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Reverse logistics, which is induced by various forms of used products and materials, has received
growing attention throughout this decade. In a highly competitive environment, the service level is
an important criterion for reverse logistics network design. However, most previous studies about
product returns only focused on the total cost of the reverse logistics and neglected the service
level. To help a manufacturer of electronic products provide quality postsale repair service for
their consumer, this paper proposes a multiobjective reverse logistics network optimisation model
that considers the objectives of the cost, the total tardiness of the cycle time, and the coverage
of customer zones. The Nondominated Sorting Genetic Algorithm II (NSGA-II) is employed for
solving this multiobjective optimisation model. To evaluate the performance of NSGA-II, a genetic
algorithm based on weighted sum approach andMultiobjective Simulated Annealing (MOSA) are
also applied. The performance of these three heuristic algorithms is compared using numerical
examples. The computational results show that NSGA-II outperforms MOSA and the genetic
algorithm based on weighted sum approach. Furthermore, the key parameters of the model are
tested, and some conclusions are drawn.

1. Introduction

Reverse logistics is the process of planning, implementing, and controlling the flow of
raw materials, in-process inventory, finished goods, and related information from the point
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of consumption to the point of recovery or the point of proper disposal [1]. Reverse
logistics involves activities such as the return, reconditioning, refurbishment and recycling
of products, and packaging. In recent years, for a variety of economic, environmental, or
legislative reasons, reverse logistics has received increasing attention from industry and
academia.

Reverse logistics network design is a major strategic issue that determines the number,
location and capacity of the collection points and centralised return centres. Effective reverse
logistics is believed to benefit a company substantially. First, it can reduce the cost and
improve the utilisation rate of materials [2]. Second, it can increase the profit of an enterprise
and build a good enterprise reputation [3, 4]. Moreover, it is a good way to improve customer
satisfaction and loyalty and then to maintain a sustainable competitive advantage [5, 6].

The establishment of appropriate performance measures is a key factor in implement-
ing a successful reverse logistics system. The common performance measures include cost
minimisation, customer satisfaction maximisation, cycle time minimisation, flexibility, and
the overall efficiency of the reverse logistics system. These standards are usually divided
into two parts, the cost and the service [7]. Many researchers have studied reverse logistics
network design for different industries, but most of them focused only on the overall cost,
and few researchers have considered the service level to be another criterion in their model.
The minimisation of the cost is commonly a major concern to be considered when building a
reverse logistics network system, but the service level is also a key factor when determining
the survival and development of a company under the current economic environment,
which is driven by customer values. To service providers, both the service level and the
total service cost are major concerns [8]. A well-managed reverse logistics network cannot
only provide important cost savings in procurement, recovery, disposal, inventory holding,
and transportation but can also help in customer retention [9]. Amini et al. [5] argued
that the management of service activities such as a repair service, product upgrades, and
product disposal can form an important part of a corporate strategy. For the manufacturers
that produce electronic products such as computers, mobile phones, and cameras, it is of
paramount importance to improve customer satisfaction as well as to provide products of
high quality.

This paper proposes a multiobjective reverse logistics network optimisation model
for a manufacturer’s postsale repair service. Two additional objectives that are associated
with the service level are considered besides the minimisation of the overall cost. Thus,
three objectives are considered in this paper. These objectives are the minimisation of the
total reverse logistics cost, the minimisation of the total tardiness of the cycle time, and the
maximisation of the rate of customer zones covered within the acceptable service coverage of
collection points (coverage of customer zones). Our purpose is to find a set of nondominated
solutions that determine the number and location of the collection points and the repair
centres among the potential facility locations as well as the associated transportation flows
between the customer zones and the service facilities. To deal withmultiobjective and obtain a
set of Pareto-optimal solutions, NSGA-II is implemented for the proposed model. To evaluate
the performance of NSGA-II, a genetic algorithm based on weighted sum approach (called
GA WS hereafter) and MOSA are also applied. Computational experiments are conducted to
compare the performance of the three algorithms, and the key parameters of the model are
tested.

This paper is organised as follows. In the next section, a literature review on a
reverse logistics network design is presented. In Section 3, a multiobjective reverse logistics
network design problem that involves a postsale service level is formulated. Section 4



Mathematical Problems in Engineering 3

develops a multiobjective optimisation model for the proposed problem. Section 5 describes
the three multiobjective evolutionary algorithms (MOEAs), namely, NSGA-II, GA WS, and
MOSA. Section 6 gives the computational results for comparing the performance of the three
algorithms and testing the key parameters of themodel. Finally, the conclusions are presented
and future research directions are highlighted in Section 7.

2. Literature Review

Although reverse logistics is a new field that has obtained attention only over the past decade,
many scholars have performed research on reverse logistics. Fleischmann et al. [10] divided
reverse logistics into three main areas, namely, distribution planning, inventory control,
and production planning. They reviewed quantitative mathematical models proposed in
the literature for each of these areas. Some researchers have proposed decision conceptual
frameworks on reverse logistics such as De Brito and Dekker [3] and Lambert et al. [4]. They
both proposed a decision conceptual framework for reverse logistics in terms of strategic,
tactic, and operational decisions. Furthermore, they noted that reverse logistics network
design belongs to strategic decisions.

