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The problems on synchronization and pinning control for complex dynamical networks with
interval time-varying delay are investigated and two less conservative criteria are established
based on reciprocal convex technique. Pinning control strategies are designed to make the complex
networks synchronized. Moreover, the problem of designing controllers can be converted into
solving a series of NMIs (nonlinear matrix inequalities) and LMIs (linear matrix inequalities),
which reduces the computation complexity when comparing with those present results. Finally,
numerical simulations can verify the effectiveness of the derived methods.

1. Introduction

During the past decades, complex dynamical networks have increasingly become a focal
research topic and received much attention in various fields such as physics, chemistry, and
computer science [1–4]. Such systems in the real world usually consist of a large number
of highly interconnected dynamical units. Transportation networks, coupled engineering
systems, artificial neural networks in human brains, and the Internet are only the typically
realistic examples. In order to capture their evolving properties, several famous models have
been proposed, such as scale-free networks, random networks, and small world networks.

Recently, the research on synchronization and dynamical behaviors of complex
networks has become an important direction, and it was mainly based on the techniques
including analyzing topological structure and studying the origin of the intrinsic self-
organized dynamics; see [5–7] and references therein. Authors in [5–7] have introduced one
uniform dynamic network model and studied the phenomena of synchrony of all network
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states, with some derived conditions that can guarantee the asymptotical synchronization or
projective cluster synchronization. Meanwhile, since there inevitably exists communication
delay which is the main source of poor dynamical behaviors in various networks, some
efforts have been applied to the synchronization of complex systems [8–21]. More recently,
some researchers have considered the global or robust or cluster synchronization for various
coupled delayed neural networks based on some effective techniques including LMI one in
[8–12]. As for complex networks with linear or nonlinear couplings, some delay-dependent
criteria are presented to guarantee the synchronization in [13–16], and moreover in [17, 18],
some synchronization results are achieved for complex networks based on linear feedback
control or adaptive feedback control. Additionally, to avoid the conservatism, some authors
employed delay-partitioning idea to tackle the constant delay or time-variant one in [19, 20].
Yet, it has come to our attention that though some delay-dependent methods have appeared,
the techniques above still require great improvements owing to ignoring some important
terms when estimating the derivative of Lyapunov functional, especially for the case of
interval time-varying delay [21].

Presently, the control problem on scale-free dynamical networks was investigated by
applying local linear feedback injections to a small fraction of network nodes [22, 23]. Mean-
while, some researchers have considered pinning control of delayed complex networks in
[24–31]. In [24], cluster synchronization for stochastic delayed neural networks was studied
based on pinning control and LMI approach. By adopting pinning periodically intermittent
control, the work [25] studied the exponential synchronization and yet gave some uneasy-
to-check results. With existence of various couplings, the synchronization has been analyzed
for delayed complex networks using pinning adaptive control in [26]. In [27], the authors
have presented linear feedback and adaptive feedback pinning control to synchronize the
delayed complex networks. Yet, we notice that as for constructions of Lyapunov functional
and analyzed techniques described in [24–29], there still exists much room waiting for the
further improvement, which can be fully considered and tackled in this presented work.

In this paper, the problems on synchronization and pinning control for delayed
dynamical networks are studied based on pinning control strategies. Then the decentralized
feedback controllers are designed to make the addressed networks synchronized. Moreover,
since the most improved techniques including reciprocal convex technique have been
applied, the design of controllers can be converted into solving optimal solution of an array
of NMIs and LMIs. These conditions can be extended to delayed complex networks with
different topology and different sizes.

Notations. Rn denotes the n-dimensional Euclidean space, and Rn×m is the set of all n × m
real matrices. AT stands for the transpose of matrix A; I represents the identity matrix of an
appropriate dimension;A⊗B indicates the Kronecker product of them×nmatrixA and p×q
matrix B;

[
X Y
YT Z

]
=
[
X Y
∗ Z

]
with ∗ denoting the symmetric term in a symmetric matrix.

