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This paper is concerned with a leader-following consensus problem for networks of agents with
fixed and switching topologies as well as nonuniform time-varying communication delays. By
employing Lyapunov-Razumikhin function, a necessary and sufficient condition is derived in the
case of fixed topology, and a sufficient condition is obtained in the case when the interconnection
topology is switched and satisfies certain condition. Simulation results are provided to illustrate
the theoretical results.

1. Introduction

In recent years, consensus problems of multiagent systems have received compelling
attention from various research communities. This is mainly due to their wide applications in
many areas such as synchronization of coupled oscillators, flocking, rendezvous, distributed
sensor fusion in sensor networks, and distributed formation control (see [1]). The study of
consensus problems is of great importance to understand many complex phenomena related
to animal behaviors, such as flocking of birds, schooling of fish, and swarming of bees.

Consensus problems have a long history in the field of computer science, particularly
in automata theory and distributed computation [2]. Vicsek et al. [3] proposed a simple
model of a system of several autonomous agents, and demonstrated by simulation that all
agents eventually reach an agreement. Jadbabaie et al. [4] provided a theoretical explanation
for the observed behavior of the Vicsek model. Up to now, a variety of topics related to
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consensus problems have been addressed such as consensus with switching topologies,
consensus with time-delays, finite-time consensus, consensus over random networks,
consensus with measurement noises.

In multiagent systems, time-varying delays may arise naturally, for example, because
of the moving of the agents, the congestion of the communication channels, the asymmetry
of interactions, and the finite transmission speed due to the physical characteristic of the
medium transmitting the information [5]. It has been observed from numerical experiments
that consensus protocols without considering time delays may lead to unexpected instability.
Therefore, it is important and meaningful to consider the consensus problems when
communication is affected by time-delays. Consensus problems with communication delays
have been addressed by many researchers. Olfati-Saber and Murray [2] studied the average
consensus of first-order multiagent systems with constant and uniform communication time
delays under fixed topology. The upper bound on the admissible delays was derived by
means of frequency domain approach, and it was shown that it is inversely proportional to
the largest eigenvalue of the Laplacian matrix of the network topology. Bliman and Ferrari-
Trecate [6] generalized the results of Reference [2] in considering uniform and nonuniform
time-varying time-delays. Consensus in networks of agents with single-integrator dynamics
and double-integrator dynamics as well as multiple time-varying delays was addressed in
[5, 7–10]. Note that the maximum allowable upper bound of time-delays in these literatures
is presented in terms of linear matrix inequalities (LMIs). By employing Lyapunov-
Razuminkhin function, Hu and Hong [11] and Hu and Lin [12] investigated the consensus
problems of second-order multiagent systems with fixed and switching topologies in the
presence of uniform communication delays.

In this paper, we are interested in the leader-following consensus of multiagent
systems with fixed and switching topologies as well as multiple time-varying delays. With
the help of Lyapunov-Razumikhin function, we derive the maximal allowable upper bound
of communication delays such that all the agents can follow the considered leader. In [13],
the authors also studied the leader-following consensus problem with multiple time-varying
delays, but the proposed protocol requires that the time-delays can be detectable. We assume
that the time-delays are all unknown in the present paper. The objective of this paper is
to generalize the results of [11] by considering nonuniform time-varying communication
delays. Obviously, it is more practical to consider nonuniform time-delays than uniform time-
delays. It is worthy to note that we derive an explicit formula for the bound of the allowable
time-delays by means of Lyapunov-Razumikhin function whereas the bound is presented in
terms of LMIs in [5, 7–10].

The following notations will be used throughout this paper. Let I be an identity matrix
with appropriate dimension. i is the imaginary unit. For a given matrix A, AT denotes its
transpose; ‖A‖ denotes its spectral norm; Λ(A) denotes the set of all eigenvalues of A;
λmax(A) and λmin(A) denote its maximum and minimum eigenvalues, respectively. ‖ · ‖
denotes the Euclidean norm for a given vector. Given a complex number μ ∈ C, Re(μ) and
Im(μ) are its real part and imaginary part, respectively. AmatrixA is said to be positive stable
if all its eigenvalues have positive real parts.