The design of a product recovery network is one of the important and challenging
problems in the field of reverse logistics [11]. Many researchers have conducted quantitative
analyses of product recovery networks and have proposed mathematical models. However,
the majority of studies have concentrated only on the overall cost or profit, including Alumur
et al. [12], Barros et al. [13], Cruz-Rivera and Ertel [14], Das and Chowdhury [15], Hu et
al. [16], Jayaraman et al. [17], Lee and Dong [18], Lieckens and Vandaele [19], Min et al.
[20], and Salema et al. [21]. They each proposed a mathematical model and considered the
total cost or profit to be a single objective function in their studies. However, in the real
world, there are no design tasks that are single objective problems [22]. The design problems
usually involve trade-offs among multiple and conflicting objectives, such as cost, resource
utilisation, and service level. Some researchers have studied the multiobjective optimisation
of reverse logistic networks.

Ioannis [23] proposed a multiobjective model for locating disposal or treatment
facilities and for transporting hazardous waste along the links of a transportation network.
The objectives considered the minimisation of the total operating cost, the minimisation
of the total perceived risk, the equitable distribution of risk among population centres
and the equitable distribution of disutility caused by the operation of treatment facilities,
and a goal programming approach was proposed to solve the problem. Pati et al. [24]
formulated a mixed integer goal programming model to assist in the proper management
of the paper recycling logistics system. The objectives considered were a reduction in the
reverse logistics cost, product quality improvement through increased segregation at the
source, and environmental benefits through increased wastepaper recovery. Ahluwalia and
Nema [25] proposed a multiobjective reverse logistics model for integrated computer waste
management. This model was based on an integer linear programming approach with the
objective of minimising the environmental risk as well as the cost. The studies reviewed
above about product recovery or recycling network design all considered the environmental
aspects in addition to the overall cost and found a Pareto-optimal solution or a restrictive set
of Pareto-optimal solutions based on their solution approaches for the problem.

The substantial challenge of globalisation and the fierce competition of markets
prompt more and more manufacturing firms to implement effective reverse logistics
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networks for product returns and to provide better consumer postsale service. Amini et al.
[5] indicated that an important means for companies to differentiate themselves as well as
to increase profitability in highly competitive environments is through the use of service
management. They further argued that one of the most important service management
activities is repair services, which represent important opportunities to create profit streams
and to strengthen customer loyalty. Du and Evans [8] proposed a biobjective reverse logistics
network optimisation model for a manufacturer’s postsale repair service, considering the
service level in addition to the overall cost. The objectives were theminimisation of the overall
costs and the minimisation of the total tardiness of the cycle time. The solution approach
consisted of a combination of three algorithms: a scatter search, the dual simplex method, and
the constraint method. Zarandi et al. [26] addressed a closed-loop supply chain distribution
network design problem in which reverse flows were imported into forward model. They
proposed three multiobjective models considering the covering objectives as the measure of
service level besides the total cost. A fuzzy goal programming approach was developed for
the problem.

To help a computer manufacturer implement quality postsale repair service, this paper
proposes a multiobjective reverse logistics network optimisation model considering both cost
and service level. In this model, both the total tardiness of the cycle time and the coverage
of customer zones are considered as measures of the service level. As computers are daily
necessities, if the products can be repaired and returned to the customers within a satisfactory
period, customer satisfaction can be definitely improved [5]. Because customers who return
products do not prefer long distances, the collection points must be located within a certain
maximum distance from them [9]. Thus, a multiobjective optimisation model is proposed for
the reverse logistic network optimisation problem.

3. Problem Definition

The problem considered in this paper is from a company that is a manufacturer of a variety
of computer equipment. With the purchase of a computer, the customers are promised a two-
year warranty. Because of improvements in people’s living standards and fast developments
in our society, the demand for computers increases every year. Increased purchases and
higher quality standards have dramatically increased the volume of returned products. It
is time for the company to implement an effective reverse logistics network that satisfies
capacity limitations and demand requirements for the postsale repair service of the increased
volume of product returns.

The company considers taking advantage of the established facilities of the third-party
logistics provider as collection points and establishing centralised return centres to guarantee
product safety and technology privacy. In this way, customers return products that need
repair to the collection point. The products are then transported to the repair centres. After
repair, the products are quickly delivered back to the collection points. Then, customers are
called to take the products back from the collection points.

The company considers the service level to be another important criterion aside from
the total cost of the reverse logistics network and focuses on the convenience of customers
when returning their products and the efficiency of the repair service. To make it convenient
for customers to return products, the collection points will be set within a certain maximised
distance to the customer zones, specifically to maximise the rate of the customer zones
covered within the acceptable service distance of collection points. To improve customer
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satisfaction, the returned products should be repaired and sent back to customers within
their expected cycle time as often as possible, to minimise the total tardiness of the cycle time.
Thus, the coverage of customer zones and the total tardiness of the cycle time are used to
measure the service level of the repair service.

To address the problems that face the company, we formulate the reverse logistics
network problem as a multiobjective integer nonlinear programming model. Three objectives
are considered: (1)minimisation of the total reverse logistics cost, (2)minimisation of the total
tardiness of the cycle time, and (3) maximisation of the coverage of customer zones.

The main issues to be addressed by this model are the following.

