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Construction of three-dimensional structures from video sequences has wide applications for intel-
ligent video analysis. This paper summarizes the key issues of the theory and surveys the recent
advances in the state of the art. Reconstruction of a scene object from video sequences often takes
the basic principle of structure from motion with an uncalibrated camera. This paper lists the
typical strategies and summarizes the typical solutions or algorithms for modeling of complex
three-dimensional structures. Open difficult problems are also suggested for further study.

1. Introduction

Over the past two decades, many researchers seek to reconstruct the model of a three-
dimensional (3D) scene structure and camera motion from video sequences taken with an
uncalibrated camera or unordered photo collections from the Internet. Most traditionally,
depth measurement and 3D metric reconstruction can be done from two uncalibrated stereo
images [1]. Nowadays, reconstructing a 3D scene from a moving camera is one of the most
important issues in the field of computer vision. This is a very challenging task because of
its computational efficiency, generality, complexity, and exactitude. In this paper, we aim to
show the development and current status of the 3D reconstruction algorithms on this topic.

The basic concept and knowledge of the problem can be found from the fundamentals
of the multiview geometry through the books and thesis such as Multiple View Geometry in
Computer Vision [2], The Geometry of Multiple Images [3], Triangulation [4], and some typical
publications [5–8], which are independent for implementing an entire system. Multiple-view
geometry is most fundamental in computer vision, and the algorithms of structure from
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motion are based on the perspective geometry, affine geometry, and the Euclidean geometry.
For simultaneous computation of 3D points and camera positions, this is a linear algorithm
framework for the Euclidean structure recovery utilizing a scaled orthographic view and
perspective views based on having a reference plane visible in all views [9]. There is an affine
framework for perspective views that are captured by a single extremely simple equation
based on a viewer-centered invariant, called relative affine structure [10]. A comprehensive
method is used for estimating scene structure and camera motion from an image sequence
taken by affine cameras which can incorporate all point, line, and conic features in a unified
manner [11]. The other approach tries to calculate the cameras along with the 3D points, only
relying on established correspondences between the observed images. These systems and
improvements are covered in many publications [2, 6, 12–15]. The literature gives a compact
yet accessible overview covering a complete reconstruction system.

For multiview modeling of a rigid scene, an approach is presented in [16], which
merges traditional approaches to reconstructing image-extractable features, andmodeling via
user-provided geometry includes steps to obtain features for a first guess of the structure and
motion, fit geometric primitives, correct the structure so that reconstructed features would
lie exactly on geometric primitives, and optimize both structure and motion in a bundle
adjustment manner. A nonlinear least square algorithm is presented in [17] for recovering
3D shape and motion from image streams.

Sparse 3D measurements of real scenes are readily estimated from N-view image se-
quences using structure-from-motion techniques. There is a fast algorithm for rigid structure
from image sequences in [18]. Hilton presents a geometric theory for reconstruction of surface
models from sparse 3D data captured fromN camera views [19] for 3D shape reconstruction
by using vanishing points [20]. Relative affine structure is given for canonical model for 3D
from 2D geometry and applications [10].

The paper describes the progress in automatic recovering 3D scene structures together
with 3D camera positions from a sequence of images acquired by an unknown camera
undergoing unknown movement [12]. The main departure from previous structure from
motion strategies is that the processing is not sequential. Instead, a hierarchical approach
is employed for building from image triplets and associated trifocal tensors. A method is
presented for dealing with hundreds of images without precise calibration knowledge [21].
Optimizing just over the motion unknowns is fast, and given the recovered motion, one can
recover the optimal structure algebraically for two images [4].

In fact, reconstruction of nonrigid scenes is very important in structure from motion.
The recovery of 3D structure and camera motion for nonrigid scenes from single-camera
video footages is a key problem in computer vision. For an implicit imaging model of non-
rigid scenes, there is an approach that gives a nonrigid structure-from-motion algorithm
based on computing matching tensors over subsequences, and each nonrigid matching tensor
is computed, along with the rank of the subsequence, using a robust estimator incorporating
a model selection criterion that detects erroneous image points [22]. Uncalibrated motion
captures exploiting articulated structure constraints [23] such as humans. The technique
shows promise as a means of creating 3D animations of dynamic activities such as sports
events. For the problem of 3D reconstruction of nonrigid objects from uncalibrated image
sequences, under the assumption of an affine camera and that the nonrigid object is composed
of a rigid part and a deformation part, a stratification approach can be used to recover
the structure of nonrigid objects by first reconstructing the structure in affine space and
then upgrading it to the Euclidean space [24]. In addition, a general framework of local-
ly rigid motion for solving the M-point and N-view structure-from-motion problem for
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unknown bodies deforming under orthography is presented in [25]. An incremental ap-
proach is presented in [26], where a new framework for nonrigid structure from motion
simultaneously addresses three significant challenges: severe occlusion, perspective camera
projection, and large non-linear deformation.

