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This paper presents wafer sequencing problems considering perceived chamber conditions and
maintenance activities in a single cluster tool through the simulation-based optimization method.
We develop optimization methods which would lead to the best wafer release policy in the
chamber tool to maximize the overall yield of the wafers in semiconductor manufacturing
system. Since chamber degradation will jeopardize wafer yields, chamber maintenance is taken
into account for the wafer sequence decision-making process. Furthermore, genetic algorithm is
modified for solving the scheduling problems in this paper. As results, it has been shown that
job scheduling has to be managed based on the chamber degradation condition and maintenance
activities to maximize overall wafer yield.

1. Introduction

Semiconductors are manufactured in highly specialized facilities known as fabs. The
production process in fabs usually consists of four phases: wafer fabrication, wafer probe,
assembly or packaging, and final testing. Since wafer fabrication is technologically the most
complex phase, its scheduling problems have been addressed by many researchers [1–4]. It is
also known that the cluster tool is the basic manufacturing unit of wafer fabs [5]. Therefore,
scheduling problems related to the cluster tool need to be scrutinized so that intelligent
scheduling solutions that will result in the profit of companies can be obtained.

Due to the constant development of new products and processes in semiconductor
manufacturing, the same equipment is very often used for different wafer processes (or
recipes) [1]. However, different recipes require different operation conditions of tools on
which they are executed and will thus have different influences on the tool degradation and
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corresponding wafer yield [6]. Yield, defined as the percentage of working devices that
emerge from the fabrication process, is undoubtedly the most important performance metric
for most semiconductor fabs [6]. It is also well known that the wafer yield is highly
correlated to the maintenance (or cleaning) because particulate contamination within the
process equipment is a major source of yield loss [7]. Therefore, a great deal of effort
in both research and industry communities has been devoted to maintenance decision
making in semiconductor fabs [6, 8–12]. Yao et al. [8, 9] studied age-based preventive
maintenance (PM) scheduling in semiconductor fabs. They proposed a two-level hierarchical
modeling structure, which contains long-term planning as the higher level, and short-term
PM scheduling at the lower level.

However, the unique characteristics of the semiconductor fabrication with multiple
recipes and different degradation process are rarely seen as opportunities for helping wafer
sequencing decisions while most researchers have been considering them as maintenance-
related problems. For instance, it would generate higher yield to produce recipe A first
when a chamber is still in good condition if recipe A is more sensitive than recipe B in
terms of yield loss. Sloan and Shanthikumar [6, 10] developed a model that simultaneously
determines maintenance and production schedules for a single-stage, multiproduct system.
Although this model used an explicit link between equipment condition and yield loss
to make optimal maintenance and production dispatching decisions, the decision-making
scheme only accounted for the steady state (long-run) condition.

In this paper, the focus is placed on wafer sequencing problems considering
perceived chamber conditions and maintenance activities in a single cluster tool through the
simulation-based optimization method. Since this wafer release problem is too complicated
to handle using analytical methods due to the highly volatile semiconductor manufacturing
environment, the modified genetic algorithm (GA) whose evolutionary characteristic can
provide feasible and practical solutions to both deterministic and stochastic problems is
proposed to solve this problem.

The remainder of this paper is organized as follows. The problem statement and
overview of the system are discussed in Section 2. Section 3 describes the framework for
scheduling via simulation. Then, in Section 4, the proposed framework is validated by
comparing its results with scheduling problems whose solutions are already known. In
Section 5, the method is applied to wafer sequence problems in semiconductor manufactur-
ing.

2. Problem Statement and Overview of System

We are interested in developing optimization methods which would lead to the best cassette
(or batch of wafers) release policy in the chamber tool. The cassette order generated
should maximize the overall yield of the wafers. Since chamber degradation will jeopardize
wafer yields, chamber maintenance has to be taken into account for the cassette sequence
decision-making process. For example, maintenance that is not sufficiently frequent will
result in higher yield losses. On the other hand, maintenance that is too frequent will
incur unnecessary maintenance costs and productivity losses. Moreover, since chamber
degradation has different effects on different types of wafers [10], it would be advantageous
to process the more degradation-sensitive wafers immediately after the chamber is cleaned
and to process the less sensitive wafers later when the chamber condition has deteriorated.
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2.1. Model for Chamber Tool Degradation

A semiconductor manufacturing system has extremely complicated processes that involve
hundreds of steps and require reentrance into certain tools to facilitate manufacturing of new
wafer layers. Due to the complexity of the dynamics of equipment degradation, production,
and maintenance operations in semiconductor (and almost any other) manufacturing
processes [13, 14], modeling of its degradation is very important for system operating point
of view.

