) | U(i+1), λ(i+1))q(σ(i) | σ(∗))/p(σ(i) | U(i+1), λ(i+1))q(σ(∗) |
σ(i))}, σ(i+1) = σ

(∗)

else σ(i+1) = σ
(i).

The sampled set of realizations {U(i)} can then be used to approximate the statistics of
the target densities p(U, λ, σ | g) by

p
(
U, λ, σ | g) ≈ 1

NMCMC

NMCMC∑

k=1

δ
(
U −U(k)

)
, (2.14)

where NMCMC is the number of Monte Carlo simulation and δ is Dirac delta function.
In summary, the damping moment of a ship moving with nonzero-forward speed

can be identified through the following steps. (1) Derive the inverse model (2.5) relating
the desired damping moment with the observable parameter, which is a function of the roll
response; (2) measure the dynamic roll response of a ship moving at a nonzero- forward
speed; (3) formulate stochastic inverse model (2.8) given the measured roll response; (4) use
the designed MCMC algorithm to identify the damping moment.
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Figure 2: Overview of (a) the test model and (b) experimental setups.

Table 1: Particulars of the test model.

Length Lpp 2.500m
Breadth B 0.387m
Draft D 0.132m
Displacement volume ∇ 0.110m3

The distance between metacentric height and center of gravity GM 0.074m
Vertical position of the center of buoyancy KB 0.071m
Vertical position of the transverse metacenter above the keel line KM 0.179m

Natural frequency ωn
6.905 rad/s (without BK)
6.136 rad/s (with BK)

3. Experimental Setup

The workability and accuracy of the present method were verified by damping moment
identification of the test model. The related experiments were conducted at the Ocean
Engineering (OE) Basin of the University of Tokyo. The basin, which is often called as the
towing tank, is a physical water tank to perform hydrodynamic tests with ship models.
Figure 2 shows the test model used for the experimental analysis and an overview of
experimental setups. The plan of the test model is shown in Figure 3. Table 1 summarizes
particulars of the test model. During experiments, the test model was rigidly clamped in
all degrees of freedom, excepting roll motion to minimize effects from the other modes of
motions.

Figure 4 shows the layout of the OE Basin, whose length, breadth, and depth are 50m,
10m, and 5m, respectively. The basin is equipped with a towing carriage that runs on two
rails on either side of the basin at a speed from zero to 2m/s. The carriage is also equipped
with computers and devices to measure or control the speed of the towing carriage. The test
model was initially positioned in one side of the basin and then towed by the carriage to the
opposite side ranging from zero to 2m/s. The roll motions are recorded by the potentiometer
attached to the center of gravity of the test model.

The model was first tested without any appendages such as bilge-keels to consider
the hull damping characteristics. After that, for the purpose of assessing the workability, two
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Figure 4: Layout of ocean engineering basin at the University of Tokyo.

bilge-keels (BK) with about 1m long are attached to both sides of the test model at the turn
of the bilge as in Figure 5. The installation of BK generates totally different roll characteristic
since BK increases hydrodynamic resistance to rolling motion and makes the ship roll less.
The effect of BK can easily observed even at zero-forward speed and becomes larger with the
presence of the nonzero-forward speed.

For the experimental application, two different types of motions, time-dependent
transient motion and frequency-dependent periodic motion, are considered. Firstly, the
transient motion caused by an initial roll angle is considered. An external moment is first
applied to the test model by static means to give an initial roll angle. Then the moment is
eliminated and the decaying roll motion is measured. Secondly, the forced motion caused by
a periodic excitation is considered. Monofrequency sinusoidal roll motion is first imposed by
the vertical force generated by the force oscillating device in Figure 6. The resulting vertical
force is recorded by the load cell and converted to the exciting moment by multiplying the
moment arm.

It should be noted that a linear approximation for the restoring moment is valid only
for sufficiently small roll angle. As pointed out earlier, in this study, we restrict our attention
to the small amplitude motion so that the restoring moment can be expressed by the linear
form.
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Figure 5: Attachment of bilge-keels to the both sides of the test model.

