
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 934964, 20 pages
doi:10.1155/2012/934964

Review Article
Scaling Group Transformation for
MHD Boundary Layer Slip Flow of a Nanofluid
over a Convectively Heated Stretching Sheet with
Heat Generation

Md. Jashim Uddin,1 W. A. Khan,2 and A. I. Md. Ismail1

1 School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
2 Department of Engineering Sciences, PN Engineering College, National University of
Sciences and Technology, Karachi 75350, Pakistan

Correspondence should be addressed to Md. Jashim Uddin, jashim 74@yahoo.com

Received 9 February 2012; Accepted 13 March 2012

Academic Editor: Tadeusz Kaczorek

Copyright q 2012 Md. Jashim Uddin et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Steady viscous incompressibleMHD laminar boundary layer slip flow of an electrically conducting
nanofluid over a convectively heated permeable moving linearly stretching sheet has been
investigated numerically. The effects of Brownian motion, thermophoresis, magnetic field, and
heat generation/absorption are included in the nanofluid model. The similarity transformations
for the governing equations are developed. The effects of the pertinent parameters, Lewis number,
magnetic field, Brownian motion, heat generation, thermophoretic, momentum slip and Biot
number on the flow field, temperature, skin friction factor, heat transfer rate, and nanoparticle,
volume fraction rate are displayed in both graphical and tabular forms. Comparisons of analytical
(for special cases) and numerical solutions with the existing results in the literature aremade and is
found a close agreement, that supports the validity of the present analysis and the accuracy of our
numerical computations. Results for the reduced Nusselt and Sherwood numbers are provided in
tabular and graphical forms for various values of the flow controlling parameters which govern the
momentum, energy, and the nanoparticle volume fraction transport in the MHD boundary layer.

1. Introduction

Nanoparticles are made from various materials, such as oxide ceramics (Al2O3, CuO), nitride
ceramics (AlN, SiN), carbide ceramics (SiC, TiC), metals (Cu, Ag, Au), semiconductors,
(TiO2, SiC), carbon nanotubes, and composite materials such as alloyed nanoparticles or
nanoparticle core-polymer shell composites. According to Prodanovi et al. [1], an ultrafine
nanoparticle in nanofluids is capable of flowing in porous media, and these flows can
improve oil recovery; hence, nanoparticles are able to control the processes of oil recovery.
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To improve oil recovery of viscous oils, a fluid, for example water, is injected into the porous
medium to displace the oil, since water viscosity is inferior to that of oil. However, increasing
the injected fluid viscosity using nanofluidswould drastically increase the recovery efficiency.
Nanoparticles can also be used to determine changes in fluid saturation and reservoir prop-
erties during oil and gas production. A suspension of nanoparticles with base fluid to get the
maximum possible thermal properties at the minimum possible concentrations (preferably
<1% by volume) by uniform dispersion and stable suspension of nanoparticles (preferably
<10 nm) in host fluids is regarded as nanofluid [2, 3]. According to Kandasamy et al. [4],
the thermal conductivity of the ordinary heat transfer fluids is not sufficient to meet current
cooling rate requirements. Nanofluids are capable of increasing the thermal conductivity and
convective heat transfer performance of the base liquids. Previous researchers have pointed
out that a small amount (<1% volume fraction) of Cu nanoparticles or carbon nanotubes
dispersed in ethylene glycol or oil is found to enhance the poor thermal conductivity of
the liquid by 40% and 150%, respectively. Conventional particle-liquid suspensions require
high concentrations (>10%) of particles to achieve such enhancement. Many studies on
nanofluids are being conducted by scientists and engineers due to their diverse technical and
biomedical applications. Examples include (i) nanofluid collant: electronics cooling, vehicle
cooling, transformer cooling, super powerful and small computers cooling, electronic devices
cooling, and so on; (ii)medical applications: cancer therapy and safer surgery by cooling; (iii)
process industries: materials and chemicals, detergency, food and drink, oil and gas, paper
and printing, and textiles. Advances in nanoelectronics, nanophotonics, and nanomagnetics
have seen the arrival of nanotechnology as a distinct discipline in its own right [5]. Ultrahigh-
performance cooling is necessary for many industrial technologies. However, poor thermal
conductivity is a drawback in developing energy-efficient heat transfer fluids necessary for
ultrahigh-performance cooling. A possible mechanism to increase the thermal conductivity
of nanofluids is the Brownian motions of the nanoparticles inside the base fluids [4].