2. Problem Formulation

Consider a multiagent system consisting of n agents, and a leader. We first describe the
interconnection topology among the n agents by a simple digraph G = (V,E), where
V = {1, . . . , n} is the set of nodes representing the n agents and E ⊆ V × V is the set of
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edges of the graph. An edge of G is denoted by (i, j), representing that agent i can directly
receive information from agent j. A path in a digraph is a sequence of ordered edges of the
form (ik, ik+1), k = 1, . . . , m − 1. We say that node j is reachable from node i if there is a path
from node i to node j. The set of neighbors of node i is denoted by Ni = {j ∈ V | (i, j) ∈ E}.

The weighted adjacency matrix of the digraph G is denoted byA = [aij] ∈ R
n×n, where

aij > 0 if (i, j) ∈ E and aij = 0, otherwise. Moreover, we assume that aii = 0 for all i ∈ V. The
indegree and outdegree of node i are defined as degin(i) =

∑n
j=1 aji and degout(i) =

∑n
j=1 aij ,

respectively. A digraph is said to be balanced if degin(i) = degout(i). The Laplacian matrix
L = [lij] associated with digraph G is defined as

lij =

⎧
⎪⎨

⎪⎩

−aij , i /= j,
n∑

k=1,k /= i

aik, i = j.
(2.1)

The definition of L clearly implies that L must have a zero eigenvalue corresponding to a
eigenvector 1, where 1 � [1, . . . , 1]T ∈ R

n. Moreover, 0 is a simple eigenvalue of L if and only
if G has a spanning tree [14].

In order to study a leader-following problem, we also concern another digraph G,
which consists of digraph G, node 0, and edges from some nodes to node 0. We say that node
0 is globally reachable in G if node 0 is reachable from any node in G. The leader adjacency
matrix associated with G is defined as a diagonal matrix B with diagonal elements bi, where
bi > 0 if (i, 0) is an edge of G and bi = 0, otherwise.

In this paper, we consider the following double integrator system of n agents:

ẋi = vi,

v̇i = ui, i = 1, 2, . . . , n,
(2.2)

where xi, vi, ui ∈ R denote the position, velocity, and control input of agent i, respectively.
The dynamics of the leader is expressed as follows:

ẋ0 = v0, (2.3)

where v0 is the desired constant velocity.
Let τij(t) denote the communication time-delay from agent j to agent i. Similarly to [2],

we assume that communication delays between agents are symmetrical, that is, τij(t) = τji(t).
Our control goal is to let the n agents follow the considered leader in the sense of both position
and velocity, namely, xi → x0, vi → v0 (i = 1, . . . , n) as t → ∞. For this end, we study the
following neighbor-based protocol:

ui(t) =
n∑

i=1

aij(t)
[
xj

(
t − τij(t)

) − xi

(
t − τij(t)

)]
+ bi(t)[x0(t − τi0(t)) − xi(t − τi0(t))]

+ k(v0 − vi(t)),

(2.4)

where k is a control parameter.
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Figure 1: Interconnection topology G1.

The communication topology among the group of agents may change dynamically
due to link failure or creation, for instance, because of the limited detection range of agents,
existence of the obstacles. In order to describe the switching topologies, we define a piecewise
constant switching signal σ(t) (σ in short) : [0,∞) → P = {1, 2, . . . ,N}, whereN denotes the
total number of all possible interaction topologies. The collection of all possible interaction
topologies {G1, . . . ,GN} is a finite set. For convenience, let

D =
{
τp(t) : p ∈ I}, I = {1, . . . , m}, (2.5)

be the collection of independent time-delays affecting the communication links, where τp(t)
are piecewise continuous functions. It is clear that m ≤ ((n + 1)n)/2 because the delays are
symmetrical. We assume that the nonuniform time-varying delays are uniformly bounded;
namely, there exists a constant τ ≥ 0 such that 0 ≤ τp(t) ≤ τ , ∀p ∈ I. The associated edges,
with the time-delay τp(t) and switching signal σ, define a subgraph Gp,σ . The corresponding
Laplacian matrix associated with Gp,σ and the leader adjacency matrix associated with Gp,σ

are denoted by Lp,σ and Bp,σ , respectively. It is clear that

Lp,σ1 = 0, p ∈ I,
m∑

p=1

Lp,σ = Lσ,
m∑

p=1

Bp,σ = Bσ. (2.6)

To illustrate these relationships, an example is given as follows.