4. Analysis of Experimental Data

4.1. Transient Motion: Free-Decay Rolling

As a first application, a transient motion induced by an initial roll angle is considered. This
motion is referred to as the free-decay rolling motion. For the trial, an initial roll angle is first
given as φ(0) = α while the test model is being towed by the carriage with a forward speed
V . The static moment is then eliminated and the resultant response is recorded by measuring
devices. This free-decay rolling motion is governed by the following initial value problem
from (2.1) since M(t) = 0:

(I + ΔI)φ̈ + B
(
φ, φ̇
)
+Kφ = 0, φ(0) = α, φ̇(0) = 0. (4.1)

Dividing both sides of (4.1) by I + ΔI, we can obtain

φ̈ + B̃
(
φ, φ̇
)
+ωn

2φ = 0, (4.2)

where B̃ = B/(I + ΔI) and ωn =
√
K/(I + ΔI).

Recorded roll responses are presented in Figure 7 for the test model without and with
BK. Here, the Froude number (Fr) is defined by V/

√
Lppg, where V is the velocity of the test

model, g is the gravitational acceleration, and Lpp is the length of the ship. It can be observed
that responses of the test model with BK decay to zero faster than the test model without BK.



10 Mathematical Problems in Engineering

Clamps
Potentiometer

for heave

Potentiometer
for pitch

85
0

Gimbal

(a)

Potentiometer    
for heave

12
00

Potentiometer    
for roll

Mechanically forced 
oscillating device

Load cell

Rod

Pin joint

43
0

95
95

(b)

Figure 6: Forced oscillating devices: (a) side view. (b) front view.
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Figure 7: Roll decay curve of the test model for different forward speeds.

Moreover, the rate of decrease of roll angle becomes larger when the forward speed increases
for both cases of the model without and with BK. This clearly shows that the damping is
dependent on the forward speed. This fact is well known and described in various papers
[14, 27].
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Figure 8: The converted quantity g from the measured roll-angle data when Fr = 0.2.

It is worthwhile to note that the physical coefficients are not necessary for the case
of free-decay rolling. The only thing that is required for applying the present method is the
natural angular frequency. The natural frequency for the test model is shown in Table 1. The
variation of the roll natural frequency due to the addition of bilge keels is extremely large. In
this study, for simplicity, the frequency of the largest Fourier component is considered as the
natural frequency for the BK model.

To illustrate the method, through application to experimental data in Figure 7, a
particular case of the roll-angle data with Fr = 0.2 was chosen. As a first stage of the
identification, the roll-angle data set φi (i = 1, 2, . . . , m) is converted to a set of the observable
quantity gi using the relationship given by (2.7). This is clearly straightforward if the roll
angle is recorded since the excitation moment M(t) is zero for the case of the free-decay
rolling motions. Consequently, the observable quantity can be computed by gi = φi − αx1(ti)
and the results are shown in Figure 8. Using this quantity, we can construct a stochastic
inverse model p(U, λ, σ | g) for both cases of experiments.

Before illustrating results fromMCMC simulation, the least-squares estimation for the
inverse solution of (2.5) is first presented in Figure 9. The results clearly show the difficulties
with the standard inverse solution to (2.5), that is, lack of stability in solution. The instability,
frequent sign changes, is often encountered in solving data-driven inverse problems since the
inevitable errors, no matter how small, incurred in taking and analyzing measured signal, are
the main reason of this instability.

We consider now the stochastic inverse model p(U, λ, σ | g) and its MCMC simulation
for a stable and reliable solution. For the purpose of the simulation, λ(0) = 1, σ(0) = 0.1,
and zero vectors for U(0) are used for the initial values of the algorithm. A small value 10−1

is chosen for the pairs of parameters (α1, β1) and (α2, β2). For MCMC simulation, 50, 000
samples were generated and the last 25, 000 samples are used to estimate statistics such
as mean and standard deviations for U. The MCMC results are illustrated in Figure 10.
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Figure 9: Inverse solutions through least-squares estimation.

The upper and lower dotted lines denote the 95% credible interval, quantifying the degree
of uncertainties in the solution given the measurements. The mean estimate of the posterior
density is fairly stable compared with the results in Figure 9. The result in Figure 10 describes
the relative likelihood for the multivariate random variable U, which includes information
of the unknown nonlinear damping moments. The posterior mean represents the most
probable value of the stochastic inverse model p(U, λ, σ | g). The confidence interval can
be interpreted as an indicator of the reliability of the estimated value conditional on the
measured data.