With the development of structure-from-motion algorithms, geometry constraint and
optimization are necessary for reconstructing a good 3D model of the object or scene. Many
researchers give us some useful approaches. For example, a technique is proposed in [27] for
estimating piecewise planar models of objects from their images and geometric constraints
and 3D structure from a single calibrated view using distance constraints [28]. Marques
and Costeira present an approach to estimating 3D shape from degenerated sequences with
missing data [29]. Beyond the epipolar constraint, it improves the effect of structure from
motion [30].

3D affine measurements may be computed from a single perspective view of a scene
given only minimal geometric information determined from the image. This minimal infor-
mation is typically the vanishing line of a reference plane and a vanishing point for a direction
not parallel to the plane. Without camera parameters, Criminisi et al. [31] show how to (i)
compute the distance between planes parallel to the reference plane; (ii) compute area and
length ratios on any plane parallel to the reference plane; (iii) determine the camera’ location.
Direct estimation is the fundamental estimation of scene structure and camera motion
from a sequence of images. No computation of optical flow or feature correspondences is
required [32]. A good critique on structure-from-motion algorithms can be found in [33] by
Oliensis.

The remainder of this paper is organized as follows. Section 2 briefly gives some typ-
ical applications of structure from video sequences. Section 3 introduces the general recon-
struction principle of structure from video sequences and unstructured photo collections.
Section 4 outlines the methods for structure and motion estimation. Section 5 discusses the
relevant available algorithms for every step to obtain a better result. We offer our impres-
sions of current and future trends in the topic and conclude the development in Sections 6
and 7.

2. Typical Applications

2.1. Modeling and Reconstruction of 3D Buildings or Landmarks

For 3D reconstruction of an object or building, Pollefeys et al. typically present a complete
system to build visualmodel with a hand-held camera [6]. There is a system for photorealistic
3D reconstruction from hand-held cameras [34]. Sinha et al. [35] present an algorithm
for interactive 3D architectural models from unordered photo collections. There is a fully
automated 3D reconstruction and visualization system for architectural scenes including its
interiors and exteriors [36]. The system utilizes structure-from-motion, multiview stereo and
a stereo algorithm.

The 3Dmodels of historical relics and buildings, for example, the Emperor Qin’s Terra-
cotta Warriors and Piazza San Marco, have very significant meanings for archeologists. A
system that can match and reconstruct 3D scenes from extremely large collections of photo-
graphs has been developed by Agarwal et al. [37]. A method for enabling existing multiview
stereo algorithms to operate on extremely large unstructured photograph collections has been
contrived by Furukawa et al. [38]. This approach is to decompose the collection into a set
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of overlapping sets of photos that can be processed in parallel and to merge the resulting
reconstructions [38]. People want to sightsee the famous buildings or landscapes from the In-
ternet; they could tour the world via building a web-scale landmark recognition engine [39].

Modeling and recognizing landmarks at world scale is a useful yet challenging task.
There exists no readily available list of worldwide landmarks. Obtaining reliable visual
models for each landmark can also pose problems, and efficiency is another challenge for
such a large-scale system. Zheng et al. leverage the vast amount of multimedia data on the
web, the availability of an Internet image search engine, and advances in object recognition
and clustering techniques, to address these issues [39].

2.2. Urban Reconstruction

Modeling the world and reconstructing a city present many challenges for a visualization
system in computer vision. It can use some products such as Google Earth Google Map.
For instance, Pollefeys et al. [40] present a system for automatic, georegistered, real-time
multiview stereo 3D reconstruction form long image sequences of urban scenes. The system
collects video streams, as well as GPS and inertia measurements in order to obtain the
georegistered coordinates of the 3D models [40]. Faugeras et al. [41] address the problem
of recovery of a realistic textured model of a scene from a sequence of images, without any
prior knowledge either about the parameters of the cameras or about their motion.