(1) Which locations are to be chosen for the collection points and the repair centres?

(2) How many collection points and repair centres are needed?

(3) How to best arrange the transportation flows that start from the customer zones, go
through the collection points and repair centres and then go back to the consumers?

To summarise, this paper proposes a multiobjective optimisation model for a three-
echelon reverse logistics network design problem, which determines the optimal location
and the number of both the collection points and repair centres and the transportation flows
between the customer zones and the facility sites.

4. Problem Formulation

Prior to developing the multiobjective optimisation model, we make the following
assumptions.

(1) The possibility of direct shipment from customers to a repair centre is ruled out.

(2) Given the small volume of individual returns from customers, a collection point has
a sufficient capacity to hold the returned products.

(3) The transportation costs between the customers and their nearest collection points
are negligible because of the short distances between the customers and their
nearest collection point.

(4) The location/allocation plan covers a planning horizonwithin which no substantial
changes are incurred in the customer demands and in the transportation
infrastructure.

4.1. Indices

i : Index for the customer zones (i ∈ I)

j: Index for the collection points (j ∈ J)

k: Index for the repair centres (k ∈ K).
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4.2. Model Parameters

ri: The daily volume of products returned by the customer zone i

w: The annual working days

a: The annual cost of rent for a collection point

h: The handling cost of a product unit

ek: The annual average construction cost of a repair centre

dij : The distance from customer zone i to collection point j

djk: The distance from the collection point j to the repair centre k

tm: The average number of hours for repairing a piece of returned product

tjk: The round trip transportation time between the collection point j and the repair
centre k

te: The cycle time expected by customers

mk: The maximum capacity of a repair centre

l: The maximum allowable distance from a given customer zone to a collection point
(service coverage)

pij =

{
1 if dij ≤ l,

0 otherwise.
(4.1)

cp: The minimum number of open collection points

rc: The minimum number of established repair centres

M: An arbitrarily chosen large number.

We have the f(Xjk, djk) = Eαβ function for the freight rate, where α is a discount rate
according to the volume of shipment between collection point j and repair centre k; β is a
penalty rate applied for the distance between collection point j and repair centre k; E is a unit
freight rate.

Xjk =
∑

i riYijWjk: volume of products returned from collection point j to repair
centre k

α =

⎧⎪⎪⎨
⎪⎪⎩
1 Xjk ≤ p1,

α1 p1 < Xjk ≤ p2,

α2 Xjk > p2,

β =

⎧⎪⎪⎨
⎪⎪⎩
1 djk ≤ q1,

β1 q1 < djk ≤ q2,

β2 djk > q2.

(4.2)

p1, p2: Volume of returned products for a discount

q1, q2: Distance between collection point j and repair centre k for penalties.
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4.3. Decision Variables

Yij =

{
1 if consumer zone i is allocated to collection point j,
0 otherwise,

Wjk =

{
1 if collection point j is allocated to repair center k,
0 otherwise,

Gk =

{
1 if a repair center is established at site k,

0 otherwise,

Zj =

{
1 if a collection point is established at site j,

0 otherwise.

(4.3)

4.4. Mathematical Formulation

min f1 = a
∑
j

Zj + hw
∑
i

ri +
∑
k

ekGk +
∑
k

∑
j

(∑
i

riwYijWjk

)
× f
(
Xjk, djk

)
, (4.4)

min f2 =
∑
k

∑
j

∑
i

riYijWjk max
{
tm + tjk − te, 0

}
, (4.5)

max f3 =

∑
i

∑
j ripijYij∑
i ri

, (4.6)

subject to

∑
j

Yij = 1, ∀i ∈ I, (4.7)

∑
k

Wjk = Zj, ∀j ∈ J, (4.8)

Zj ≤
∑
i

Yij ≤ M · Zj, ∀j ∈ J, (4.9)

Gk ≤
∑
j

Wjk ≤ M ·Gk, ∀k ∈ K, (4.10)

∑
j

∑
i

riYijWjk ≤ mkGk, ∀k ∈ K, (4.11)
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cp ≤
∑
j

Zj , (4.12)

rc ≤
∑
k

Gk, (4.13)

Yij ,Wjk, Zj , Gk ∈ (0, 1) ∀i ∈ I, ∀j ∈ J, ∀k ∈ K. (4.14)

The objective function (4.4) minimises the total cost of the reverse logistics network,
including the annual rent cost of the collection points, the annual average construction cost
of the repair centres, the materials handling cost, and the transportation cost. The objective
function (4.5) minimises the total tardiness of the cycle time. The objective function (4.6)
maximises the coverage of consumer zones. Constraint (4.7) assures that a customer zone is
assigned to a single collection point. Constraint (4.8) ensures that an established collection
point is allocated to a single repair centre. Constraint (4.9) prevents any customer zone
from being assigned to the unopened collection points and assures that there must be some
customer zones that are assigned to an opened collection point. Constraint (4.10) prevents
any return flows from the collection points to the unopened repair centres and ensures that
there must be some collection points that are assigned to an opened repair centre. Constraint
(4.11) ensures that the total volume of the products returned from the collection points does
not exceed the maximum capacity of a repair centre. Constraint (4.12) and Constraint (4.13)
maintain a minimum number of collection points and repair centres for product return.
Constraint (4.14) assures binary integer values for the decision variables Yij ,Wjk, Zj , and Gk.