2. Problem Formulations

Suppose that the nodes are coupled with states xi(·), i ∈ {1, . . . ,N}, then the complex
dynamical networks can be described by

ẋi(t) = f(xi(t)) + g(xi(t − τ(t))) +
N∑

j=1

l1ijExj(t) +
N∑

j=1

l2ijFxj(t − τ(t)), (2.1)
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where xi(t) = [xi1(t), xi2(t), . . . , xin(t)]
T are the state vectors, and f(·), g(·) : Rn → Rn

are the continuously differentiable functions; here, E = [eij]n×n and F = [fij]n×n are the
inner coupling matrices between the connected nodes i and j at time t and t − τ(t), respec-
tively.

For the dynamical system (2.1), the following assumptions are utilized throughout this
paper:

(A1) τ(t) denotes the interval time-varying delay satisfying

0 ≤ τ0 ≤ τ(t) ≤ τm, τ̇(t) ≤ μ < +∞, (2.2)

and we set τm = τm − τ0,
(A2) here, Lk = [lkij]N×N (k = 1, 2) is the configuration matrix that is irreducible and

satisfies

lkii = −
N∑

j=1,j /= i

lkij = −
N∑

j=1,j /= i

lkji, k = 1, 2; i = 1, 2, . . . ,N, (2.3)

with lkij = lkji > 0 if there is a connection between node i and the one j, and otherwise, lkij =
0. Furthermore, suppose that the eigenvalue λi(νi) of the matrix L1(L2) can be ordered as
follows:

0 = λ1 > λ2 ≥ · · · ≥ λN (0 = ν1 > ν2 ≥ · · · ≥ νN). (2.4)

Prior to addressing the synchronization results, the following definition and lemmas
are introduced.

Definition 2.1 (see [28]). The complex networks described by (2.1) are said to achieve the
asymptotical synchronization

x1(t) = x2(t) = · · · = xN(t) = s(t), (2.5)

where s(t) is the solution of the local dynamics of an isolate node satisfying

ṡ(t) = f(s(t)) + g(s(t − τ(t))). (2.6)

Lemma 2.2 (see [32]). For any constant matrix W ∈ Rn×n, W = WT > 0, scalar functional 0 ≤
r(t) ≤ rM, and a vector function ė : [−rM, 0] → Rn such that the following integration is well
defined, then

−rM
∫0

−r(t)
ėT (t + s)Wė(t + s)ds ≤ [e(t) − e(t − r(t))]TW [e(t) − e(t − r(t))]. (2.7)
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Lemma 2.3 (see [33]). Let the functions f1(t), f2(t), . . . , fN(t) : Rm → R have the positive values
in an open subset D of Rm, then for αi > 0 satisfying

∑
i αi = 1 and gi,j(t) : Rm → R satisfying[

fi(t) gi,j (t)
gj,i(t) fj (t)

]
≥ 0, one has that

∑

i

1
αi
fi(t) ≥

∑

i

fi(t) +
∑

i /= j

gi,j(t). (2.8)

As for the complex networks (2.1) and symmetric matrices L1, L2, if the followingN−1
systems of n-dimensional linear delayed differential systems

ω̇i(t) = (J(t) + λiE)ωi(t) + (Γ(t) + νiF)ωi(t − τ(t)), i = 2, . . . ,N (2.9)

are asymptotically stable with respect to their zero solutions, the complex networks (2.1) can
achieve the synchronization at s(t), where J(t)Ḃf ′(s(t)) is the Jacobian matrix of f(x(t)) at
s(t), and Γ(t)Ḃg ′(x(t − τ(t))) is the Jacobian matrix of g(x(t − τ(t))) at s(t − τ(t)).

3. Synchronization Criterion for Complex Networks

In this section, we will derive one delay-derivative-dependent synchronization criterion for
the complex networks in (2.1), which can be much more effective than those present ones
based on some most developed techniques in [28–33].