Many research papers have been published on nanofluids to understand their perfor-
mance so that they can be utilized to enhance the heat transfer in various applications. A
comprehensive study of convective transport in nanofluids was made by Buongiorno and
Hu [6] and Buongiorno [7]. Kuznetsov and Nield [8] presented a similarity solution of
natural convective boundary layer flow of a nanofluid past a vertical plate. They have shown
that the reduced Nusselt number is a decreasing function of each of buoyancy-ratio num-
ber Nr, a Brownian motion number Nb, and a thermophoresis number Nt. An analytical
study on the onset of convection in a horizontal layer of a porous medium with the
Brinkman model and the Darcymodel filled with a nanofluid was presented by Kuznetsov
and Nield [9, 10]. In 2008, Duangthongsuk and Wongwises [11] investigated the influence of
thermophysical properties of nanofluids on the convective heat transfer and potted different
models used by the investigators for predicting the thermophysical properties of nanofluids.
In 2009, Abu-Nada and Oztop [12] studied the inclination effect on natural convection in
enclosures filled with Cu-water nanofluid. Steady boundary layer flow and heat transfer for
different types of nanofluids near a vertical plate with heat generation effects was studied by
Rana and Bhargava [13]. Chamkha and Aly [14] presented a nonsimilar solution of boundary
layer flow of a nanofluid near a porous vertical plate with magnetic field and heat gener-
ation/absorption effects numerically. Gorla and Chamkha [15] studied natural convection
flow past a horizontal plate in a porous medium filled with a nanofluid. Magnetic nano-
fluids are easy to manipulate with an external magnetic field, they have been used for a
variety of studies. The transpiration velocity influence on boundary layer for a non-New-
tonian fluid past a vertical cone located in a porous medium filled with a nanofluid was
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investigated numerically by an efficient implicit finite-difference method by Rashad et al.
[16]. According to Kandasamy et al. [4], particle transport and deposition in flowing sus-
pensions onto surfaces is important in a broad field of applications.

The fluid flow over a surface that stretches linearly has been extensively studied
because of its many practical applications in polymer processing industries, paper produc-
tion, biological processes, wire drawing, metal spinning, hot rolling, and so forth. Knowledge
of the heat and flow characteristics of the process is important so that the finished product
meets the required quality specifications. According to Kandasamy et al. [4], a large number
of problems involving heat, mass, and Newtonian and Non-Newtonian fluid flow over a
stretching sheet have been investigated. These investigations involved the inclusion of the
electric and magnetic fields, subject to different velocity boundary conditions such as no
slip, slip, power law, or exponential variation of the stretching velocity and different ther-
mal boundary conditions such as isothermal heat flux and constant or variable surface temp-
erature. Crane [17] first obtained the analytical solution in case of boundary layer flow of an
incompressible viscous fluid over a stretching sheet. Following himmany researchers such as
Liao [18], Vajravelu and Cannon [19], Raptis and Perdikis [20], Bakier [21], Abel et al. [22],
and Pantokratoras [23] have studied heat and/or mass transfer over radiating/nonradiating
linear/nonlinear stretching sheet. Abel et al. [22] presented numerical solutions of steady
laminar MHD boundary layer flow over a vertical nonlinear stretching sheet with partial slip.
The magnetohydrodynamic liquid flow and heat transfer over nonlinear permeable stretch-
ing surface in the presence of chemical reactions and partial slip were studied by Yazdi et al.
[24]. Very recently, Makinde and Aziz [25] studied boundary layer flow of a nanofluid over a
linearly stretching sheet taking into account the thermal convective boundary condition. By
varying the magnetic field, we can affect the physical properties of these fluids.

The above literature survey reveals that all of these studies are restricted to isothermal
or isoflux boundary conditions. The use of the thermal convective boundary condition in
order to study Blasius flow over a flat plate was first introduced by Aziz [26]. After his
pioneering work, several authors used this boundary condition to study transport pheno-
mena. Examples include Hamad et al. [27], Yao et al. [28], Makinde and Aziz [25], Yacob
et al. [29]. In all of the above studies, conventional no-slip boundary condition was used
at the surface. However, fluid flows in micro/nanoscale-scale devices such as micronoz-
zles, micropumps, microturbines, microscales heat exchangers, microreactors, microvalves,
turbines, sensors, and microactuators, are important for micro- and nanoscience and the
conventional no-slip boundary condition at the solid-fluid interface must be replaced with
the slip condition [30–33].