4.5. Complexity of the Model

The maximum covering problem is usually defined as follows: given a connected network
with demand at nodes, locate one or more facility sites at nodes in such a way as to
maximise the coverage of demand nodes [27]. In the proposed model of this paper, some
collection points are located tomaximise the coverage of customer zones (returned products).
The covered customer zones are within the acceptable service distance of collection points.
Without any loss of generality, let

∑
j Zj = cp. If the proposed model is simplified to the

problem with a single objective of maximizing the coverage of customer zones (objective
function (4.6)) subject to constraint (4.7), constraint (4.9), constraint (4.12) and constraint
(4.14), the simplified model can be regarded as a special case of the maximum covering
model. Because the maximum covering problem has been proved to be NP-hard [28], our
model which considers two additional objectives besides the maximisation of coverage of
customer zones must be NP-hard as well.

5. The Solution Approach

Traditionally, there are several algorithms for solving the multiobjective optimisation
problems, including the ε-constraint method, objective programming, and weighting
approach. However, these approaches can be used to find only a Pareto-optimal solution or a
restrictive set of Pareto-optimal solutions. To obtain a diverse set of Pareto-optimal solutions
and enable the decision maker for evaluating a greater number of solutions, MOEAs are
widely applied. They can simultaneously address a set of possible solutions in one single run.
Among all of the MOEAs, NSGA-II proposed by Deb et al. [29] is one of the most popular
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1 0 0 0 0 1 1 0 0 0 1 0 0 1 0

cp1 cp2 cp10 rc1 rc2 rc5· · · · · ·

Figure 1: A representation scheme: cp stands for a collection point and rc stands for a repair centre.

algorithms with more accuracy and a higher convergence speed. It has been widely used by
many researchers, such as Fallah-Mehdipour et al. [30], Gutjahr et al. [31], Kannan et al. [32],
Lin and Yeh [33], and Saadatseresht et al. [34]. With these facts in mind, NSGA-II is selected
to solve the NP-hard problem proposed in this paper.

To validate the results obtained using NSGA-II, GA WS, which has been widely
applied since the last century [22, 35, 36], is adopted as well. Since both NSGA-II and GA WS
are the extended states of Genetic algorithm (GA), MOSA proposed by Suppapitnarm et al.
[37] is also employed to investigate the effectiveness of NSGA-II further.

5.1. Common Features

Representation is an important issue for a successful implementation of GA and SA. This
paper adopts the binary coding method. Each chromosome is based on a single-dimensional
array, which consists of binary values and represents decision variables in terms of the
opening or closing of collection points and repair centres. For example, the representation
of a chromosome is illustrated in Figure 1. Each collection point or repair centre has one gene
that represents an opening or closing decision. The chromosome has 10 collection points and
5 repair centres. As shown in Figure 1, collection point 1, collection point 6, collection point
7, repair centre 1, and repair centre 4 are open.

The decision variables for the opening or closing of the collection points and repair
centres can be obtained when generating the initial population of the GA or the new solutions
in MOSA. Other decision variables, which involve the transport flow from customer zones
to the repair centres through the collection points, can be obtained by two assignment
algorithms. The first assignment algorithm is used for obtaining the total daily demand of
the opened collection points. In other words, each customer zone should be assigned to
the nearest collection points because we assumed that there is sufficient capacity at each
collection point as a result of the small volume of returns. The second assignment algorithm
is used for assigning opened collection points to an appropriate repair centre according to a
capacity limitation. To solve this problem, we applied the Vogel method for a transportation
problem.

5.2. NSGA-II

NSGA-II derives a new generation from the current generation by a mechanism that includes
three different modules: (i) fast nondominated sort, (ii) crowding distance assignment, and
(iii) the crowded comparison operator.

A solution i is said to constrained-dominate a solution j if any of the following
conditions are true.

(1) Solution i is feasible, and solution j is not feasible.
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1 0 0 1 0 1 1 0 1 0 1 0 0 1 0
Parents

0 1 0 0 1 0 1 0 1 0 0 0 1 1 0
Location of collection points Location of repair centres

1 0 0 0 1 0 1 0 1 0 1 0 1 1 0
Children

0 1 0 1 0 1 1 0 1 0 0 0 0 1 0
Location of collection points Location of repair centres

Crossover points 1 Crossover points 2

Figure 2: An illustration of the crossover operator.

(2) Solutions i and j are both infeasible, but solution i has a smaller overall constraint
violation.

(3) Solutions i and j are feasible, and solution i dominates solution j [29].

First, the fast nondominated sorting approach is used to sort the initial population
into different ranks according to their nondomination level. Second, the density estimation is
employed for individuals of each nondomination level to obtain an estimate of the density
of the solutions surrounding them. And then the genetic operators are used to create a child
population. Thereafter, the created child population is combined with the parent population
to form a combined population of size 2N. Then the entire population is sorted according to
nondominated. The new population (size N) is formed by adding solutions from the first
front until the size exceeds N. To choose exactly the population members, the crowded-
comparison operator is used to sort the solutions of the last accepted front, and the best
solutions that are needed to fill all of the population slots are chosen. The new population
of size N is now used for selection, crossover, and mutation to create a new population.