Theorem 3.1. Considering the time delay in (2.2), the complex networks (2.1) can achieve the
asymptotical synchronization if there exist the appropriately dimensional matrices Pi > 0, Qi > 0,
Ri > 0, Ti > 0, Ui > 0, Vi, Si, Hi, Mi, and Ni for i = 2, . . . ,N, satisfying the matrix inequalities in
(3.1),

[
Vi Si

ST
i Vi

]
≥ 0, i = 2, . . . ,N,

⎡

⎢⎢⎢⎢⎢
⎣

Ωi11 Ui Ωi13 0 Ωi15

∗ Ωi22 Vi − Si Si 0
∗ ∗ Ωi33 Vi − Si Ωi35

∗ ∗ ∗ −Ri − Vi 0
∗ ∗ ∗ ∗ Ωi55

⎤

⎥⎥⎥⎥⎥
⎦

< 0,

(3.1)

with

Ωi11 = −Ui +Qi +HT
i (J(t) + λiE) + (J(t) + λiE)

THi,

Ωi13 = HT
i (Γ(t) + νiF) + (J(t) + λiE)

TNi,

Ωi15 = Pi −HT
i + (J(t) + λiE)

TMi,

Ωi22 = −Qi + Ri + Ti − Vi −Ui,



Mathematical Problems in Engineering 5

Ωi33 = −(1 − μ
)
Ti −NT

i (Γ(t) + νiF) + (Γ(t) + νiF)TNi − 2Vi + Si + ST
i ,

Ωi35 = (Γ(t) + νiF)TMi −NT
i ,

Ωi55 = −MT
i −Mi + τ20Ui + τ2mVi.

(3.2)

Proof. As for the ith node, we choose the following Lyapunov-Krasovskii functional:

Vi(ωit) = ωT
i (t)Piωi(t) +

∫ t

t−τ0
ωT

i (s)Qiωi(s)ds +
∫ t−τ0

t−τm
ωT

i (s)Riωi(s)ds +
∫ t−τ0

t−τ(t)
ωT

i (s)Tiωi(s)ds

+
∫0

−τ0

∫ t

t+θ
τ0ω̇

T
i (s)Uiω̇i(s)dsdθ +

∫−τ0

−τm

∫ t

t+θ
τmω̇

T
i (s)Viω̇i(s)dsdθ,

(3.3)

with symmetric matrices Pi, Qi, Ri, Ti, Ui, and Vi waiting to be determined. Then for any
n × n matrices Hi, Mi, and Ni, the time derivative of Vi(ωi(t)) along the system (2.9) can be
derived as

V̇i(ωit)=2ω
T
i (t)Piω̇i(t)+ωT

i (t)Qiωi(t)−ωT
i (t−τ0)(Qi−Ri−Ti)ωi(t−τ0)−ωT

i (t−τm)Riωi(t−τm)

− (1 − τ̇(t))ωT
i (t − τ(t))Tiωi(t − τ(t)) + τ20 ω̇

T
i (t)Uiω̇i(t) −

∫ t

t−τ0
τ0ω̇

T
i (s)Uiω̇i(s)ds

+ τ2mω̇
T
i (t)Viω̇i(t) −

∫ t−τ0

t−τ(t)
τmω̇

T
i (s)Viω̇i(s)ds −

∫ t−τ(t)

t−τm
τmω̇

T
i (s)Viω̇i(s)ds

+
[
ωT

i (t)H
T
i + ω̇T

i (t)M
T
i +ωT

i (t − τ(t))NT
i

]

× [−ω̇i(t) + (J(t) + λiE)ωi(t) + (Γ(t) + νiF)ωi(t − τ(t))].
(3.4)