Example 2.1. Consider a multiagent system consisting of four agents and a leader with the
interconnection topology G1 shown in Figure 1. We assume that G1 has 0 − 1 weights, and
τ10(t) = τ40(t) = τ1(t), τ21(t) = τ34(t) = τ2(t), τ41(t) = τ3(t). The subgraphs G11, G21, G31 are
shown in Figure 2, and one can obtain the following:

L1 =

⎛

⎜
⎜
⎝

0 0 0 0
−1 1 0 0
0 0 1 −1
−1 0 0 1

⎞

⎟
⎟
⎠, L11 = 0, L21 =

⎛

⎜
⎜
⎝

0 0 0 0
−1 1 0 0
0 0 1 −1
0 0 0 0

⎞

⎟
⎟
⎠, L31 =

⎛

⎜
⎜
⎝

0 0 0 0
0 1 0 0
0 0 0 0
−1 0 0 1

⎞

⎟
⎟
⎠, (2.7)

and B1 = B11 = diag{1, 0, 0, 1}, B21 = B31 = 0. Obviously, (2.6) is true.
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Figure 2: The subgraphs of G1 associated to delays τ1, τ2, and τ3.

Write x = (x1, . . . , xn)
T , v = (v1, . . . , vn)

T . With protocol (2.4), (2.2) can be written in
the following matrix form:

ẋ = v,

v̇ = −
m∑

p=1

(
Lp,σ + Bp,σ

)
x
(
t − τp(t)

)
+

m∑

p=1

Bp,σ1x0
(
t − τp(t)

) − k(v − v01).
(2.8)

Let x = x−x01, v = v−v01. We can obtain an error dynamics of system (2.8) as follows:

ε̇ = A0ε(t) +
m∑

p=1

Ap,σε
(
t − τp(t)

)
, (2.9)

where

ε =
(
x
v

)

, A0 =
(
0 I
0 −kI

)

, Ap,σ =
(

0 0
−Hp,σ 0

)

, Hp,σ = Lp,σ + Bp,σ . (2.10)

Before ending this section, we introduce Lyapunov-Razumikhin Theorem,which plays
a key role in the convergence analysis of system (2.9).

Consider the following system:

ẋ = f(xt), t > 0,

x(θ) = ϕ(θ), θ ∈ [−r, 0], (2.11)

where xt(θ) = x(t + θ), ∀θ ∈ [−r, 0] and f(0) = 0. Let C([−r, 0],Rn) be a Banach space of
continuous functions defined on an interval [−r, 0], taking values in R

n with the topology of
uniform convergence, and with a norm ‖ϕ‖c = maxθ∈[−r,0]‖ϕ(θ)‖.
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Lemma 2.2 (Lyapunov-Razumikhin Theorem [15]). Let φ1, φ2, and φ3 be continuous,
nonnegative, nondecreasing functions with φ1(s) > 0, φ2(s) > 0, φ3(s) > 0 for s > 0 and
φ1(0) = φ2(0) = 0. For system (2.11), suppose that the function f : C([−r, 0],Rn) → R takes
bounded sets ofC([−r, 0],Rn) in bounded sets ofRn. If there is a continuous function V (t, x) such that

φ1(‖x‖) ≤ V (t, x) ≤ φ2(‖x‖), t ∈ R, x ∈ R
n. (2.12)

In addition, there exists a continuous nondecreasing function φ(s) with φ(s) > s, s > 0 such that the
derivative of V along the solution x(t) of (2.11) satisfies

V̇ (t, x) ≤ −φ3(‖x‖) if V (t + θ, x(t + θ)) < φ(V (t, x(t))), θ ∈ [−r, 0], (2.13)

then the solution x = 0 is uniformly asymptotically stable.

Usually, V (t, x) is called a Lyapunov-Razumikhin function if it satisfies (2.12) and
(2.13) in Lemma 2.2.