The genetic operators are described below.

(1) Select

As a selection mechanism, a binary tournament selection strategy was adopted by forming
two teams of chromosomes. Each team consists of two chromosomes that are randomly
selected from the current population. The solution with the lower (better) rank is selected
if the two solutions are from different front. The solution with the higher crowding distance
is selected if both of the solutions belong to the same front.

(2) Crossover

The crossover operator generates new children by exchanging parts of the strings of a pair of
selected parents. Here, we employed the two-point crossover in which one point is used for
locating the collection points and the other point is used for locating repair centres. The two
crossover points are randomly selected. Figure 2 is an illustration of the crossover operator.

(3)Mutation

A mutation is usually performed by modifying a gene within a chromosome. Here, we
applied the multipoint mutation by randomly selecting five bit values of opening/closing
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Figure 3: Illustration of Gen and Cheng’s weight strategy.

decision variables of collection points and three bit values of opening/closing decision
variables of repair centres. Then, the bit value is changed from 0 to 1 or from 1 to 0.

5.3. GA WS

To determine the weight values, we adopted the adaptive weighting approach proposed
by Gen and Cheng [38]. This method determines the weights based on the ideal point
that was generated in each evolutionary process. Figure 3 illustrates the weight strategy in
the objective space. The adaptive weight of each objective for an individual in the current
generation is determined using (5.1)

wi =
1

fimax − fimin
, (5.1)

where fimax and fimin are the maximum and minimum values of the ith objective in the
current generation, respectively.

In terms of the problem consisting of m objective functions, the weighted-sum
objective function of a given solution x is decided by the following

f(x) =
m∑
i=1

wi

(
fi − fimin

)
=

m∑
i=1

fi − fimin

fimax − fimin
. (5.2)

The smaller the weighted-sum objective value is, the better the individual. The fitness
function is formed by adding a penalty to the total objective function. The penalty function =
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M ∗ px, where M is the penalty value, which is larger than any possible objective function
value. px is calculated by the following

px =
∑
k

⎛
⎝∑

j

∑
i

riYijWjk −mkGk

⎞
⎠

if
∑
j

∑
i

riYijWjk > mkGk, ∀k ∈ K, otherwise 0.

(5.3)

The initial population is generated randomly. Here, we apply the same genetic
operators as those used in NSGA-II. Different from NSGA-II, the selection operator is based
on the fitness value of the individual. To find multiple optimal solutions in one single
simulation run, the Pareto-optimal set is created by the nondominated solutions in the initial
population and is updated by new individuals that are obtained with genetic operators at
every generation.

5.4. MOSA

The description of the MOSA procedure is as follows.

(1) An initial solution x is randomly generated. If it is infeasible, regenerate it until it
is feasible. Calculate the objective function values of the initial solution x and put it
into the Pareto-optimal set.

(2) The mutation operator in GA WS is chosen as a moving strategy to obtain a new
solution y. If it is infeasible, regenerate it until it is feasible. Then the new solution
y is compared with every solution in the Pareto-optimal set and the Pareto-optimal
set is updated.

(3) If the new solution y is accepted into the Pareto-optimal set, substitute the current
solution xwith y.Otherwise, the new solution y is accepted based on the following
probability: P = min(1,

∏M
i=1 exp{(fi(x) − fi(y))/Ti}), where Ti is the current

temperature. If it is still not accepted, the current solution remains.

(4) Randomly select a solution from the Pareto-optimal set every certain number
(iter num) of generations as the current solution and go on searching.

(5) In every iteration, when the number of evaluated solutions reaches the set value
(iter max) or the number of times of sequential rejection of a new solution exceeds
the set value (un max), the temperature is reduced at a certain rate (b). The search
process terminates when the current temperature drops to the final temperature or
the total number of the evaluated solutions reaches the set value.

6. Computational Results

In this section, the performance of the three algorithms was compared on five sets of fifteen
randomly generated instances, and the key parameters of the model were tested.
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Table 1: Parameters of five problem sets.

Problem sets 1 2 3 4 5
Number of customer zones 50 60 80 100 120
Number of potential collection points 20 30 35 40 50
Number of potential repair centres 8 10 10 12 12
Location scale of all points 0∼100 0∼100 0∼150 0∼150 0∼200

6.1. Date Generation

To compare the performance of the three algorithms, five sets of fifteen randomly generated
instances were created in Table 1. The number of daily returned products by each customer
zone was randomly generated to be between 10 and 50. The round trip transportation time
between the collection point j and the repair centre k was computed as follows: tjk = djk ×0.6.
Other parameters of the model are shown in Table 2.