Through employing Lemmas 2.2 and 2.3, we can yield that

−
∫ t

t−τ0
τ0ω̇

T
i (s)Uiω̇i(s)ds ≤ [ωi(t) −ωi(t − τ0)]TUi[ωi(t) −ωi(t − τ0)],

−
∫ t−τ0

t−τ(t)
τmω̇

T
i (s)Viω̇i(s)ds −

∫ t−τ(t)

t−τm
τmω̇

T
i (s)Viω̇i(s)ds

≤ − τm
τ(t) − τ0

[ωi(t − τ0) −ωi(t − τ(t))]TVi[ωi(t − τ0) −ωi(t − τ(t))]

− τm
τm − τ(t)

[ωi(t − τ(t)) −ωi(t − τm)]TVi[ωi(t − τ(t)) −ωi(t − τm)]

≤ −
[
ωi(t − τ0) −ωi(t − τ(t))
ωi(t − τ(t)) −ωi(t − τm)

]T[
Vi Si

ST
i Vi

][
ωi(t − τ0) −ωi(t − τ(t))
ωi(t − τ(t)) −ωi(t − τm)

]
.

(3.5)
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Then together with the terms (3.4)-(3.5), it can be deduced that

V̇i(ωit) ≤

⎡

⎢⎢⎢⎢⎢
⎣

ωi(t)
ωi(t − τ0)
ωi(t − τ(t))
ωi(t − τm)

ω̇i(t)

⎤

⎥⎥⎥⎥⎥
⎦

T⎡

⎢⎢⎢⎢⎢
⎣

Ωi11 Ui Ωi13 0 Ωi15

∗ Ωi22 Vi − Si Si 0
∗ ∗ Ωi33 Vi − Si Ωi35

∗ ∗ ∗ −Ri − Vi 0
∗ ∗ ∗ ∗ Ωi55

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

ωi(t)
ωi(t − τ0)
ωi(t − τ(t))
ωi(t − τm)

ω̇i(t)

⎤

⎥⎥⎥⎥⎥
⎦
. (3.6)

Then there must exist one scalar ε > 0 such that V̇i(ωit) ≤ −ε‖Pωi(t)P‖ < 0 for any ωi(t)/= 0.
Based on the Lyapunov-Krasovskii stability theory, all nodes in complex networks (2.1) are
asymptotically synchronized, and it completes the proof.

Remark 3.2. Presently, the convex combination technique has been widely employed to tackle
time-varying delay owing to that it could reduce the conservatism more effectively than
the previous methods; see [21, 32]. In [33], the authors put forward the reciprocal convex
approach, which can reduce the conservatismmore effectively than convex combination ones.
Yet, it has come to our attention that no researchers have utilized reciprocal convex idea to
tackle the synchronization for delayed complex networks.

4. Pinning Control of Delayed Complex Networks

Suppose that we want to stabilize the system (2.1) onto a homogeneous stationary state.
In order to achieve the goal, we will apply the pinning control strategy on a small fraction
δ (0 < δ � 1) of the nodes in network (2.1). Suppose that the nodes i1, i2, . . . , il are selected to
be under pinning control, and il+1, il+2, . . . , iN are the unselected ones, where l = [δN] stands
for the smaller but nearest to the real number δN, then l is no less than 0 for pinning control,
and the controlled networks can be described by

ẋi(t) = f(xi(t)) + g(xi(t − τ(t))) +
N∑

j=1

l1ijExj(t) +
N∑

j=1

l2ijFxj(t − τ(t)) + ui(t), i = 1, 2, . . . , l,

ẋi(t) = f(xi(t)) + g(xi(t − τ(t))) +
N∑

j=1

l1ijExj(t) +
N∑

j=1

l2ijFxj(t − τ(t)), i = l + 1, l + 2, . . . ,N.