The degradation process of a chamber is modeled by a discrete-time Markov chain
(DTMC) {X(n), n ≥ 0} with state space S = {S1, . . . , SM}. A Markov chain is a stochastic
process with a Markovian property, namely, that the future and past states are independent
given the present state [15]. A Markov process has been widely used in optimization
and control of stochastic discrete event system such as manufacturing and communication
applications [6, 8–10]. Each circle in the Markov chain in Figure 1 represents a degradation
state of a single chamber. The chamber goes through several states Si, with the higher index
i signifying a worse degradation level. Arrows indicate the direction of state transitions, and
then the transition probabilities are depicted along with each arrow. For instance, p12 means
the probability that S1 will transit to S2. In our case, the transition probabilities pij of a DTMC
are zero whenever j < i, since the chamber condition is assumed to become only worse with
time unless maintenance is performed.

Figure 1 provides an illustration of the unidirectional chamber degradation process.
Whenever a maintenance action is taken (either preventive or reactive maintenance), the
chamber is assumed to return to as “good as new.” The established Markov models in the
simulation will then enable one to track and predict levels of chamber contamination and
proactively clean the chamber exactly when it is needed, rather than the current practice
where chamber maintenance is based on equipment manufacturers’ recommendations. Thus,
the maximum usage of the tool can be exploited and a better synchronization between
maintenance and production operations can be achieved.

2.2. Wafer Yield Model

The yield prediction modeling plays a crucial role in modern semiconductor fabrication [16].
Yield models can be used to determine the cost of a new chip before fabrication, identify
the cost of defect types for a particular chip or a range of chips, and estimate the number
of wafers required at the beginning of production [17]. In our work, we assume that the
yield model for each product wafer type depends on the degree of the chamber degradation
process (Markov process)when the product is processed. The yield model matrices are taken
from the advanced prediction modeling presented in [17]. This yield models are generated
from beta probability distributions, using a different random number seed for each matrix
[10]. The values generated are sorted to ensure that yields tend to be lower as the equipment
condition gets worse. The yield models are given in a form of matrix as below:

Y =

⎡
⎢⎢⎢⎣

y11 y12 · · · y1M

y21 y22 y2M
. . .

yk1 yk2 · · · ykM

⎤
⎥⎥⎥⎦, (2.1)

where yij ≥ 0 represents a yield of wafer i in state Sj and yij ≥ yik if j ≤ k.
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Figure 1: Illustration of state transition diagram for the Markov chain.

3. Simulation-Based Optimization For Wafer Scheduling

Most commonly used optimization procedures (e.g., linear programming, nonlinear
programming, and mixed integer programming, etc.) require an explicit mathematical
formulation. Such a formulation is, however, generally impossible for problems that arise
in practical applications, including a chamber tool fabrication. Therefore, the approach
illustrated in Figure 2 is used to address the scheduling problems in this paper [18, 19].

A feasible scheduling solution is generated by the optimization subroutine and is fed
into the discrete event simulator as an input. After running the simulation with the
feasible scheduling solution, the simulator yields outputs, some of which are chosen to be
evaluated by an objective function. Based on the objective values calculated, the optimization
subroutine produces another candidate scheduling solution given the constraint set on the
inputs. These steps will be repeated until a termination condition is satisfied. The iterations
are terminated if the chance of achieving significant improvement in the nest generations is
excessively low.

We create the discrete event simulation with Markov processes for degradation and
yield models for multiple recipes. Simulation modeling will be used to yield outputs.

3.1. Optimization Subroutine Using Genetic Algorithm

Genetic algorithm (GA) is a powerful and broadly applicable optimization search technique
used to solve deterministic and stochastic problems based on the principles from the theory
of evolution [20]. It is used to tackle the wafer scheduling problems in this paper as an
optimization subroutine in Figure 2. Although GA is not guaranteed to generate an optimal
solution, GA has shown great potential, with very promising results from experiments and
practices in many different areas of the industry [21].