Scaling group analysis is a mathematical tool to find all symmetries of the system
of differential equations with auxiliary conditions and requires no prior knowledge of the
equation under investigation. Symmetry groups are invariant transformations that do not
alter the structural form of the investigated equation(s) [34]. In case of scaling group of trans-
formations, the group-invariant solutions are the well-known similarity solutions of initial/
boundary value problems [35]. It is a powerful, sophisticated, and systematic method to gen-
erate similarity solutions of the governing partial differential equations. Application of scal-
ing group analysis will reduce the number of independent variables of the governing system
of partial differential equations by one and will keep the system and auxiliary conditions
invariant and combine the independent variables into a single independent variable (called
similarity variable) [36, 37]. Also, the original initial and boundary conditions become two
boundary conditions in the new combined variable (White and Subramanian, 2010). The
main advantage of this method is that it can be successfully applied to nonlinear differential
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equations, for example, Pakdemirli and Yurusoy, [38], Boutros et al. [39], Keçebaş and
Yurusoy [40], Salem [41], Puvi Arasu et al. [42], Uddin et al. [43], and Hamad et al. [27]
to solve problems of fluid mechanics and heat transfer. Avramenko et al. [44] presented the
symmetrical properties of the turbulent boundary-layer flows and other turbulent flows are
studied utilizing the Lie group theory technique. Very recently Mukhopadhyay and Layek
[45] studied the boundary layer flow and heat transfer of a fluid through a porous medium
towards a stretching sheet in presence of heat generation or absorption. In the context of our
study, invariant solutions are meant to be a reduction of partial differential equations to the
ordinary differential equations with relevant boundary conditions. From the literature survey
conducted, it seems that the combined effect of thermophoresis and Brownian motion with
slip boundary condition and heat generation on MHD boundary layer flow of a nanofluid
over a permeable linearly stretching sheet has not been investigated yet and this motivates
our present study.

The objective of this study is to extend the work of Makinde and Aziz [25] for MHD
slip flow of an electrically conducting nanofluid over a stretching sheet in the presence of
heat generation/absorption. This problem is associated with many applications in the fields
of metallurgy, chemical engineering, and so forth A good number of industrial processes
concerning polymers involve the cooling of continuous strips or filaments by drawing them
through a quiescent fluid. The final products depend on the cooling rate, which is governed
by the structure of the boundary layer around the stretching surface. The governing partial
differential equations have been reduced to a two-point boundary value problem in similarity
variables developed by scaling group of transformations. The reduced equations have
been solved numerically by an efficient Runge-Kutta-Fehlberg fourth-fifth-order numerical
method under Maple 13. The effects of the embedded flow controlling parameters on the
fluid velocity, temperature, skin friction factor, heat transfer rate, and the nanoparticle volume
fraction rate have been demonstrated graphically and discussed.

2. Governing Equations

We consider a two-dimensional problem with coordinate system in which the x-axis is
aligned horizontally and the y-axis is normal to it. A uniform transverse magnetic field of
strength B0 is applied parallel to the y-axis. The induced magnetic field, the external electric
field, and the electric field due to the polarization of charges are assumed to be negligible.
The temperature T and the nanoparticle volume fraction C take constant values Tw and Cw,
respectively, at the wall and constant values, T∞ and C∞, respectively far away from the
wall. The bottom of the sheet is heated by convection from a hot fluid at temperature Tf ,
which produces a heat transfer coefficient h. Assume that Tf > Tw > T∞. The Oberbeck-
Boussinesq approximation is utilized and the four field equations are the conservation of
mass, momentum, thermal energy, and the nanoparticles volume fraction. These equations
can be written in terms of dimensional forms as [25]
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(2.1)

where α = k/(ρ c)f is the thermal diffusivity of the fluid and τ = (ρ c)p/(ρ c)f is the ratio of
heat capacity of the nanoparticle and fluid.

The appropriate boundary conditions are [27]

u = uw = c1x +N1ν
∂ u

∂ y
, v = vw, −κ ∂ T

∂ y
= h

(
Tf − T

)
, C = Cw at y = 0,

u −→ 0, T −→ T∞, C −→ C∞ as y −→ ∞.