It is worth to note that MCMC simulation takes a while to properly sample the target
distribution. In this study, we used the evolution of components to check if the chain works
properly. Figure 11 shows an example of trace plots for the marginal distribution of the
MCMC result for the trial with BK. Trace plots of each component are clearly in the burn-
in phase, that is, stationary states. This implies that the posterior density p(U, λ, σ | g) is
successfully explored with the designed MCMC algorithm.

Once the probability density function p(U, λ, σ | g) is estimated, the nonlinear
damping moment can then be identified by E[p(U(t; ξ) | g)] = −B̃(φ̇(t)). The identified
nonlinear roll damping moments are shown in Figure 12. It is worthwhile to note that the
present method is fully nonparametric. Thus, the information of nonlinear damping moment
is first revealed by a set of data based on the most probable value of the estimated functionU.
The set of scattered points is then used to specify the nonlinear model for damping moment.
Here, the form B̃(φ̇(t)) = B1φ̇ + B3φ̇

3 is used to fit the identified data. The units of the
coefficients are [s−1] for B1 and [s] for B3.

It is also important to check the accuracy of the identified model. For this purpose,
the roll motion is resimulated by using the identified damping moment. Figure 13 shows the
comparison between the re-simulated and the measured roll responses for both cases. It is
confirmed that the both trials are in well coincidence with the measured roll response.
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Figure 10: Solutions from stochastic inverse modeling with MCMC simulation.
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Figure 11: Typical examples of the trace plots for two components.



14 Mathematical Problems in Engineering

0 0.5 1

0

0.5

1

1.5

2

−0.5

−1

−1.5

−2
−1 −0.5

dφ/dt

B

(a) Without BK

Identified
Fitting

0

0.5

1

1.5

2

−0.5

−1

−1.5

−2
0 0.5 1−1 −0.5

dφ/dt

B

(b) With BK

Figure 12: Identified nonlinear roll damping moments.

Finally, the preceding procedures are applied to all other experimental data for the
case of free-decay rolling motion. The results are summarized in Table 2. The results clearly
illustrate the effect of increasing forward speed on the roll damping moments. Furthermore,
the damping moment obtained with the trials with BK is much larger than those of trials
without BK.

It can be naturally concluded, based on the identified results in Table 2, that it would
be possible to develop an empirical formula for the nonlinear damping moments as the form:

B̃
(
φ̇(t)
)
= B1φ̇ + B3φ̇

3 = B0

(
1 + κ(Fr)2

)
φ̇ + B3φ̇

3, (4.3)
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Figure 13: Resimulated roll response with the identified damping moment.

Table 2: Identified nonlinear damping for the case of free-decay rolling.

Fr Trials with BK Trials without BK
B1 B3 B1 B3

0 0.3796 0.1436 1.2408 0.6682
0.1 0.5070 0.1016 1.2475 0.4852
0.2 0.4203 0.1219 1.3262 0.6725
0.3 0.7208 0.2027 2.5105 0.4689
0.4 1.1007 0.1829 3.1812 0.6552

where B0 is the linear contribution for zero-forward speed. The value of κ, which can be
determined by fitting the identified results in Table 2, was turned out to be κ = 4.7536 for the
non-BK model and κ = 13.097 for BK model, see Figure 14. It can be found that the effect of
forward speed is much greater in the case of the BK model.

4.2. Periodic Motion: Forced Rolling Motion

As a second application, a periodic forced motion induced by periodic excitation is
considered. The monofrequency periodic motion is imposed while ship is moving with a
forward speed V :

φ(t) = A1 cos(ωt). (4.4)
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Figure 14: Determination of the coefficient κ for empirical formula.

The corresponding roll exciting moment M(t) is then measured with the load cell as
explained in Section 3. It is worth to point out that, in applying the proposedmethod to forced
rolling motion, it is first necessary to know roll moment of inertia unlike free-roll decay test.
The values were determined a priori through the related tests.

For the forced oscillation test, the frequency-dependent coefficients of the roll moment
of inertia are generally obtained by Fourier analysis:

(I + ΔI) =
KA1 −Ma cos(ε)

ω2A1
, (4.5)

whereMa is the amplitude of the exciting moment, ε is the phase difference between the roll
angle and the exciting moment, and ω is the exciting frequency. The obtained coefficients are
illustrated in Figure 15.