3.2. Modified Genetic Operations for Wafer Scheduling Problem

Since general genetic operations (e.g., crossover and mutation) in GA are not applicable
to this wafer scheduling problem, special modifications to these genetic operations
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Figure 2: How scheduling optimization via simulation works.

should be made. In other words, genetic operations between two feasible sequences
(parent chromosomes) do not always generate feasible sequences (offspring chromosomes).
Although we can use a typical mutation operation, the crossover operations modified in this
scheduling problem have to be addressed.

Suppose that 9 cassettes are in a queue, the chromosome which illustrates the job
sequence of 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 can be represented in GA
as

1 2 3 4 5 6 7 8 9

Then, the crossover operation used in this paper can be summarized as follows.

Step 1. Select two positions randomly along the chromosome

1 2 3 4 5 6 7 8 9

5 4 6 9 2 1 7 8 3

Sequence 1

Sequence 2

Step 2. Exchange two subchromosomes between sequences to create protosequences

Protosequence 1

Protosequence 2

1 2 6 9 2 1 7 8 9

5 4 3 4 5 6 7 8 3

Step 3. Determine mapping relationship between two mapping sections

1

2

9 4

5

6 36 9 2 1

3 4 5 6

Step 4. Make updated jobs feasible with the mapping relationship

Updated sequence 1

Updated sequence 2

3 5 6 9 2 1 7 8 4

2 9 3 4 5 6 7 8 1



6 Mathematical Problems in Engineering

We also have to apply a different crossover operation for a sequence whose jobs are repeated.
In this case, the following crossover operation can be conducted.

Step 1. Select two positions randomly and exchange subchromosomes

Sequence 1 1 1 2 2 3 4 5 5 5

Sequence 2 5 4 1 3 2 5 2 1 5

Step 2. Delete common jobs

2 2 3 4

1 3 2 5

2 4

1 5

Missed genes

Exceeded genes

Step 3. Delete exceeded jobs from sequence 1 randomly

1 1 3 2 55 5Protosequence 1

Step 4. Insert missed jobs into sequence 1 randomly

1 4 1 3 2 5 5 2 5Updated sequence 1

Step 5. Repeat Steps 2 through 4 for sequence 2 to create updated sequence 2

Updated sequence 2 5 1 2 2 3 4 5 1 5

This special modification on the crossover operation enables one to apply the GA
algorithm with a simulation to the wafer sequencing problems. The initial sequences which
are randomly generated will be fed to the fabs simulation model which can provide overall
wafer yield as a fitness value in GA. Based on this fitness value, GA is called again to find
new sequences. These steps will be repeated until a termination condition is satisfied.

4. Validation Via Known Scheduling Problems

In this section, the methodology mentioned in the previous sections is validated through
scheduling problems whose optimal sequences are already known from previous researches
[22, 23].

4.1. First Example: Minimizing a Total Weighted Tardiness

Consider the following four jobs in a queue with a single machine, given the conditions in
Table 1. One of the key objectives in a scheduling problem is to meet all the completion time
of jobs, which, of course, depends on the schedule. The completion time of job j is denoted by
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Table 1: System circumstance.

Jobs wj

(weight)
pj

(processing time)
dj

(due date)

1 4 12 16
2 5 8 26
3 3 15 25
4 5 9 27

Cj . Then the tardiness of job j is defined as Tj = max(Cj − dj, 0). The objective is to minimize
a total weighted tardiness and it can be formulated as

min
all schedules

∑
j

wjTj . (4.1)

This example of deterministic system can be found in [24] and the exact optimal
schedule (1→ 2 → 4 → 3) with an objective value of 67 is achieved via branch and bound.
This problem is proved to be NP hard in the ordinary sense [24]. As shown in Table 2 and
Figure 3, GA found an optimal schedule after 3 iterations.