(2.2)

Here, (u, v) are the velocity components along x and y axes, vw the suction/injection
velocity, and N1the velocity slip factor with dimension (velocity)−1. Also c1 is positive
constant standing for the characteristic stretching intensity.N1 is the velocity slip factor with
dimension (velocity)−1. Here, ρf is the density of the base fluid, σ is the electric conductivity,
Q0 is the heat generation/absorption constant withQ0 > 0 heat generation(source) andQ0 < 0
heat absorption (sink), μ is the dynamic viscosity of the base fluid, ρP is the density of the
nanoparticles, (ρCP )f is the heat effective heat capacity of the fluid, (ρCP )P is the effective
heat capacity of the nanoparticle material, κm is the effective thermal conductivity of the
porous medium, ε is the porosity, DB is the Brownian diffusion coefficient, and DT signifies
the thermophoretic diffusion coefficient. Performing an order of magnitude analysis of the
momentum, energy, and the nanoparticle volume fraction equations and hence using the
following nondimensional variables:

x =
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, y =
y√
ν/c1

, u =
u√
c1ν

, v =
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c1ν
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T − Tw
ΔT

,

φ =
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=
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ΔC
, ΔT = Tw − T∞, ΔC = Cw − C∞,

(2.3)
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we have
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The boundary conditions in (2.2) become

∂ψ

∂y
= x + a

∂2ψ

∂y2
,

∂ψ
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= fw,

∂θ

∂y
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∂ψ

∂y
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(2.7)

where ψ is the stream function defined by u = ∂ψ/∂y and v = − ∂ψ/∂x satisfies the con-
tinuity equation automatically. The nine parameters involved in (2.4)–(2.7) are defined as
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√
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(2.8)

In (2.8),Q,M, Pr,Nt,Nb, Le, a, fw, and Bi denote the heat generation parameter, the
magnetic field parameter, the Prandtl number, the thermophoresis parameter, the Brownian
motion parameter, the Lewis number, the velocity slip parameter, the suction/injection
parameter, and the Biot number, respectively (see [48]).

3. Application of Scaling Group of Transformations

A one-parameter scaling group of transformations that is a simplified form of the Lie group
transformation is selected as [49, 50]

Γ : x∗ = xeεα1 , y∗ = yeεα2 , ψ∗ = ψeεα3 , θ∗ = θeεα4 , φ∗ = φeεα5 . (3.1)
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Here, ε(/= 0) is the parameter of the group and α′s are arbitrary real numbers whose
interrelationship will be determined by our analysis. The transformation (3.1) is treated as a
point transformation that transforms the coordinates (x, y, ψ, θ, φ) to (x∗, y∗, ψ∗, θ∗, φ∗). We
now investigate the relationship among the exponents α

′
s such that

Δj

(
x∗, y∗, u∗, v∗, . . . ,

∂3ψ∗

∂y∗3

)

= Hj

(
x, y, u, v, . . . ,

∂3ψ

∂y3
;a

)
Δj

(
x, y, . . . ,

∂3ψ

∂y3

) (
j = 1, 2, 3

) (3.2)

since this is the requirement that the differential forms Δ1, Δ2, and Δ3 are conformally
invariant under the transformation group Γ [51]. Substituting the transformations in (3.1)
into (2.4)–(2.6) leads to (see [52])
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(3.3)

The system will remain invariant under the group transformation Γ, and we would
have the following relations among the exponents:

2α3 − 2α2 − α1 = α3 − 3α2 = α3 − α2,
α3 + α4 − α1 − α2 = α4 − 2α2 = α4 + α5 − 2α2 = 2α4 − 2α2,

α3 + α5 − α1 − α2 = α5 − 2α2 = α4 − 2α2.

(3.4)

The boundary conditions will be invariant under Γ if the following equations hold:

α3 − α2 = α1 = α3 − 2α2, α3 − α1 = 0, α4 − α2 = 0 = α4, α5 = 0. (3.5)
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Solving (3.4) and (3.5) yields

α2 = α4 = α5 = 0, α1 = α3. (3.6)

3.1. Absolute Invariants

The set of transformations Γ reduces to

x∗ = xeεα1 , y∗ = y, ψ∗ = ψeεα1 , θ∗ = θ, φ∗ = φ. (3.7)

The generator corresponding to the one-parameter infinitesimal Lie group of point trans-
formations (3.7) is

X = x
∂

∂x
+ ψ

∂

∂ψ
. (3.8)