2.3. Navigation

If the world’s model or the city’s reconstruction is exhaustively completed, we can obtain
relative location of the buildings and find related views for navigation for robots or other
vision systems. Photo Tourism can enable full 3D navigation and exploration of the set of
images and world geometry, along with auxiliary information such as overhead maps [14]. It
gives several modes for navigation, including free-fight navigation, moving between related
views, object-based navigation, and creating stabilized slideshows. The system by Pollefeys et
al. also contains the navigation function [40]. Supplying realistically textured 3D city models
at ground level promises to be useful for previsualizing upcoming traffic situations in car
navigation systems [42].

2.4. Visual Servoing

In the literature, there are applications that can employ SfM algorithms successfully in prac-
tical engineering. For instance, based on structure from controlled motion or on robust statis-
tics, a visual servoing system is presented in [43]. A general-purpose image understanding
system via a control structure is designed by Marengoni et al. [44] and 3D video compression
via topology matching [45]. More applications are being developed by researchers and en-
gineers in the community.

2.5. Scene Recognition and Understanding

3D reconstruction is an important application to face recognition, facial expression analysis,
and so on. Fidaleo and Medioni [46] design a model-assisted system for reconstruction of 3D
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faces from a single-consumer quality camera using a structure-from-motion approach. Park
and Jain [47] present an algorithm for 3D-model-based face recognition in video.

Reconstruction of 3D scene geometry is an important element for scene understanding,
autonomous vehicle and robot navigation, image retrieval, and 3D television [48]. Nedovic
et al. propose accounting for the inherent structure of the visual world when trying to solve
the scene reconstruction problem [48].

3. Information Organization

The goal of structure-form-motion is automatic recovery of camera motion and scene
structure from two or more images. The problem of using pixel correspondences or track
points to determine camera and point geometry in this manner is known as structure from
motion. It is a self-calibration technique and called automatic camera tracking or match
moving. We must consider several questions like

(1) Correspondence (feature extracting and tracking or matching): given a point in
one image, how does it constrain the position of the corresponding point in other
images?

(2) Scene geometry (structure): given point matches in two or more images, where are
the corresponding points in 3D?

(3) Camera geometry (motion): given a set of corresponding points in two or more
images, what are the camera matrices for these views?

Based on these questions, we can give the 3D reconstruction pipeline as in Figure 1.
The goal of correspondence is to build a set of matching 2D coordinates of pixels across
the video sequences. It is a significant step in the flow of the structure from motion. Cor-
respondence is always a challenging task in computer vision. So far, many researchers have
developed some practical and robust algorithms. Given a video sequence of scene, how can
we find matching points?

Firstly, there are some well-known algorithms for image sequences or videos; one
popular is the KLT tracker [49–51]. It gives us an integrated system that can automatically
detect the KLT feature points and track them. However, it cannot apply to the situations with
wide baseline, illustration changing, variant scale, duplicate and similar structure, occlusion,
noise, image distortion, and so on. Generally speaking, for video sequences, the KLT tracker
can perform a good effect. Figures 2 and 3 show examples of the feature points of the KLT
detector output with example images from http://www.ces.clemson.edu/∼stb/klt/.

In the KLT tracker [49–51], if the time interval between two frames of video is
sufficiently short, we can suppose that the positions of feature points move, but their
intensities do not change; that is,

I(x, t) = I(δ(x), t + Δt), (3.1)

where x is the position of a feature point and δ(x) is a transformation function.
In the papers of Lucas and Kanade [49], Tomasi and Kanade [50], and Shi and Tomasi

[51], the authors made an important hypothesis that for high enough frame rates, δ(x) can be
approximated with a displacement vector d:

I(x, t) = I(x + d, t + Δt). (3.2)
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Figure 1: 3D reconstruction pipeline.

Figure 2: Example set of detected KLT features.