3. Main Results

3.1. Fixed Interconnection Topology

Consider system (2.9) with fixed interconnection topology. In this case, the subscript σ can
be dropped. Rewritte (2.9) as

ε̇ = A0ε(t) +
m∑

p=1

Apε
(
t − τp(t)

)
. (3.1)

To derive a delay-dependent stability criteria, we make the following model
transformation. With the observation that

ε
(
t − τp(t)

)
= ε(t) −

∫0

−τp(t)
ε̇(t + s)ds, (3.2)

it follows from (3.1) that

ε
(
t − τp(t)

)
= ε(t) −

m∑

i=0

Ai

∫0

−τp(t)
ε(t + s − τi(t))ds, (3.3)

where τ0(t) ≡ 0. Substituting (3.3) into system (3.1) leads to

ε̇ =
m∑

p=0

Apε(t) −
m∑

p=1

m∑

i=0

ApAi

∫0

−τp(t)
ε(t + s − τi(t))ds. (3.4)
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Noting that ApAi = 0 for p, i = 1, . . . , m, we have

ε̇ = Fε(t) −
m∑

p=1

Cp

∫0

−τp(t)
ε(t + s)ds, (3.5)

where

F =
m∑

p=0

Ap =
(

0 I
−H −kI

)

, Cp = ApA0 =
(
0 0
0 −Hp

)

, H = L + B. (3.6)

The process of transforming a system represented by (3.1) to one represented by (3.5)
is known as a model transformation. The stability of the system represented by (3.5) implies
the stability of the original system [16].

To get the main result of this subsection, we need the following lemmas.

Lemma 3.1 (see [17]). Given a complex-coefficient polynomial,

f(s) = s2 + (a + ib)s + c + id, (3.7)

where a, b, c, d ∈ R, f(s) is Hurwitz stable if and only if a > 0 and abd + a2c − d2 > 0.

Lemma 3.2. Let

F =
(

0 In
−H −kIn

)

, k > 0. (3.8)

Then F is Hurwitz stable if and only ifH is positive stable and

k > max
μi∈Λ(H)

⎧
⎪⎨

⎪⎩

∣
∣Im

(
μi

)∣
∣

√
Re
(
μi

)

⎫
⎪⎬

⎪⎭
. (3.9)

Proof. Note that the characteristic polynomial of F is given by

det(sI2n − F) = det
([

sIn −In
H (s + k)In

])

= det(s(s + k)In +H),
(3.10)

where we have used Schur formula [18] to obtain the second equality. Let μi be the ith
eigenvalue ofH, and we have

det(sI2n − F) =
n∏

i=1

(
s2 + ks + μi

)
. (3.11)
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Denote that f(s, μi) = s2 + ks + μi. It follows from Lemma 3.1 that f(s, μi) is Hurwitz
stable if and only if Re(μi) > 0 and k > | Im(μi)|/

√
Re(μi). Therefore, all eigenvalues of F have

negative real parts if and only if Re(μi) > 0 and k > | Im(μi)|/
√
Re(μi) for any μi ∈ Λ(H),

which implies the conclusion.

Lemma 3.3 (see [11]). The matrix H = L + B is positive stable if and only if node 0 is globally
reachable in G.

Now we state one of our main results.

Theorem 3.4. Consider system (3.1) and take

k > k∗ = max
μi∈Λ(H)

⎧
⎪⎨

⎪⎩

∣
∣Im

(
μi

)∣
∣

√
Re
(
μi

)

⎫
⎪⎬

⎪⎭
, (3.12)

where H = L + B, k is the control parameter in protocol (2.4). Then, there exists a constant τ∗ >
0 (which will be defined in the following (3.20)) such that when τ < τ∗,

lim
t→∞

ε(t) = 0; (3.13)

namely, the n agents can follow the leader (in the sense of both position and velocity), if and only if
node 0 is globally reachable in G.

Proof. (Sufficiency). Since node 0 is globally reachable in G, it follows from Lemma 3.3 thatH
is positive stable. Thus, it follows from (3.12) and Lemma 3.2 that F is Hurwitz stable. Hence,
by Lyapunov theorem [19], there exists a positive definite matrix P ∈ R

2n×2n such that

PF + FTP = −I2n. (3.14)

Take a Lyapunov-Razumikhin function

V (ε) = εTPε. (3.15)

Along the solution of system (2.9), from (3.5), we have

V̇ (ε) = εT
(
PF + FTP

)
ε −

m∑

p=1

2εTPCp

∫0

−τp(t)
ε(t + s)ds. (3.16)

Note that 2aTb ≤ aTΨa + bTΨ−1b holds for any appropriate positive definite matrix Ψ. Then,
we have