The invariant g(x, y, ψ) corresponding to X is obtained by solving the differential equation

X = x
∂g

∂x
+ ψ

∂g

∂ψ
. (3.9)

The auxiliary equation is dx/x = dψ/ψ, which gives

ψ

x
= constant = f

(
η
) (

say
)

with η = y, θ =
(
η
)
, φ = φ

(
η
)
. (3.10)

3.2. Governing Similarity Equations

Substitution of (3.10) into (2.4)–(2.6) leads to the following similarity equations:

f ′′′ + ff ′′ − f ′2 −Mf ′ = 0, (3.11)

θ′′ + Pr
[
fθ′ +Qθ + Nbθ′φ′ +Ntθ

′2
]
= 0, (3.12)

φ′′ + Lefφ′ +
Nt

Nb
θ′′ = 0 (3.13)

subject to the boundary conditions

f(0) = fw, f ′(0) = 1 + a f ′′(0), θ′(0) = −Bi [1 − θ(0)],
φ(0) = 1, f ′(∞) = θ(∞) = φ(∞) = 0,

(3.14)
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where primes denote differentiation with respect to η. Here, fw > 0 corresponds to suction
and fw < 0 corresponds to injection. Following Makinde and Aziz [25], the physical quan-
tities: the skin friction factor, the reduced Nusselt number, and the reduced Sherwood num-
ber, are directly proportional to−f ′′(0), −θ′(0), and −φ′(0) respectively.

4. Comparisons

It is worth mentioning that in case of purely hydromagnetic boundary layer (M = 0), no-
slip boundary condition (a = 0), for impermeable sheet (fw = 0) and in the absence of heat
generation (Q = 0), the problem under consideration reduces to the problem that has been
recently investigated by Makinde and Aziz [25]. It is also worth mentioning that in case of
purely hydromagnetic boundary layer (M = 0), no slip boundary conditions (a = 0), for
impermeable sheet (fw = 0), in the absence of heat generation (Q = 0) and for isothermal
sheet (Bi → ∞), the problem under consideration reduces to the problem that has been inves-
tigated by Khan and Pop [47].

5. Solutions of Similarity Equations

5.1. Analytical Solutions

Following Hamad et al. [27], we assume the solution of (3.11) is in the following form:

f = A + B exp
(−mη), (5.1)

where A, B, and m are parameters that will be determined so that they satisfy (3.11) as well
as the boundary condition on f in (3.14). Applying the boundary conditions in (3.14), it can
be found that the final form of the solution of the momentum (3.11) is

f
(
η
)
= fw +

1
m(1 + am)

[
1 − exp

(−mη)] (5.2)

withm given by

am3 +
(
1 − afw)

m2 −m(
fw + aM

) − 1 −M = 0. (5.3)

In case of no-slip boundary condition for which a = 0, we have that the solution is

f
(
η
)
= fw +

1
m

[
1 − exp

(−mη)], (5.4)

wherem = |fw +
√
fw2 + 4(1 +M)|/2. Hence, the flow parameter f ′′(0) is obtained as

f ′′(0) = −
fw +

√
fw2 + 4(1 +M)

2
. (5.5)
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Note that for no-slip boundary condition and for impermeable plate in case of purely
hydrodynamic case (M = 0), the solution of (3.11) becomes

f
(
η
)
= 1 − e−η. (5.6)

Note that this solution was first found by Crane [17].

5.2. Numerical Solution

The set of nonlinear ordinary differential equations (3.11)–(3.13) subject to the boundary
conditions in (3.14) have been solved numerically using Runge-Kutta-Fehlberg fourth-fifth-
order numerical method under Maple 13 for various values of the flow controlling para-
meters. The accuracy of the method has been tested in various convective heat transfer
problems. As a further confirmation, very recently the method was used by Aziz et al. [50]
and Khan andAziz [47] and found to reproduce their flawless results. The asymptotic bound-
ary conditions given in (3.14)were replaced by a finite value of 10 for similarity variable ηmax

as follows:

ηmax = 10, f ′(10) = θ(10) = φ(10) = 0. (5.7)

The choice of ηmax = 10 ensured that all numerical solutions obey the far-field asymptotic
values correctly. In 2009, Pantokratoras [53] noticed that the erroneous result was found by
many researchers in the field of convective heat and mass transfer because of taking small
far-field asymptotic value of η during their numerical computation.