6.2. Comparison of the Three Algorithms

To compare the Pareto-optimal set that is obtained by three algorithms on the same basis, the
number of solutions searched is taken to be the stopping criterion. According to the different
sizes of the five Problem sets, the number of solutions searched is set to be 120,000, 122,000,
128,000, 130,000, and 132,000. Because both GA WS andNSGA-II are based on a GA, the same
parameters are set for both. Based on extensive experiments, the parameters are as follows:
the population size = 40, the crossover rate = 0.96, and the mutation rate = 0.07. Because
the population size of GA WS or NSGA-II is 40, the maximum numbers of generations
for GA WS and NSGA-II on the five Problem sets are 3,000, 3,050, 3,200, 3,250, and 3,300,
respectively. For MOSA, the initial temperature Ts is calculated from the following

Ts =
ΔSUMmax

ln Prob
, (6.1)

where ΔSUMmax is the maximum value of the sum of differences between the maximum and
the minimum of the three objective values, which are chosen from the objective values of
30 randomly generated neighbours of the initial solution. The value of Prob is set to 0.95 to
ensure that a feasible inferior solution is accepted with a probability of 0.95. Other parameters
are as follows: iter max = 1000, un max = 50, iter num = 40, and b = 0.95. The search process
terminates when the total number of evaluated solutions reaches the set value. These three
algorithms are all coded in the C++ programming language in the VC++6.0 environment and
are executed on a Dell Intel Core 2 Duo computer with a speed of 2.10GHz and with 2.00GB
of memory.

The Pareto-optimal set is the set of Pareto-optimal solutions that consists of all
decision vectors for which the corresponding objective vectors cannot be improved in a
given dimension without worsening another solution [39]. To evaluate the performance of
the three algorithms, we adopted the following standards. Standard (1), the average number
of Pareto-optimal solutions; Standard (2), the average number of nondominated solutions;
Standard (3), the average ratio of the Pareto-optimal solutions. Due to the stochastic nature
of the suggested algorithms, these standards were obtained by the three algorithms over 10
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Table 2: Parameters of the model.

Parameter Index Value

Annual renting cost of the collection points a 200

Handling cost per unit product h 0.1

Capacity of a repair centre mk 2000

Minimum number of open collection points cp 5

Minimum number of established repair centres rc 1

Average working hours to repair a returned product tm 10

α1 0.8

Discount rate with respect to the shipping volume α2 0.6

p1 200 units

p2 400 units

β1 1.1

Penalty rate with respect to the shipping distance β2 1.2

q1 25

q2 60

Working days per year w 250

Cost of establishing a repair centre ek 3000

Service coverage l 25

Unit standard transportation cost E 1

Expected cycle time te 30

runs. Standard (2) and Standard (3) were calculated in the following manner. Let P1, P2, and
P3 be the sets of Pareto-optimal solutions that are obtained from one run of GA WS, NSGA-
II, and MOSA, respectively, and let P be the union of the sets of Pareto-optimal solutions
(i.e., P = P1 ∪ P2 ∪ P3), with the result that P consists of only nondominated solutions. The
number of Pareto-optimal solutions in Pi that are not dominated by any other solutions in P
is calculated by (6.2). The ratio of Pareto-optimal solutions in Pi that are not dominated by
any other solutions in P is calculated by (6.3):

Numbernondominated
solutions

= Pi − {X ∈ Pi | ∃Y ∈ P : Y ≺ X}, (6.2)

Rpos(Pi) =
|Pi − {X ∈ Pi | ∃Y ∈ P : Y ≺ X}|

|Pi| , (6.3)

where Y ≺ X means that the solution X is dominated by the solution Y . The higher the ratio
Rpos(Pi) is, the better the solution set Pi [22].

We calculated the three standards by running the three algorithms for all of the fifteen
instances over 10 runs. The computational results are shown in Table 3. As can be observed
from the table, the average numbers of Pareto-optimal solutions are approximately equal
with NSGA-II andMOSA, and GA WS is inferior to NSGA-II or MOSA for all of the instances
expect for three instances. The comparison of the three algorithms with respect to the average
number of nondominated solutions shows that NSGA-II performs the best among the three
algorithms for all of the instances expect for instance 10. The average ratio of Pareto-optimal
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Table 3: Comparison of the performance of the three algorithms.

Standard (1) Standard (2) Standard (3)
NSGA-II MOSA GA WS NSGA-II MOSA GA WS NSGA-II MOSA GA WS

Problem set 1
Instance 1 10 10 10 10 10 10 1.00 1.00 1.00
Instance 2 8.7 8.7 8.6 8.7 8.3 7.5 1.00 0.96 0.87
Instance 3 6 6 6 6 6 6 1.00 1.00 1.00

Problem set 2
Instance 4 13 13 12.6 13 12.8 10.3 1.00 0.98 0.82
Instance 5 12 11.7 10.3 12 11.7 10.3 1.00 1.00 1.00
Instance 6 25.2 23 18.5 21.6 19.2 17.1 0.86 0.83 0.93

Problem set 3
Instance 7 25.4 23.3 19.4 25.4 21.5 11.8 1.00 0.93 0.62
Instance 8 27.3 29.7 31.7 26.3 11.8 10.6 0.96 0.41 0.34
Instance 9 19.4 16 15.7 19.4 15.6 11.3 1.00 0.98 0.72

Problem set 4
Instance 10 8 7.7 6.7 6.4 6.6 6 0.81 0.87 0.89
Instance 11 16 13.9 9.5 15.2 9.1 6.5 0.95 0.66 0.69
Instance 12 31 31.2 22.6 30.7 21.3 2 0.99 0.68 0.09

Problem set 5
Instance 13 30.5 48.7 47.6 29.3 13.6 4.4 0.96 0.29 0.09
Instance 14 18.9 21.1 17.6 18.4 9.6 13.7 0.97 0.45 0.78
Instance 15 14.6 16.3 12.6 14.6 11.7 5.4 1.00 0.74 0.45

solutions on NSGA-II changes between 81% and 100%. This ratio is between 29% and 100%
on MOSA, and the ratio changes between 9% and 100% on GA WS. These results suggest
that NSGA-II tends to find more solutions with higher quality than the other two algorithms.
This advantage grows when the problem size becomes larger.