(4.1)

For a special case that τ(t) is available, we adopt the following local linear feedback control
law:

ui(t) = −kiE[xi(t) − s(t)] − liF[xi(t − τ(t)) − s(t − τ(t))], (4.2)

with the feedback gains ki > 0, li > 0.
The aim of this section is to stabilize the network (4.1) to be of homogenous stationary

state defined by

x1(t), x2(t), . . . , xN(t) −→ s(t), ṡ(t) = f(s(t)) + g(s(t − τ(t))), as t −→ +∞. (4.3)
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Denoting ki = li = 0 (i = l + 1, l + 2, . . . ,N), then we can derive that

ẋi(t) = f(xi(t)) + g(xi(t − τ(t))) +
N∑

j=1

l1ijExj(t) +
N∑

j=1

l2ijFxj(t − τ(t)) − kiE[xi(t) − s(t)]

− liF[xi(t − τ(t)) − s(t − τ(t))], i = 1, 2, . . . ,N.

(4.4)

If we let ei(t) = xi(t) − s(t) and e(t) = [e1(t), e2(t), . . . , eN(t)]T , then we can linearize the
network (4.4) as

ėi(t) = J(t)ei(t) + Γ(t)ei(t − τ(t)) +
N∑

j=1

l1ijEej(t) +
N∑

j=1

l2ijFej(t − τ(t)) − kiEei(t) − liFei(t − τ(t)),

(4.5)

where J(t) and Γ(t) are the Jacobian matrices of the functions f, g at s(t) and s(t − τ(t)),
respectively.

In what follows, we define K = diag(k1, k2, . . . , kN), L = diag(l1, l2, . . . , lN), and

L1 =
[
l1ij

]

N×N
, L2 =

[
l2ij

]

N×N
, e(t) =

[
eT1 (t), e

T
2 (t), . . . , e

T
N(t)

]T
. (4.6)

Then based on Kronecker product, we can deduce

ė(t)=(IN ⊗ J(t))e(t)+(IN ⊗ Γ(t))e(t − τ(t))+
((

L1 −K
)
⊗ E

)
e(t)+

((
L2 − L

)
⊗ F

)
e(t − τ(t)).

(4.7)

Assumption 4.1. The matrices L1 −K and L2 −L satisfy [(L1 −K)(L2 −L)]T = (L1 −K)(L2 −L).

Then there does exist an orthogonal matrix U such that U(L1 −K)UT = Λ and U(L2 −
L)UT = Π, in which Λ = diag(λ1, λ2, . . . , λN) and Π = diag(ν1, ν2, . . . , νN) satisfy 0 > λ1 ≥
λ2 ≥ · · · ≥ λN and 0 > ν1 ≥ ν2 ≥ · · · ≥ νN .

Denoting η(t) = (UT ⊗ In)e(t) = [ηT
1 (t), η

T
2 (t), . . . , η

T
N(t)]T and employing the property

of Kronecker product (A1 ⊗ B1)(A2 ⊗ B2) = (A1A2) ⊗ (B1B2), one can derive

η̇(t) = (IN ⊗ J(t))η(t) + (IN ⊗ Γ(t))η(t − τ(t)) +
(
Λ ⊗ E

)
η(t) +

(
Π ⊗ F

)
η(t − τ(t)), (4.8)

that is,

η̇i(t) =
[
J(t) + λiE

]
ηi(t) + [Γ(t) + νiF]ηi(t − τ(t)), i = 1, 2, . . . ,N. (4.9)

Theorem 4.2. Considering the time delay in (2.2), the controlled networks (4.9) can achieve local
asymptotical stability at s(t) if there exist the appropriately dimensional matrices Pi > 0, Qi > 0,
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Ri > 0, Ti > 0, Ui > 0, Vi > 0, Si, Hi, Mi, and Ni for i = 1, 2, . . . ,N, satisfying the following
inequalities in (4.10):