6. Results and Discussion

Numerical results are plotted in Figures 1 to 8 to exhibit the influences of the various flow
controlling parameters on the dimensionless velocity, temperature, skin friction factor, heat
transfer rate, and nanoparticle volume fraction rate. To verify the accuracy of our numerical
scheme, a comparison of the computed skin friction factor is made to that of Hayat et al. [46]
in Table 1 and a close agreement is found. Further, comparisons of the values of the reduced
Nusselt number −θ′(0) and the reduced Sherwood number −φ′(0) with Khan and Pop [47]
and Makinde and Aziz [25] for different values of the flow controlling parameters are shown
in Tables 2, 3, 4, and 5, respectively. Comparisons show a good agreement for each value of
the relevant parameters. Therefore, we are confident that the present results are very accurate.

6.1. Velocity Profiles

Effects of the magnetic field and suction/injection on the dimensionless velocity are shown
in Figure 1. As expected, the suction reduces the velocity at the surface (Figure 1(a)) whilst
injection increases the velocity (Figure 1(b)) both for the hydrodynamic (M = 0) and
magnetohydrodynamics (M/= 0) boundary layer. It is also noticed that magnetic field reduces
the velocity boundary layer thickness for both the suction and injection cases. Figure 2
illustrates the effects of velocity slip and suction/injection parameters on the dimensionless
velocity. It is found from Figure 2 that the velocity slip suppresses the velocity for both the
suction and injection cases. Again, the suction reduces the velocity at the surface for both
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Figure 1: Effect of magnetic parameter on dimensionless velocity for (a) suction and (b) injection.

Table 1: Comparisons of dimensionless skin friction coefficient −f ′′(0) for various values of slip parameter
awhenNb =Nt = 0, Bi → ∞, fw = 0 =M = Q = 0.

a Hayat et al. [46] Present (numerical) Present (analytical)
0.0 1.000000 1.00000000 1.00000000
0.1 0.872082 0.87208247 0.95540136
0.2 0.776377 0.77637707 0.77637707
0.5 0.591195 0.59119548 0.59119548
1.0 0.430162 0.43015970 0.43015971
2.0 0.283981 0.28397959 0.28397959
5.0 0.144841 0.14484019 0.14484019
10.0 0.081249 0.08124198 0.08124198
20.0 0.043782 0.04378834 0.04378832
50.0 0.018634 0.01859623 0.01859617
100.0 0.009581 0.00954997 0.00954987

Table 2:Comparison of the dimensionless heat transfer rate −θ′(0)with previous publishedworks forNb =
Nt = fw = a =M = Q = 0, Bi = 1000, Le = 1.

Pr Khan and Pop [47] Makinde and Aziz [25] Present results
0.70 0.4539 0.4539 0.4537
2.00 0.9113 0.9114 0.9105
7.00 1.8954 1.18905 1.8918
20.00 3.3539 3.3539 3.3539
70.00 6.4621 6.4621 6.4622
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Table 3: Comparisons of results for reduced Nusselt number −θ′(0) and reduced Sherwood number −φ′(0)
with Le = Pr = 10, Bi → ∞.

Nb Nt Nur [47] Shr [47] Nur [25] Shr [25] Nur
(present)

Shr
(present)

0.1 0.1 0.9524 2.1294 0.9524 2.1294 0.95238 2.12939
0.2 0.1 0.5056 2.3819 0.5056 2.3819 0.50558 2.38187
0.3 0.1 0.2522 2.4100 0.2522 2.4100 0.25216 2.41002
0.4 0.1 0.1194 2.3997 0.1194 2.3997 0.11946 2.39965
0.5 0.1 0.0543 2.3836 0.0543 2.3836 0.05425 2.38357
0.1 0.2 0.6932 2.2740 0.6932 2.2740 0.69317 2.27401
0.1 0.3 0.5201 2.5286 0.5201 2.5286 0.52008 2.52863
0.1 0.4 0.4026 2.7952 0.4026 2.7952 0.40258 2.79515
0.1 0.5 0.3211 3.03512 0.3211 3.03512 0.32105 3.03512

Table 4: Comparisons of results for reduced Nusselt number −θ′(0) with Le = Pr = 10, Bi = 0.1.