V̇ (ε) ≤ εT
(
PF + FTP

)
ε +

m∑

p=1

[

τp(t)εTPCpP
−1CT

pPε +
∫0

−τp(t)
εT (t + s)Pε(t + s)ds

]

. (3.17)
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Take φ(s) = qs for some constant q > 1. In the case of

V (ε(t + θ)) < qV (ε(t)), −τ ≤ θ ≤ 0, (3.18)

we have

V̇ (ε) ≤ −εTε + τ
m∑

p=1

εT
(
PCpP

−1CT
pP + qP

)
ε, (3.19)

by recalling that τp(t) ≤ τ . As a result, if

τ < τ∗ =
1

∥
∥
∥
∑m

p=1
(
PCpP−1CT

pP + qP
)∥∥
∥
, (3.20)

then V̇ (ε) ≤ −ηεTε for some constant η > 0. Therefore, the conclusion follows by Lemma 2.2.
(Necessity). System (3.1) is asymptotically stable for any time delays τp(t) < τ∗, p ∈ I.

In particular, let τp(t) ≡ 0, p ∈ I. By (3.1), the system ε̇ = Fε(t) is asymptotically stable, and
hence all eigenvalues of F have negative real parts. Therefore, it follows from Lemma 3.2 that
H is positive stable, and the conclusion follows by Lemma 3.3.

Remark 3.5. From the proof of Theorem 3.4, we can see that many zoom techniques have to
be applied during the derivation of τ∗, and hence our estimate τ∗ may be very conservative.

3.2. Time-Varying Topology

In this subsection, we consider the case of switching topologies. Similar to the case of fixed
topology, we can obtain that

ε
(
t − τp(t)

)
= ε(t) −

∫0

−τp(t)

(

A0ε(t + s) +
m∑

i=1

Ai,σε(t + s − τi(t))

)

ds. (3.21)

Then, from (2.9), we have

ε̇ =

⎛

⎝A0 +
m∑

p=1

Ap,σ

⎞

⎠ε(t) −
m∑

p=1

Ap,σA0

∫0

−τp(t)
ε(t + s)ds, (3.22)

by noting that Ap,σAi,σ = 0 for p, i = 1, . . . , m. Denote the following:

Fσ = A0 +
m∑

p=1

Ap,σ =
(

0 In
−Hσ −kIn

)

,

Cp,σ = Ap,σA0 =
(
0 0
0 −Hp,σ

)

,

(3.23)
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where Hp,σ = Lp,σ + Bp,σ . Then (3.22) can be rewritten as

ε̇ = Fσε(t) +
m∑

p=1

Cp,σ

∫0

−τp(t)
ε(t + s)ds. (3.24)

To obtain the main result of this subsection, we introduce the following assumption.

Assumption 3.6. The weights of digraph G satisfy the following conditions:

(1)
∑n

j=1 akj ≥
∑n

j=1 ajk, k ∈ V, k /∈ I,
(2) 2bk +

∑n
j=1 akj >

∑n
j=1 ajk, ∀k ∈ I,

where I � {i | bi > 0, i ∈ V} namely, I denotes the index set of neighbors of vertex 0.

Lemma 3.7 (see [20]). Assume that the weights of G satisfy (Assumption 3.6), and node 0 is globally
reachable in G. ThenH +HT is positive definite, where H = L + B.

Remark 3.8. In the study of leader-following consensus for second-order multiagent systems
with switching topologies [11, 21–24], it was assumed that G is balanced and vertex 0
is globally reachable in G so that a common Lyapunov function can be established. The
theoretical base is the conclusion that H +HT is positive definite if G is balanced, and vertex
0 is globally reachable in G. Noticing that

∑n+1
j=1 akj and

∑n+1
j=1 ajk denote the out-degree and

in-degree of node k in G, respectively, (Assumption 3.6) contains that the out-degree of node
k is greater or equal to its in-degree for each k ∈ V as a special case. Then (Assumption 3.6) is
much weaker than the balanced constraint on G, and the corresponding results in the above
literatures can be improved accordingly.

For convenience, denote that μ = maxt≥0{λmax(Hσ(t)H
T
σ(t))}, λ = mint≥0{λmin(Hσ(t) +

HT
σ(t))}, which are well defined by noting that the set P is finite. The main result of this

subsection is as follows.