The computation times on NSGA-II, MOSA, and GA WS for all of the fifteen instances
are shown in Table 4. It can be observed from this table that the computational time for
GA WS is the shortest time among all of the three algorithms. This result occurs because that
onceMOSA generates a new solution, it is compared with each solution in the Pareto-optimal
set to determine whether it can be accepted. Once it is accepted, the Pareto-optimal set is
updated. These operators increase the computational time of MOSA. GA WS updates the
Pareto-optimal set every generation. Although NSGA-II obtains the Pareto-optimal set only
from the population of the last generation, it applies a fast nondominated sorting approach
and a crowded-comparison approach to evaluate the individuals of every generation, which
makes its computational time longer than GA WS. The computational time in MOSA is
longer than in NSGA-II for all of the instances except for the instances in Problem set 5. When
the size of the instances becomes larger in Problem set 5, the computation times on NSGA-II
become longer than for MOSA.

It can also be observed from Table 4 that, except for the instance 4 and instance 7,
the computational time for each algorithm increases as the size of the problem set increases.
Instance of problem set 1 contains 1188 binary variables and 106 constraints. Instance of
problem set 2 contains 2140 binary variables and 140 constraints. Instance of problem set
3 contains 3195 binary variables and 170 constraints. Instance of problem set 4 contains 4532
binary variables and 204 constraints. Instance of problem set 5 contains 6662 binary variables
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Table 4: Comparison of the three algorithms in terms of the computational time.

CPU times (s)
NSGA-II MOSA GA WS

Problem set 1
Instance 1 51.34 65.05 43.28
Instance 2 59.79 68.87 44.78
Instance 3 27.66 32.80 25.78

Problem set 2
Instance 4 161.37 214.64 114.91
Instance 5 63.92 83.50 62.11
Instance 6 57.93 59.37 51.25

Problem set 3
Instance 7 189.52 238.05 136.74
Instance 8 89.89 92.35 81.01
Instance 9 104.11 107.26 86.83

Problem set 4
Instance 10 134.88 144.69 121.89
Instance 11 138.22 139.36 124.94
Instance 12 154.35 168.12 135.13

Problem set 5
Instance 13 220.63 207.66 200.92
Instance 14 227.20 213.55 202.63
Instance 15 244.02 233.79 212.03

and 244 constraints. As the number of variables and constraints increases, the computational
time for each of the algorithms increases accordingly.

6.3. Model Experiments with Sensitivity Analysis

Sensitivity experiments were conducted on the maximum capacity of the repair centres mk,
the expected cycle time te, and the service coverage of the collection points l to see how
these parameters affect the objective function values and the Pareto-optimal set. We set
mk to be 1000, 1500, and 2000; te to be 25, 30, and 35; l to be 20, 25, and 30, respectively.
For each instance, the Pareto-optimal sets obtained by the three algorithms under different
parameter values were compared. The results of sensitivity experiments conducted on the
three parameters are similar for the three algorithms. For the limited space, we only give
some illustrations of the changes in the three parameters for the Pareto-optimal set obtained
by NSGA-II.

The experiments show that the maximum capacity of the repair centres affects only the
outcome of the Pareto-optimal set of large problem sets, including Problem set 3, Problem
set 4, and Problem set 5. For instances of these problem sets, as the maximum capacity of
the repair centres increases, the total reverse logistics cost decreases. Table 5 illustrates the
change in the maximum capacity of the repair centres on the Pareto-optimal set obtained by
NSGA-II. Here, f1, f2, and f3 represent the three objective function values, respectively. For
Problem set 1 and Problem set 2, the Pareto-optimal set appears to be insensitive to changes
in the maximum capacity of the repair centres. This scenario can be explained as follows. For
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Table 5: Sensitivity analysis with respect to the maximum capacity of a repair centre.

mk = 1000 mk = 1500 mk = 2000
f1 f2 f3 f1 f2 f3 f1 f2 f3

548970 432.12 100 535120 432.12 100 532120 432.12 100
571825 168.58 100 555475 168.58 100 555475 168.58 100
575420 131.85 100 561570 131.85 100 558570 131.85 100
555475 235.79 99.07 552475 235.79 99.07 552475 235.79 99.07
542095 0 98.21 541845 0 98.21 538845 0 98.21
539170 189.14 93.46 541445 132.10 98.21 538445 132.10 98.21
542050 163.43 93.43 539095 0 97.21 530695 6.68 93.19
539050 1274.64 93.43 533695 6.68 93.19 532375 0 91.64
535375 0 91.64 533170 7531.29 92.47 529450 500.09 86.90
529450 7531.29 86.90 535375 0 91.64 526450 500.09 85.90
534055 228.44 83.38 532375 0 90.64 528445 0 78.81
531445 0 77.30 529450 500.09 86.89 521725 0 72.24
528655 6999.83 72.24 526450 500.09 85.90

528445 0 78.81
521725 0 72.24

Problem set 1 and Problem set 2, the volume of the daily returned products is relatively small,
so that a small capacity in the repair centres can meet the demand. Therefore, the increase in
the maximum capacity of the repair centres does not affect the cost of the Pareto-optimal
solutions. However, when the problem size becomes larger, a larger capacity of the repair
centres is required to reduce the cost. If the capacity of the repair centre is still small, then
more repair centres are needed and the cost will be higher.