Nur [25] Nur (present)
Nt Nb = 0.1 Nb = 0.2 Nb = 0.3 Nb = 0.4 Nb = 0.1 Nb = 0.2 Nb = 0.3 Nb = 0.4
0.1 0.0929 0.0873 0.0769 0.0597 0.09291 0.08733 0.07688 0.05966
0.2 0.0927 0.0868 0.0751 0.0553 0.09273 0.08676 0.07508 0.05535
0.3 0.0925 0.0861 0.0729 0.0503 0.09255 0.08612 0.07292 0.05027
0.4 0.0923 0.0854 0.0703 0.0445 0.09234 0.08539 0.07027 0.04455
0.5 0.0921 0.0845 0.0700 0.0386 0.09213 0.08454 0.06697 0.03860

conventional no-slip boundary condition and Maxwell velocity slip boundary condition.
Opposite behavior is observed for both slip and no-slip boundary conditions in case of injec-
tion.

6.2. Temperature Profiles

The variation of dimensionless temperature with Prandtl number and suction/injection
parameters is depicted in Figure 3. The dimensionless temperature and corresponding ther-
mal boundary layer decrease for suction for all values of Prandtl number. Reverse phenomena
is noticed in case of injection. The dimensionless temperature decreases with an increase
in Prandtl number for both suction and injection. Impact of the velocity slip and nano-
fluid parameters, namely, thermophoresis and Brownian motion, on the dimensionless tem-
perature is demonstrated in Figure 4. The effect of both nanofluid parameters is to increase
the dimensionless temperature with and without slip boundary condition (Figures 4(a) and
4(b)). Comparison of Figures 4(a) and 4(b) reveals that slip velocity increases the dimen-
sionless temperature and corresponding thermal boundary layer thickness. Figure 5 illustrate
the effects of Biot number and heat generation parameter on the dimensionless temperature.
Increasing Biot number leads to an increase in the dimensionless temperature for both the
impermeable (Figure 5(a)) and permeable (Figure 5(b)) plates and in both the presence
and absence of the heat generation. The generation of heat increases the dimensionless
temperature and thermal boundary layer in both cases with/without suction. This increase
in the dimensionless temperature produces an increase in the velocity and temperature due



Mathematical Problems in Engineering 13

Table 5: Comparisons of results for reduced Sherwood number −φ′(0) with Le = Pr = 10, Bi = 0.1.

Shr [25] Shr (present)
Nt Nb = 0.1 Nb = 0.2 Nb = 0.3 Nb = 0.4 Nb = 0.1 Nb = 0.2 Nb = 0.3 Nb = 0.4
0.1 2.2774 2.3109 2.3299 2.3458 2.27742 2.31094 2.32994 2.34583
0.2 2.2490 2.3168 2.3569 2.3903 2.24896 2.31682 2.35692 2.39025
0.3 2.2228 2.3261 2.3900 2.4411 2.22281 2.32606 2.38997 2.44114
0.4 2.1992 2.3392 2.4303 2.4967 2.19919 2.33924 2.43031 2.49667
0.5 2.1783 2.3570 2.4792 2.5529 2.17835 2.35704 2.47923 2.55287
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Figure 2: Effect of velocity slip parameter on dimensionless velocity for (a) suction and (b) injection.

to the buoyancy effect. On the other hand, an increase in the negative value of Q will reduce
thermal energy from the flow causing the velocity and the temperature distribution to drop.

6.3. Skin Friction

Figure 6 illustrates the variation of skin friction with suction/injection parameters for differ-
ent values of magnetic (Figure 6(a)) and velocity slip parameters (Figure 6(b)). Figure 6(a)
shows that an increase in suction parameterfw leads to a rise in the skin friction for both
hydromagnetic and magnetohydrodynamic boundary layers, whereas an opposite behavior
is found in case of injection. It is also found that the magnetic field leads to an increase in
the skin friction factor. In the presence of the magnetic field, Figure 6(b), it is also observed
that with an increase in suction parameterfw, the skin friction factor increases for both slip
and no-slip boundary conditions, whereas the opposite behavior was observed in case of
injection.
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Figure 3: Effect of Prandtl number on dimensionless temperature for (a) suction and (b) injection.
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Figure 4: Effect of velocity slip and nanofluid parameters on dimensionless temperature.
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Figure 5: Effect of Biot number and heat generation parameter on dimensionless temperature for (a) no
suction/injection and (b) suction.
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Figure 6: Variation of skin friction with suction/injection parameters for variable (a) magnetic and (b)
velocity slip parameters.