Then symmetric definition for the dissimilarity between two windows, one in image
I(x, t) and one in image I(x + d, t + Δt), is as follows:

ε =
∫∫

W

[I(x + d, t + Δt) − I(x, t)]2ω(x)dx, (3.3)

where ω(x) is the weighting function, usually set to the constant 1. The algorithm is cal-
culating the vector d which minimizes. Now, utilizing the first-order Taylor expansion of



Mathematical Problems in Engineering 7

Figure 3: Tracking trajectory of KLT tracker through a video sequence.

I(x + d, t + Δt) to truncate to the linear term and setting the derivative of ε with respect to d
to 0, obtaining the linear equation:

Zd = e, (3.4)

where Z is the following 2 × 2 matrix:

Z =
∫∫

W

g(x)gT (x)ω(x)dx (3.5)

and e is the following 2 × 1 vector:

e =
∫∫

W

[I(x + d, t + Δt) − I(x, t)]g(x)ω(x)dx, (3.6)

where g(x) = ∂I/∂x.
On the other hand, for a completely unorganized set of images, the tracker becomes

invalid. There is another popular algorithm in computer vision area, named scale-invariant
feature transform (SIFT) [52]. It is effective to feature detection and matching in a wide class
of image transformation, including rotations, scales, and changes in brightness or contrast,
and to recognize panoramas [53]. Figures 4 and 5 show examples of the feature points of the
SIFT output with example images from http://www.cs.ubc.ca/∼lowe/keypoints/.

4. Structure and Motion Estimation

Assume that we have obtained a set of correspondences between images or video sequence,
and then we use the set to reconstruct the 3D structure of each point in the set of corre-
spondences and recover the motion of a camera. This task is called structure from motion.
The problem has been an active research topic in computer vision since the development
of the Longuet-Higgins eight-point algorithm [54] that focused on reconstructing geometry
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Figure 4: Example set of detected SIFT features.
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Figure 5: SIFT feature matches between images.

from two views. In the literature [2], several different approaches to solve the structure-from-
motion problem are given.

4.1. Factorization

There is a popular factorization algorithm for image streams under orthography, using
many images and tracking many feature points to obtain highly redundant feature position
information, which was firstly developed by Tomasi and Kanade [55] in the 1990s. The
main idea of this algorithm is to factorize the tracking matrix into structure and motion
matrices simultaneously via singular value decomposition (SVD) method with low-rank
approximation, taking advantage of the linear algebraic properties of orthographic projection.

However, an orthographic formulation limits the range of motions the method can
accommodate. Perspective projection is a projection model that closely approximates per-
spective projection by modeling several effects not modeled under orthographic projection,
while retaining linear algebraic properties [56, 57]. Poelman and Kanade [56] have developed
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a paraperspective factorization method that can be applied to a much wider range of motion
scenarios, including image sequences containing motion toward the camera and aerial image
sequences of terrain taken from a low-altitude airplane.

With the development of factorization method, a factorization- based algorithm for
multi-image projective structure and motion is developed by Sturm and Triggs [57]. This
technique is a practical approach for recovery of scaled feature points, using fundamental
matrix and epipoles estimated from the image sequences.

Because matrix factorization is a key component for solving several computer vision
problems, Tardif et al. have proposed batch algorithms for matrix factorization [58] that are
based on closure and basis constraints, which handle the presence of missing or erroneous
data, which often arise in structure from motion.

In mathematical expression of the factorization algorithm, assume that the tracked
points are {(xj

i , y
j

i ) | i = 1, . . . , n; j = 1, . . . , m}. The algorithm defines the measurementmatrix
W : W =

∣∣ U
V

∣∣. The rows of U and V are then registered by subtracting from each entry the
mean of the entries in that row:

x
j

i = x
j

i −
1
n

∑
x
j

i ,

y
j

i = y
j

i −
1
n

∑
y
j

i .

(4.1)

The goal of the Tomasi-Kanade algorithm [55] is to factorizeW into two matrices as follows:

W = MX, (4.2)

where M, named motion matrix, is a 2m × 3 matrix which represents the camera rotation in
each frame and X, named structure matrix, is a 3 × n matrix which denotes the positions of
the feature points in object space. So in the absence of the Gauss noise, rank (W) ≤ 3.

Then we can compute SVD decomposition ofW to obtain UDVT:

W = UDVT, (4.3)

where if the singular value of W is [σ1, σ2, σ3], we can get the matrix M = [σ1u1, σ2u2, σ3u3]
and X = [v1, v2, v3].