4.2. Second Example: Minimizing a Makespan with a Parallel Machines

Consider four parallel machines and nine jobs whose processing times are given in Table 3.
We want to minimize the makespan. The makespan is defined as the completion time of the
last job to leave the system. Since a minimum makespan usually implies a high utilization of
the machines, the makespan becomes an objective of considerable interest [25]. In addition,
minimizing the makespan has the effect of balancing the load over the various machines.
Therefore, the objective of this example is to minimize the makespan in the case of a four par-
allel machine model given the conditions in Table 3. It can be mathematically formulated as

min
all schedules

max(C1, C2, C3, C4). (4.2)

Some jobs have the same amount of processing time as a parallel machine
configuration, prompting us to develop a different GA crossover operation (see Section 3.2).
This example can be also seen in [24] and an optimal solution with an optimal value of 12 is
given as 1 → 1 → 2 → 4 → 4 → 2 → 3 → 3 → 4.

As shown in Table 4 and Figure 4, GA found an optimal schedule (3 → 2 → 1 →
4 → 4 → 1 → 2 → 3 → 4) after 4 iterations. Note that this optimal schedule seems to be
different from the one in [24] but it turns out that this problem has multiple optimal solutions
which results in the same makespan of 12.

Although we present only two numerical examples to illustrate the proposed method
for solving scheduling problems, it can generally be concluded that GA works well with
complex scheduling problems which are known as NP-hard problems. We want to tackle
a cassette release scheduling considering machine conditions and multiple recipes in the
following section.
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Table 2: Simulation result sequence.

Generation Best sequence in each generation
1 4 → 1→ 2 → 3
2 4 → 1→ 2 → 3
3 1→ 2→ 4 → 3
4 1→ 2→ 4→ 3
...

...
10 1 → 2 → 4 → 3
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Figure 3: Simulation result: objective values.

5. Application to Semiconductor Manufacturing System

Our discrete event simulation using the ProModel software is shown in Figure 5 and can be
described as follows. First, cassettes of wafers arrive in a queue at the cluster tool. Then, the
cassettes of wafers are transported into the load lock by the operator. Before entering the
load lock, different cassettes of wafers may be assigned different process sequences. Once the
cassette has been loaded into the load lock, the cluster tool is evacuated by a pump prior to
wafer processing. After the entire batch of wafers has been processed and returned to the
exiting load lock, the cluster tool is raised back to the atmospheric pressure before the wafers
are removed.

A set of industrial data from the semiconductor manufacturing processing has been
collected from chamber tools with two different recipes (i.e., two different types of products).
Nine process parameters and the succeeding metrology measurement are periodically
monitored in conjunction with associated process events. Trace data sets, sampled at every
second, contain current, power, gas flow, on-wafer particle counts, temperature, pressure,
and so forth measured from chamber processes, while event data sets include time stamps
for process and maintenance activities.
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Table 3: System circumstance.

Jobs 1 1 2 2 3 3 4 4 4
pj 7 7 6 6 5 5 4 4 4

Table 4: Simulation result sequence.

Generation Best sequence in each generation

1 3 → 2 → 4 → 1 → 1 → 4 → 3 → 2 → 4
2 3 → 1→ 4 → 3 → 4 → 1 → 2 → 2 → 4
3 2 → 1 → 4 → 3 → 3 → 1→ 4 → 2 → 4
4 3 → 2 → 1 → 4 → 4 → 1 → 2 → 3 → 4
...

...
10 3 → 2 → 1 → 4 → 4 → 1 → 2 → 3 → 4

The degradation processes for each chamber in the above cluster tool simulation
have been modeled using a 5-state discrete time Markov chain as shown in Figure 1. The
corresponding probability transition matrix P is obtained from a set of manufacturing
process data using a hidden Markov model (HMM). Since the underlying chamber
degradation condition is not directly monitored or measured, we have to estimate them by
applying the HMM, addressed in [17]. An HMM enables us to estimate machine condition
from a sequence of measurements (on-wafer particle counts, wafer thickness uniformity,
temperature, pressure, etc.). The procedure of finding probability transition matrix from a
set of industrial data via an HMM is provided in Liu [17] in detail. The resulting probability
transition matrices show that recipe A requires less harsh condition than that of recipe B
although the current maintenance policy does not consider this difference for the cleaning
decision. Note that recipe B is more sensitive than recipe A in terms of yield loss and these
characteristics are represented in the simulation model by having different values in the
probability transition matrices and yield matrix as bellow:

PA =

⎡
⎢⎢⎢⎢⎢⎣

0.9719
0
0
0
0

0.0195
0.9256

0
0
0

0.0086
0.0544
0.9872

0
0

0
0.0200
0.0119
0.9744

0

0
0

0.0009
0.0256

1

⎤
⎥⎥⎥⎥⎥⎦
,

PB =

⎡
⎢⎢⎢⎢⎢⎣

0.3147
0
0
0
0

0.6853
0.9680

0
0
0

0
0.0254
0.7056

0
0

0
0.0066
0.2806
0.2279

0

0
0

0.0138
0.7721

1

⎤
⎥⎥⎥⎥⎥⎦
,

Y =
[
1 0.9606 0.8295 0.8122 0.7938
1 0.9224 0.6022 0.5677 0.4935

]
,

(5.1)

where Y1i = yield of recipeA in state Si, and Y2i = yield of recipe B in state Si.
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Figure 4: Simulation result: objective values.
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Figure 5: The layout of the cluster tool in simulation.

As mentioned in the previous section, information such as the throughput, the WIP,
the yield, and the machine degradation states can all be obtained from the simulation model.
We, then, use these simulation outputs to evaluate an objective function whose optimization
in GA would lead to the best cassette release policy in the cluster tool.
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Figure 6: Objective functions over generations.

5.1. Job Release with 4 Cassettes

In this case study, two cassettes of recipe A and two cassettes of recipe B are waiting in queue.
Since chamber degradation is taken into account, the scheduling of the order in which the
cassettes are processed will have an effect on yield. Intuitively, recipe B will be processed
first when the chambers are still in good condition because recipe B is more sensitive. This
problem can be formulated as follows:

J = max
∑

Yi

n
, (5.2)

where n is the total number of wafers processed and Yi is the yield of wafer i.
Basically, our objective function is to maximize the average yield among the different

wafers. Figure 6 and Table 5 display the simulation results obtained from GA.
GAproduced the cassette sequence B → B → A → Awith J = 0.8479. The simulation

results suggest that we assign a higher priority on recipe B than on A when the chamber is in
good condition, which agrees with our intuition. Since only 4 cassettes are in queue, the total
processing time (makespan) is not long enough for the chamber conditions to deteriorate to
the point where maintenance is required. Therefore, it is natural to process the more sensitive
cassettes first and less sensitive ones later. However, this might not be the case when there are
many cassettes in queue as chamber conditions might degrade to the point that maintenance
is required during processing. This brings us to the next case study.

5.2. Job Release with 8 Cassettes in the Given Maintenance

In this case, we assume that there are 8 cassettes in queue so that there is a higher probability
that the maintenance will be performed during processing. All parameters remain the same
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Table 5: The best cassette sequences and the corresponding best objective functions.

Iterations
(generations) Best cassette sequence in population Best objective function Mean objective function

1 B → A → B → A 0.76 0.05
2 B → B → A → A 0.85 0.11
3 B → B → A → A 0.85 0.12
4 B → B → A → A 0.85 0.10
5 B → B → A → A 0.85 0.36
6 B → B → A → A 0.85 0.26
7 B → B → A → A 0.85 0.47
8 B → B → A → A 0.85 0.48
9 B → B → A → A 0.85 0.48
10 B → B → A → A 0.85 0.29
11 B → B → A → A 0.85 0.66

Table 6: The best cassette sequences and the corresponding best objective functions.

Iterations
(generations) Best cassette sequence in population Best objective function Mean objective

function

1 B → B → B → B → A → A → A → A 0.52 0.21
2 B → B → B → A → A → A → B → A 0.63 0.21
3 B → B → A → A → A → B → B → A 0.73 0.04
4 B → B → A → A → A → B → B → A 0.73 0.21
5 B → B → A → A → A → B → B → A 0.73 0.55
6 B → B → A → A → A → B → B → A 0.73 0.56

except the number of cassettes which has been set to 8 in this case. The simulation results are
displayed in Figure 7 and Table 6.

Here, GA produced the cassette sequence B → B → A → A → A → B → B → A
with J = 0.73. The given cassette sequence does not seem to match our intuition. However,
we find out that the maintenance occurs after the fifth job. The results suggest that we assign
a higher priority on recipe B than A whenever the chamber condition is good. The recipe B is
given a higher priority at the beginning of the simulation and immediately after maintenance
(see Figure 8), as chamber conditions are likely to be good after maintenance. Therefore, this
case study is an example to explore how cassette release and maintenance that incorporate
equipment condition and yield information can influence fabs performance.