6.4. Heat Transfer Rate

The variation of the dimensionless heat transfer rate with nanofluid and heat generation
parameters is shown in Figure 7(a). It is observed that the dimensionless heat transfer rate
decreases with an increase in heat generation and nanofluid parameters. This behavior was
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Figure 7: Effect of various parameters and dimensionless numbers on dimensionless heat transfer rates.

observed in case of suction. Figure 7(b) shows that as Prandtl and Biot numbers increase,
the dimensionless heat transfer rate is increased for both the hydrodynamic (M = 0) and
magnetohydrodynamic (M/= 0) thermal boundary layers. The dimensionless heat transfer
rates are found to increase with Prandtl numbers. For small Prandtl numbers, no appreciable
effect of magnetic parameter on the dimensionless heat transfer rate could be found.

6.5. Nanoparticle Volume Fraction Rate

The variation of dimensionless nanoparticle volume fraction rate with various flow con-
trolling parameters is shown in Figure 8. From Figure 8(a), it is obvious that the nanoparticle
volume fraction rate increases with the Brownian motion parameter and decreases with
thermophoresis parameter for small values of heat generation (Q = 0.2). Opposite behavior is
observed in case of higher heat generation (Q = 0.3). The nanoparticle volume fraction rate is
increased with the Lewis number and suction parameter for both purely hydromagnetic and
magnetohydrodynamic flows. No appreciable effect of magnetic field on the nanoparticle
volume fraction rate could be found in case of suction (Figure 8(b)).

7. Conclusions

MHD boundary layer flow in a nanofluid over a convectively heated permeable linearly
stretching sheet with heat generation is investigated numerically. The applications of
momentum slip boundary condition instead of conventional no-slip boundary condition
make our study more novel. Similarity representations of the governing equations are
derived by scaling group of transformation instead of using the existing transformations.
The following conclusions can be drawn.



Mathematical Problems in Engineering 17

Nb

0.1 0.2 0.3 0.4 0.5
0.9

1.2

1.5

1.8

0.2
0.3

Nt= 0.1, 0.3, 0.5

Le = 2, Pr= 1, M = 1, a = 0.5

−φ
′ (

0)

Q

Bi = 1 , fw = 0.5

Nt= 0.1, 0.3, 0.5

(a)

Le

2 4 6 8 10
0

1

2

3

4

5

6

0
1

−φ
′ (

0)

M

fw = 0.1, 0.3, 0.5

Q = 0.3, Pr = 1, a = 0.1

Bi = 1, Nt = 0.3, Nb = 0.3

(b)

Figure 8: Effect of various parameters and dimensionless numbers on dimensionless mass transfer rates.

(i) The transport of momentum, energy, and nanoparticle volume fraction inside
respective boundary layers depends upon six parameters, Brownian motion, ther-
mophoresis, velocity slip, suction/injection, magnetic, and heat generation param-
eters, and three dimensionless numbers, Prandtl number Pr, Lewis number Le, and
Biot number Bi.

(ii) For purely hydrodynamic boundary layer (M = 0), no-slip boundary conditions
(a = 0) and impermeable plate (fw = 0) and in the absence of heat generation
(Q = 0), our results are found in good agreement with Makinde and Aziz [25] and
Khan and Pop [47].

(iii) Magnetic field reduces the velocity, heat transfer rate, and nanoparticle volume
fraction rate.

(iv) With the increase in a, the velocity layer thickens but the temperature layer becomes
thinner.

(v) Heat generation increases temperature.

(vi) Suction reduces whilst injection enhances the velocity boundary layer thickness for
both magnetohydrodynamic and hydrodynamic boundary layer in the presence
or absence of slip boundary condition. Similar behavior is found for temperature
boundary layer.

(vii) Lewis number increases the nanoparticle volume fraction rate for both magnetohy-
drodynamic and hydrodynamic layers. Heat transfer rate is found to be increased
with the Biot number. In the limiting case, when Bi tends to infinity, the results of
heat transfer are comparable to the isothermal case.
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(viii) The skin friction factor increases with M whilst it decreases with a. Suction
increases skin friction factor for both magnetohydrodynamic and hydrodynamic
layers with slip flow or without slip flow. Opposite behavior is noticed in case of
injection.

(ix) The temperature of the fluid and thermal boundary layer thickness increases for
both slip and no slip boundary conditions whereas the nanoparticle volume frac-
tion decreases with increase of Brownian motion.
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