The method can also handle and obtain a full solution from a partially filled-in
measurement matrix, which occurs when features appear and disappear in the video due to
occlusions or tracking failures [55]. This method gives accurate results and does not introduce
smoothing in structure and motion. Using the above method, the problem can be solved for
the video of general scene such as building and sculpture (Figure 6).

4.2. Bundle Adjustment

Bundle adjustment is a significant component of most structure frommotion systems. It is the
joint nonlinear refinement of camera and point parameters, so it can consume a large amount
of time for large problems. Unfortunately, the optimization underlying structure frommotion
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Figure 6: Example of recovering structure and motion.

involves a complex, nonlinear objective function with no closed-form solution, due to non-
linearities in perspective geometry. Most modern approaches use nonlinear least squares
algorithms [17] to minimize this objective function, a process known as bundle adjustment;
[53] that is, basic mathematics of the bundle adjustment problem is well understood [59].
Generally speaking, bundle adjustment is a global algorithm, but it consumes much time and
cannot achieve real time to solve the minimize restriction. Mouragnon et al. [60] propose an
approach for generic and real-time structure from motion using local bundle adjustment. It
allows 3D points and camera poses to be refined simultaneously through the image sequence.
Zhang et al. [61] apply bundle optimization to further improve the results of consistent depth
maps from a video sequence.

4.3. Self-Calibration

To upgrade the projective and affine reconstruction to a metric reconstruction (i.e., deter-
mined up to an arbitrary Euclidean transformation and a scale factor), calibration techniques,
to which we follow the approach described in [2, 6, 9, 15, 62], can deal with this problem. It
can be done by imposing some constraints on the intrinsic camera parameters. This approach
that is called self-calibration has received a lot of attention in recent years. The ambiguity
on the reconstruction is restricted from projective to metric through self-calibration [6].
Mostly self-calibration algorithms are concerned with unknown but constant intrinsic camera
parameters [2, 4, 12]. The paper presented the problem of 3D Euclidean reconstruction of
structured scenes from uncalibrated images based on the property of vanishing points [63].
They propose a multistage linear approach, with structure from motion technique based on
point and vanishing point matches in images [64].

4.4. Correlative Improvement

Traditional SFM algorithms using just two images often produce inaccurate 3D reconstruc-
tions, mainly due to incorrect estimation of the camera’ motion. Thomas and Oliensis [65]
present a practical algorithm that can deal with noise in multiframe structure from motion.
It describes a new incremental algorithm for reconstructing structure from multi-image
sequences which estimates and corrects for the error in computing the camera motion.
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The research of structure frommotion has shown great progress throughout several decades,
but the algorithms on structure from motion still exhibit some faults and shortages. The
result of Structure from Motion cannot satisfy people in many situations. However, many
researchers present a lot of improving approaches, such as dual computation of projective
shape and camera positions from multiple images [66].

For incremental algorithms that solve progressively larger bundle adjustment
problems, Crandall et al. present an alternative formulation for structure from motion based
on finding a coarse initial solution using a hybrid discrete-continuous optimization and then
improve the solution using bundle adjustment. The initial optimization step uses a discrete
Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt
refinement [67].

For time efficiency, Havlena et al. present a method of efficient structure from motion
by graph optimization [68]. Gherardi et al. improve the algorithm of efficiency with hierar-
chical structure and motion [69].

For duplicate or similar structure, Roberts et al. couple an expectation maximization
(EM) algorithm for structure from motion for scenes with large duplicate structures [70].
A hierarchical framework that resamples 3D reconstructed points to reduce computation
cost on time and memory for very-large-scale structure from motion [71]. Savarese and Bao
propose a formulation called semantic structure from motion (SSFM), where SSFM takes
advantages of both semantic and geometrical properties associated with objects in the scene
[72].

5. Relevant Algorithms

5.1. Features

(1) Line

For the problem of cameramotion and 3D structure reconstruction from line correspondences
across multiple views, there is a triangulation algorithm that outperforms standard linear and
bias-corrected quasi-linear algorithms, and that bundle adjustment using our orthonormal
representation yields results similar to the standard maximum likelihood trifocal tensor
algorithm, while being usable for any number of views [73]. Spetsakis and Aloimonos
[74] present a system for structure from motion using line correspondences. The recovery
algorithm is formulated in terms of an objective function which measures the total squared
distance in the image plane between the observed edge segments and the projections of the
reconstructed lines [75]. A linear method is developed for reconstruction using lines and
points simultaneously [76].