The experiments show that the expected cycle time and the service coverage of
collection points affect the outcome of the Pareto-optimal set of almost all of the instances. As
the expected cycle time increases, the total tardiness of the cycle time decreases, and the cost
of Pareto-optimal solutions decreases when the expected cycle time increases, to some extent.
Table 6 illustrates the change in the expected cycle time for the Pareto-optimal set obtained
by NSGA-II. The coverage rate ascends obviously with an increase in the service coverage,
and the cost also decreases when the expected cycle time increases, to some extent. Table 7
illustrates the change in the service coverage of the Pareto-optimal set obtained by NSGA-
II. This phenomenon illustrates the trade-off among the objective functions, as we expected.
When the consumers have lower requirements for the service coverage and the expected cycle
time, some of the cost can be saved. In return, the company must pay more money to meet
the higher requirements of consumers.

7. Conclusions

In this paper, we presented a multiobjective integer nonlinear programming model for a
three-echelon reverse logistic network design problem. This model considered not only the
traditional cost factor but also the service level, which was represented by the total tardiness
of the cycle time and the coverage of consumer zones. The model can help a computer
manufacturer decide the optimal number and location of collection points and repair centres
and the transportation arrangement of the returned products from the customer zones to the
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Table 6: Sensitivity analysis with respect to the expected cycle time.

te = 25 te = 30 te = 35
f1 f2 f3 f1 f2 f3 f1 f2 f3

439355 2421.61 100 439355 777.64 100 407345 0 100
411335 3266.69 100 411335 1246.69 100 407135 0 97.77
407345 4350.20 100 407345 1660.2 100 402235 78.21 97.77
428755 2421.61 97.77 428755 777.64 97.77 402945 0 89.63
407135 4236.99 97.77 407135 1616.99 97.77 398750 0 77.59
402235 4755.20 97.77 402235 1915.20 97.77
411590 696.78 96.54 411590 0 96.54
406935 3266.69 89.63 406935 1246.69 89.63
402945 4350.20 89.63 402945 1660.20 89.63
419225 0 86.83 407190 0 86.17
407190 696.78 86.17 398750 43.91 77.59
398750 198.91 77.59 404875 0 51.51
413475 0 77.07 400375 0 41.14
409075 0 66.70 395925 963.65 41.14
404875 0 51.51
400375 0 41.14
395925 1118.65 41.14

Table 7: Sensitivity analysis with respect to the service coverage.

l = 20 l = 25 l = 30
f1 f2 f3 f1 f2 f3 f1 f2 f3

346220 0 100 342995 0 100 332325 0 100
342230 76.45 100 331395 75.13 100 331395 75.13 100
339535 1652.45 100 332325 0 97.93 328925 7254.31 100
342995 0 97.93 330375 457.11 97.93 330375 457.11 100
341695 457.11 97.52 328470 535.17 85.59 329570 1548.32 97.52
331395 75.13 94.06 326020 6224.36 85.59 327815 9259.53 95.62
336125 0 91.99 326645 507.98 58.04 328470 535.17 94.47
332325 0 91.59 328595 50.87 58.04 326020 6224.36 94.47
330375 457.11 91.59 325520 1277.29 51.93 326645 507.98 68.88
328470 535.17 75.85 324325 0 33.26 328595 50.87 68.88
326020 6224.36 75.85 324325 0 39.77
328595 50.87 55.56
326645 507.98 55.56

repair centres through the collection points after a trade-off of the total cost of the reverse
logistics and the service quality level.

Because it is an NP-hard problem with the property of multiobjective, NSGA-II was
adopted for the proposed model. To evaluate the performance of NSGA-II, GA WS and
MOSAwere also applied. The performance of the three algorithms was compared on five sets
of fifteen randomly generated instances. The comparative analysis showed that NSGA-II and
MOSA outperformed GA WS in terms of the average numbers of Pareto-optimal solutions,
and NSGA-II tended to find solutions with the highest quality among the three algorithms.
Finally, three key parameters of the models were tested, including the maximum capacity of
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the repair centres, the expected cycle time, and the service coverage of the collection points.
The analysis results showed that the maximum capacity of the repair centres only affected
the outcome of the Pareto-optimal set of large problem sets. The expected cycle time and the
service coverage of the collection points affected the outcome of the Pareto-optimal set of
almost all of the instances.

Note that the study in this paper is based on the assumption that the loca-
tion/allocation plan covers a planning horizon within which no substantial changes are
incurred in terms of customer demands and the transportation infrastructure. However, this
scenario is often not the case in many practical circumstances. Thus, the dynamic multiperiod
reverse logistics network design problem must be addressed in further studies.
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