Now we are ready to apply the present method to the measured data. For illustrating
purposes, a particular case of experimental data was chosen as identification examples for
the forced rolling motion. Figure 16 shows the measured roll response and the exciting
moment for the test model with BK when Fr = 1.0 and exciting frequency ω = 5.12. Figure 17
shows the step-by-step results of identifying roll damping moment from the measured data.
The measured data was first converted to the observable parameter g through (2.7). The
converted quantity, illustrated in Figure 17(a), leads to the construction of stochastic inverse
model as in (2.13). Without loss of generality, the same conditions were used to explore the
constructed stochastic inverse model for the MCMC algorithm as explained in Section 4.1.
The MCMC results were shown in Figure 17(b). Next, the roll response is resimulated with
the identified inverse solution. The result is shown in Figure 17(c). It is observed that the re-
simulated response is in good agreement with the measured roll response. This proves the
accuracy of the identified roll damping moment.
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Figure 15: Nondimensional moment of inertia of the test model: (I + ΔI)/mB2.

It is worth noting here that, for the case of free-decay rolling motion, the effects on roll
amplitude in a roll-decay are mainly due to the damping [28], but the same cannot be said in
the case of forced rolling motion. It could be expected that the nonlinearity in the restoring
plays a role and the estimated damping moment is not dependent only on the roll angular
velocity. Consequently, it is difficult to build an analytical model of the identified nonlinear
damping moment unlike the case of free-decay rolling motion as described in Section 4.1.

Instead, we performed here a quantitative analysis of the results obtained by applying
the preceding procedure to all other experimental data of the forced rolling motion. The
rationale behind this is that the relating results can be considered to be periodic with the
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Figure 16: Measured roll response and exciting moment.

exciting frequency since the monofrequency periodic motion was imposed. It is convenient
to illustrate and compare the results in terms of frequency for this case. Figures 18 and 19
show the peak values of the identified solution from the present stochastic identification
procedure. For all cases, the same amplitude of the motion is imposed. It should be noted
that the function U includes the information on the damping moment. That is, the results in
Figures 18 and 19 can be explained by the fact that the damping moment is dependent on the
forward speed and the exciting frequency.

5. Conclusions

In this paper, a stochastic inverse method has been investigated for the identification of roll
characteristics of a ship moving at nonzero-forward speeds. The rolling motion has been
treated as a single-degree-of-freedom nonlinear equation of motion, uncoupled from other
motions. On this basis, the stochastic inverse model for the nonlinear damping moment was
derived as a probabilistic expression in terms of the observable parameter which is a function
of the measurements of the roll angle and excitation. The stochastic inverse model contains
the information of the nonlinear damping contribution as the multivariate random variables.
Given measured data, the nonlinear damping moments were identified through the designed
Markov chain Monte Carlo algorithm.

To ensure applicability, the proposed method has been applied to the experimental
data for the two different mechanical phenomena regarding ship roll motions, that is, the
transient motion and forced periodic motion. In nonlinear system identification, it is difficult
to define the quality of the identified results because it depends on its purposes. The
aim of the present study is to find the nonlinear system model which can reproduce the
measured system response. In this sense, it can be concluded that the proposed method
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Figure 17: Step-by-step result for the identification of roll damping moment.

can accurately identify the nonlinearity in damping of a ship moving at nonzero-forward
speeds.

The preset stochastic inverse method has the following limitations. Firstly, the method
is derived based on the assumption of small amplitude of the rolling motion so that
the restoring moment can be approximated by the linear form. In reality, the restoring
moment is also nonlinear. The nonlinear contribution cannot be neglected. The extension
to a system with the nonlinear restoring is not difficult mathematically. However, the new
formulation needs additional information on the restoring nonlinearity for the identification
purpose. Secondly, the experimental setups do not strictly reflect the actual motion of the
ship. Rolling motion is generally coupled with other motions, such as sway and heave. In
reality, the coupling effects should also be taken into account. However, for simplicity of the
experimental application, in this paper, the test model was restrained in all degrees of motion
except the roll motion while the model was moving at a constant speed.
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Figure 18: Illustration of the peak value of the identified result for the trial without BK.
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