(2) Curve

Tubic et al. [77] present an approach for reconstructing a surface from a set of arbitrary,
unorganized, and intersecting curves. There is an approach for reconstructing open surfaces
from image data [78]. Kaminski and Shashua [79] introduce a number of new results in the
context ofmultiview geometry from general algebraic curves, which startwith the recovery of
camera geometry frommatching curves. Berthilsson et al. present amethod for reconstruction
of general curves, using factorization and bundle adjustment [80].
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(3) Silhouette

Liang and Wong [81] develop an approach that produces relatively complete 3D models
similar to volumetric approaches, with the topology conforming to what is observed from
the silhouettes. In addition, the method neither assumes nor depends on the spatial order
of viewpoints. Hartley and Kahl give us critical configurations for projective reconstruction
from multiple views in [82]. Joshi et al. design an algorithm for structure and motion
estimation from dynamic silhouettes under perspective projection [83]. Liu et al. present
a method that is shaped from silhouette outlines using an adaptive dandelion model [84].
Yemez and Wetherilt develop a volumetric fusion technique for surface reconstruction from
silhouettes and range data [85].

5.2. Other Aspects

(1) Multiview Stereo

Multiview stereo (MVS) techniques take as input a set of images with known camera param-
eters (i.e., position and orientation of the camera, focal length, image distortion parameters)
[38, 53, 86]. We can refer to [87] for a classification and evaluation of recent MVS techniques.

(2) Clustering

There are clustering techniques to partition the image set into groups of related images, based
on the visual structure represented in the image connectivity graph for the collection [88, 89].

6. Existing Problems and Future Trends

While algorithms of structure from motion have been developed for 3D reconstruction in
many applications, some problems of reconstructing geometry from video sequences still
exist in computer vision and photography. Until recently, however, there have been no
good computer vision techniques for recovering this kind of structure from motion. Many
researchers are still making efforts to improve the methods mainly in the following aspects.

6.1. Feature Tracking and Matching

Zhang et al. give a robust and efficient algorithm on efficient nonconsecutive feature tracking
for structure from motion via two main steps, that is, consecutive point tracking and
nonconsecutive track matching [90]. They improve the KTL tracker by the invariant feature
points and a two-pass matching strategy to significantly extend the track lifetime and reduce
the sensitivity of feature points to variant scale, duplicate and similar structure, and noise and
image distortion. The results can be found at http://www.cad.zju.edu.cn/home/gfzhang/.

6.2. Active Vision

The method is based on the structure from controlled motion that constrains camera motions
to obtain an optimal estimation of the 3D structure of a geometrical primitive [91]. Stereo
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geometry is acquired from 3D egomotion streams [92]. Wide-area egomotion estimation is
acquired from known 3D structure [93]. A work on estimating surface reflectance properties
of a complex scene under captured natural illumination can be found in [94]. Other algo-
rithms are also attempted on selective attention of human eyes.

6.3. Unorganized Images

To solve the resulting large-scale nonlinear optimization, we reconstruct the scene incremen-
tally, starting from a single pair of images, then adding new images and points in rounds, and
running a global nonlinear optimization after each round [53]. Structure from motion could
be applied to photos found in the wild, reconstructing scenes from several large Internet
photo collections [14]. The large redundancy in online photo collections means that a small
fraction of imagesmay be sufficient to produce high-quality reconstructions. An investigation
has begun to explore by extracting image “skeletons” from large collections [95]. Perhaps
the most important challenge is to find ways to effectively parallelize all the steps of the
reconstruction pipeline to take advantage of multicore architectures and cloud computing
[37, 38, 53, 89].

7. Conclusion

This paper has summarized the recent development of structure from motion algorithm that
is able to metrically reconstruct complex scenes and objects. The wide applications have
been addressed in computer vision area. Typical contributions are introduced for feature
point detection, tracking, matching, factorization, bundle adjustment, multiview stereo, self-
calibration, line detection and matching, modeling, and so forth. Representative works are
listed for readers to have a general overview of the state of the art. Finally, a summary of
existing problems and future trends of structure modeling is addressed.
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