[
Vi Si

ST
i Vi

]
≥ 0, i = 1, 2, . . . ,N,

⎡

⎢⎢⎢⎢⎢
⎣

Ξi11 Ui Ξi13 0 Ξi15

∗ Ξi22 Vi − Si Si 0
∗ ∗ Ξi33 Vi − Si Ξi35

∗ ∗ ∗ −Ri − Vi 0
∗ ∗ ∗ ∗ Ξi55

⎤

⎥⎥⎥⎥⎥
⎦

< 0,

(4.10)

with

Ξi11 = −Ui +Qi +HT
i

(
J(t) + λiE

)
+
(
J(t) + λiE

)T
Hi,

Ξi13 = HT
i (Γ(t) + νiF) +

(
J(t) + λiE

)T
Ni,

Ξi15 = Pi −HT
i +

(
J(t) + λiE

)T
Mi,

Ξi22 = −Qi + Ri + Ti − Vi −Ui,

Ξi33 = −(1 − μ
)
Ti −NT

i (Γ(t) + νiF) + (Γ(t) + νiF)
TNi − 2Vi + Si + ST

i ,

Ξi35 = (Γ(t) + νiF)
TMi −NT

i ,

Ξi55 = −MT
i −Mi + τ20Ui + τ2mVi,

(4.11)

where λi and νi are the ith eigenvalues of the matrices L1 −K and L2 − L, respectively.

Proof. As for the ith node, we choose the following Lyapunov-Krasovskii functional:

Vi

(
ηit

)
= ηT

i (t)Piηi(t) +
∫ t

t−τ0
ηT
i (s)Qiηi(s)ds +

∫ t−τ0

t−τm
ηT
i (s)Riηi(s)ds +

∫ t−τ0

t−τ(t)
ηT
i (s)Tiηi(s)ds

+
∫0

−τ0

∫ t

t+θ
τ0η̇

T
i (s)Uiη̇i(s)dsdθ +

∫−τ0

−τm

∫ t

t+θ
τmη̇

T
i (s)Viη̇i(s)dsdθ,

(4.12)

with appropriately dimensional matrices Pi > 0, Qi > 0, Ri > 0, Ti > 0, Ui > 0, Vi > 0 waiting
to be determined.

Together with similar proof of Theorem 3.1, one can yield

V̇i

(
ηit

) ≤

⎡

⎢⎢⎢⎢⎢
⎣

ηi(t)
ηi(t − τ0)
ηi(t − τ(t))
ηi(t − τm)

η̇i(t)

⎤

⎥⎥⎥⎥⎥
⎦

T⎡

⎢⎢⎢⎢⎢
⎣

Ξi11 Ui Ξi13 0 Ξi15

∗ Ξi22 Vi − Si Si 0
∗ ∗ Ξi33 Vi − Si Ξi35

∗ ∗ ∗ −Ri − Vi 0
∗ ∗ ∗ ∗ Ξi55

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

ηi(t)
ηi(t − τ0)
ηi(t − τ(t))
ηi(t − τm)

η̇i(t)

⎤

⎥⎥⎥⎥⎥
⎦
. (4.13)
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Then there does exist one scalar ε > 0 such that V̇i(ηi(t)) ≤ −ε‖Pηi(t)P‖ < 0 for any ηi(t)/= 0.
Based on the theory of Lyapunov stability, the controlled network (4.9) is locally stable for
any time-delay satisfying (2.2). The proof is completed.

Remark 4.3. Based on Theorem 4.2, for the controlled dynamical network with fixed network
structure and coupling strength as in (4.1), it is easy to determine the number of pinned
nodes for network synchronization and select nodes to pin since there are no restrictions for
the positions of the pinned nodes. Moreover, the reciprocal convex technique can reduce the
conservatism more effectively than those earlier methods.

5. Numerical Examples

Now, two numerical examples with simulations will be presented to illustrate efficiency of
our results.