Theorem 3.9. Suppose that the weights of Gσ satisfy (Assumption 3.6) and node 0 is globally
reachable in Gσ for any t ≥ 0. Consider system (2.9) and take

k > k∗ =
μ

2λ
+ 1. (3.25)

If τ < τ∗1 (which will be defined in the following (3.32)), then

lim
t→∞

ε(t) = 0. (3.26)

Proof. Take a Lyapunov-Razumikhin function V (ε) = εTΦε with positive definite matrix

Φ =
(
kIn In
In In

)

, k > 1. (3.27)



Mathematical Problems in Engineering 11

Similar to the analysis in the proof of Theorem 3.4, we have

V̇ (ε) ≤ εT
(
ΦFσ + FT

σΦ
)
ε +

m∑

p=1

[

τp(t)εTΦCp,σΦ−1CT
p,σΦε +

∫0

−τp(t)
εT (t + s)Φε(t + s)ds

]

.

(3.28)

Take φ(s) = qs for some constant q > 1. In the case of

V (ε(t + θ)) < qV (ε(t)), −τ ≤ θ ≤ 0, (3.29)

we have

V̇ (ε) ≤ −εTQσε + τ
m∑

p=1

εT
(
ΦCp,σΦ−1CT

p,σΦ + qΦ
)
ε, (3.30)

where

Qσ = −
(
ΦFσ + FT

σΦ
)
=
(
Hσ +HT

σ HT
σ

Hσ 2(k − 1)I

)

. (3.31)

According to Schur complement [19], Qσ is positive definite for any t ≥ 0 if k satisfies (3.25).
Hence, if

τ < τ∗1 =
mint≥0{λmin(Qσ)}

maxt≥0
∥
∥
∥
∑m

p=1
(
ΦCp,σΦ−1CT

p,σΦ + qΦ
)∥∥
∥
, (3.32)

which is well defined by noting that the set P is finite, then V̇ (ε) ≤ −η1εTε for some η1.
Therefore, the conclusion follows by Lemma 2.2.

Remark 3.10. For the first-order multiagent systems, it was shown that the consensus can
be achieved provided that the network topology jointly contains a spanning tree [14, 25].
However, if the group of agents is governed by second-order dynamics, the consensus
depends not only on the topology condition but also on the coupling strength between
neighboring agents, and it was shown that consensus may fail to be achieved even
if the network topology contains a spanning tree [26]. It should be pointed out that
(Assumption 3.6) is not necessary to ensure the consensus, and it is of great interest to
consider the more general condition on the network topology.

4. Simulations

In this section, two examples are provided to illustrate the theoretical results. For simplicity,
we assume that each interconnection topology has 0-1 weights in the following two examples.
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Figure 3: Position errors and velocity errors of Example 4.1.
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Figure 4: Interconnection topologies G2 and G3.
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Figure 5: Position errors and velocity errors of Example 4.2.



Mathematical Problems in Engineering 13

Example 4.1. Consider a multiagent system consisting of a leader and four agents with fixed
topology G1 given in Figure 1. It is clear that node 0 is globally reachable in G1. By simple
calculation, we have τ∗ = 0.0426 and k > 0. Let τ1(t) = 0.02| sin t|, τ2(t) = 0.03| cos t|, τ3(t) =
0.03 + 0.01 sin t. The simulation results are obtained with k = 2. Figure 3 shows that the four
agents can follow the considered leader.

Example 4.2. Consider a multiagent system consisting of a leader and four agents. The
interconnection topology of the multiagent system switches every 1s in the sequence 〈G2,G3〉
described as Figure 4. It is clear that the weights of G2 and G3 satisfy (Assumption 3.6) and
node 0 is globally reachable in G2 and G3. Let τ10(t) = τ40(t) = 0.1| sin t|, τ21(t) = τ34(t) =
0.2| cos t|, τ23(t) = 0.2+0.1 sin t. The simulation results are obtained with k = 10. It can be seen
from Figure 5 that the four agents can follow the considered leader.

5. Conclusion

In this paper, we study a leader-following consensus problem of second-order multiagent
systems with fixed and switching topologies as well as nonuniform time-varying communi-
cation delays. With the help of Lyapunov-Razumikhin function, an explicit formula for the
upper bound of admissible delays is obtained for both fixed and switching topologies. Future
research issues will include the cases when the communication delays are asymmetric, and
the velocity of the considered leader is time-varying.
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