In practice, the proposed method is being implemented for (1) finding wafer
sequences in more completed situation, or (2) finding the rule of thumb or insight of wafer
sequences with the consideration of tool degradation, maintenance, recipes, and so forth.

5.3. Job Release with 100 Cassettes in the Given Maintenance

The previous two case studies demonstrate the importance of the joint decision for cassette
sequencing and maintenance with the simplified examples. Although they provide the
insight of wafer sequences with tool degradation, recipe types, and maintenance, more



Mathematical Problems in Engineering 13

 1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

O
bj

ec
t v

al
ue

Best value
Mean value

1 2 3 4 5 6

Iteration or generation

B → B → A → A → A → B → B → A

Figure 7: Objective functions over generations.

B B A A A Maintenance B B A

Figure 8: Recipe B is given a higher priority immediately after maintenance.

Table 7: Simulation results from 50 replications for each rule.

Rule 1 Rule 2 Rule 3
Average overall yield 0.54 0.67 0.71
Standard deviation 0.04 0.03 0.04

realistic scenarios with a relatively large problem have to be investigated to show the
effectiveness and feasibility of the proposed methodology. Suppose there are 50 cassettes
of recipe A and 50 cassettes of recipe B in queue. 100 cassettes will be produced with the
following different job dispatching rules.

(i) Rule 1: produce 50 cassettes of recipe B first, followed by 50 cassettes of recipe A.

(ii) Rule 2: produce 3 cassettes of recipe B first, followed by 3 cassettes of recipe A. Then
repeat it until finishing producing all (i.e., B → B → B → A → A → A → B →
B → B → A → A → A → · · · ).

(iii) Rule 3: produce them according to the sequence created by the proposed GA
method.

Note that Rule 2 is generated according to the rule of thumb found in the second
case study. As we can see in Table 7, the cassette sequencing rule generated by the proposed
algorithm yields more functioning wafers than other rules. Although Rule 2 is better than
Rule 1, we can conclude that job sequencing in Rule 2 is not exactly synchronized with
maintenance activities during the entire production period.
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Table 8: Simulation results from 50 replications for each scenario.

Makespan Yield
Scenario 1 Scenario 2 Scenario 1 Scenario 2

Average 2554.06 2636.37 0.88 0.81
Standard deviation 67.56 58.55 0.03 0.04

5.4. Wafer Dispatching

Another interesting problem is to design dispatching rules that will utilize chambers in the
most efficient manner. Only recipe A will be used in this case study because we do not want
the effect of changing recipes to influence our results. Suppose that the required process steps
for recipe A is the following:

chamber 1 → chamber 2 → chamber 3 or chamber 4 → chamber 5 (5.3)

To evaluate dispatching rules on the overall yield and makespan, we will consider two
scenarios of different dispatching rules which operate in the cluster tools in Figure 5.

(i) Scenario 1: a wafer will be sent to the less degraded chamber between chambers 3
and 4.

(ii) Scenario 2: a wafer will be sent to either chamber 3 or 4 randomly.

The simulation results are shown in Table 8. Shorter makespan and higher yield are
achieved in Scenario 1 because the more degraded chamber which has a higher chance to
produce a bad wafer is avoided. In addition, likelihood of the need for PM is lower due to
the avoidance of the more degraded chamber. This can be seen in the average makespan
difference of 82.31(=2636.37–2554.06) time unit of makespan. In addition, higher yield is
achieved in Scenario 1 because a higher portion of the wafers are processed in the chamber
which is in good condition. Therefore, this case study is an example to explore how wafer
dispatching and maintenance schedules that incorporate equipment condition and yield
information can affect fab performance.

6. Conclusions

In this paper, job scheduling (cassette release)with maintenance is investigated in the case of
a single cluster tool in semiconductor manufacturing. It has been shown that job scheduling
has to be managed based on the chamber degradation condition and maintenance activities
to maximize overall wafer yield. The simulation study recommends that more sensitive
wafers are to be processed whenever the chambers are in good condition. We also present
the scheduling optimization methodology via simulation and this is validated using the
scheduling problem whose optimal solutions are already known. This approach can be used
for more complex scheduling problems. For genetic algorithm, the crossover operation is
modified for solving the wafer scheduling problems in this paper.
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