Example 5.1. Consider one 3-node complex network, in which each node is a simple 3-
dimensional nonlinear system [28],

⎡

⎣
ẋi1(t)
ẋi2(t)
ẋi3(t)

⎤

⎦ =

⎡

⎣
−xi1(t) + x2

i2(t)
−2xi2(t)

−3xi3(t) + xi2(t)xi3(t)

⎤

⎦, i = 1, 2, 3, (5.1)

which is asymptotically stable at s(t) = 0, and its Jacobian matrix is J = diag(−1,−2,−3).
Assuming that the inner coupling matrices and the coupling configuration ones can be
represented as

E = F =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦, L1 = L2 =

⎡

⎣
−1 0.5 0.5
0.5 −1 0.5
0.5 0.5 −1

⎤

⎦, (5.2)

then the eigenvalues of matrices L1, L2 can be computed as 0, −1.5, −1.5, respectively.

In the case of τ0 = μ = 0, using [28, Theorem 1] in gives τmax = 0.615, while applying
theorem in this paper can verify that the maximum delay upper bound guaranteeing the
synchronized state to be asymptotically stable is τmax = 0.867. This means that our results can
be less conservative than some existing ones.

When τ(t) = sin2(2t), it follows from Theorem 3.1 that the feasible solution to the
condition in (3.1) can be existent. Defining the total error of the array of the system (5.1) as
follows:

error(t) =
3∑

i=1

√
[x1i(t) − x2i(t)]2 + [x2i(t) − x3i(t)]2, (5.3)

then the synchronization error can be seen in Figure 1, and it shows that system (5.1)
can achieve the asymptotical synchronization. During the process of simulation, the initial
conditions of nodes are selected as x1 = [−0.5,−0.3, 0.3]T , x2 = [0.7,−0.5,−0.6]T , and x3 =
[1, 0.5, 0.3]T .
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Figure 1: The total synchronous error of system (5.1).

Example 5.2. Together with local linear feedback pinning control in (4.2) to the first node and
setting feedback gains k1 = l1 = 1, we consider the following nonlinear system,

[
ẋi1(t)
ẋi2(t)

]
=
[ −xi1(t) + x2

i2(t)
−3xi1(t) + xi1(t)xi2(t)

]
+
[
2xi1(t − τ(t)) − xi2(t − τ(t))
xi1(t − τ(t)) + 3xi2(t − τ(t))

]
, i = 1, 2, 3, (5.4)

with τ(t) = cos2(2t). Its Jacobians are J = diag(−1,−3) and Γ =
[
2 −1
1 3

]
, respectively. The inner

coupling matrices and the coupling configuration ones can be represented as

E = F =
[
1 0
0 1

]
, L1 = L2 =

⎡

⎣
−1 0.5 0.5
0.5 −1 0.5
0.5 0.5 −1

⎤

⎦. (5.5)

Then we can stabilize the network onto the original equilibrium point s = [0, 0, 0]T based
on Theorem 4.2, and the feasible solution to (4.10) can be existent with the eigenvalues of
matrices L1 −K and L2 − L being {−2.9808,−1.5000,−0.2192}. We also define the total error of
the array of system (5.4) as follows:

error(t) =
2∑

i=1

√
[x1i(t) − x2i(t)]2 + [x2i(t) − x3i(t)]2, (5.6)

then the synchronization error can be seen in Figure 2, and it shows that system (5.4)
can achieve the asymptotical synchronization. During the process of simulation, the initial
conditions of nodes are selected as x1 = [−0.5,−0.3]T , x2 = [0.7,−0.5]T , and x3 = [0.4, 0.3]T .
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Figure 2: The total synchronous error of system (5.4).

6. Conclusions

In this paper, the asymptotical synchronization and pinning control for delayed dynamical
networks have been studied based on Lyapunov-Krasovskii functional theory, and the
decentralized feedback controller has been designed to make the networks synchronized.
Moreover, since the most improved techniques including reciprocal convex one have been
applied, the established results can be more applicable than those present ones, and the
design of controllers can be achieved by solving an array of NMIs and LMIs. Finally, two
illustrative examples can show the efficiency of the proposed methods.
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