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With the rapid technology development and improvement, the product failure time prediction
becomes an even harder task because only few failures in the product life tests are recorded.
The classical statistical model relies on the asymptotic theory and cannot guarantee that the
estimator has the finite sample property. To solve this problem, we apply the hierarchical Bayesian
neural network (HBNN) approach to predict the failure time and utilize the Gibbs sampler of
Markov chain Monte Carlo (MCMC) to estimate model parameters. In this proposed method, the
hierarchical structure is specified to study the heterogeneity among products. Engineers can use
the heterogeneity estimates to identify the causes of the quality differences and further enhance the
product quality. In order to demonstrate the effectiveness of the proposed hierarchical Bayesian
neural network model, the prediction performance of the proposed model is evaluated using
multiple performance measurement criteria. Sensitivity analysis of the proposed model is also
conducted using different number of hidden nodes and training sample sizes. The result shows
that HBNN can provide not only the predictive distribution but also the heterogeneous parameter
estimates for each path.

1. Introduction

In this high technology era, the society operations highly depend on various machinery
and equipments. Once the machinery or equipment is broken down, enormous trouble and
economics cost will be brought to the entire society. To enhance the product reliability,
the methodologies to assess product reliability have received much discussion in both
academics and industries. Among several mature techniques, degradation testing provides
an efficient way for reliability assessment when product quality is associated with a time-
varying degradation process. Typically, degradation measures can provide more reliability
information, particularly in modeling the failure-causing mechanism, than time-to-failure
data in few or no failure situation.
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Predicting the remaining lifetime of a product is also an important issue in quality
control. For example, knowing the remaining equipment lifetime can help in optimizing the
machine maintenance schedule. The equipment lifetime is traditionally studied by fitting
a statistical probability distribution, and most of these statistical models are constructed to
study various degradation processes of a product. Examples include Lu and Meeker [1], Lu
et al. [2], and Meeker and Hamada [3]. The method of stochastic processes is the alternative
used to study the degradation data. Examples can be found in Doksum and Hoyland [4].

Most of above methods emphasize on parameter estimations or the process of
hypothesis testing. Under the assumption that data follows a certain probability distribution,
the statistical inference is made based on the asymptotic theory. The statistical inferences
based on the asymptotic theory are valid only if the sample size is large or close to infinite.
When the sample information is small or when the discrete data are provided, the finite
sample property of the estimation based on the asymptotic theory is not held. Therefore,
nonparametric or semiparametric statistics have been proposed to perform the reliability
prediction. However, these statistical methods are far from perfect because the overfitting
problem usually leads to inaccurate parameter estimates.

Due to the data limitations and the drawbacks of classical statistics approaches,
Bayesian approach provides the solution from a different perspective. Unlike these
frequentist’s approaches which consider the data random and the test statistics or estimators
are investigated over imaginary samples f(y | θ), Bayesian approach regards the sampling
distribution irrelevant to the statistical inferences because it considers events that have
not occurred yet. Bayesian inference is conducted using Bayes theorem in which posterior
distribution is defined by the likelihood function which contains sample information times
the prior distribution of parameter of the interest. Since Bayeisan inference follows the formal
rules of probability theory, Bayes estimators are consistent, asymptotically efficient, and
admissible under mild conditions. The detail discussion of Bayesian approach can be found
in Bernardo and Smith [5], Gelman et al. [6], Robert and Casella [7], and Liu [8].

Lately Bayesian has been applied in the fatigue crack growth prediction in the
literature. For example, Zheng and Ellingwood [9] generalize a stochastic fatigue crack
growth model by incorporating a time-dependent noise term described by arbitrary marginal
distributions and autocorrelations to model the uncertainty in the crack growth under
constant amplitude loading. Zhang and Mahadevan [10] propose a Bayesian procedure to
quantify the uncertainty in mechanical and statistical model selection and the uncertainty
in distribution parameters. The procedure is applied to a fatigue reliability problem, with
the combination of two competing crack growth models and considering the uncertainty in
the statistical distribution parameters for each model. Akama [11] performs the Bayesian
analysis to estimate an appropriate value of the uncertain propagation rate of cracks that can
be initiated at the wheel seat of a Shinkansen vehicle axle.

Neural network (NN) is the other popular prediction method. Neural network is
a computer-intensive, algorithmic procedure for transforming inputs into desired outputs
using highly inter-connected networks of relatively simple processing elements (often termed
neurons, units, or nodes; we will use nodes thereafter). Neural networks are modeled
following the neural activity in the human brain. The essential features of a neural network
are the nodes, the network architecture describing the connections between the nodes, and the
training algorithm used to find values of the network parameters (weights) for a particular
network. The nodes are connected to one another in the sense that the output from one node
can be served as the inputs to other nodes. Each node transforms an input to an output using
some specified function that is typically monotone, but otherwise arbitrary. This function
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depends on parameters whose values must be determined with a training set of inputs and
outputs. Network architecture is the organization of nodes and the types of connections
permitted. The nodes are arranged in a series of layers with connections between nodes in
different layers, but not between nodes in the same layer.

Several researchers also integrate neural network algorithm with Bayesian theory,
which has been known as Bayesian neural network, in prediction. For examples, Neal [12]
applied Hybrid Markov chain Monte Carlo (MCMC) numerical integration techniques for
the implementation of Bayesian procedures. Müller and Rios Insua [13] proposed a MCMC
scheme based on a static or dynamic number of hidden nodes. In their subsequent paper,
they have extended their research results by releasing the constraint of number of hidden
nodes [13]. Also, Holmes and Mallick [14] used Bayesian neural network modeling in the
regression context.

In this paper, we conduct a hierarchical Bayesian neural network analysis withMCMC
estimation procedure in the failure time prediction problem. Here, hierarchy means that the
coefficients in our constructed HBNN model are specified by random effect distributions.
We attempt to use this hierarchical structure to determine if the heterogeneity exists among
paths. The advantage of proposed HBNN model cannot only provide a better failure time
prediction by incorporating the heterogeneity of components and autocorrelated structure
of error term but also provide a predictive distribution for the target value. Different from
previous research, the proposed HBNN model can successfully offer the full information of
parameter estimation and covariance structure. Engineers can use the heterogeneity estimates
to identify the causes of the quality differences and further enhance the product quality.

The data of the fatigue crack growth from Bogdanoff and Kozin [15] is used to
illustrate the proposed model. To demonstrate the effectiveness of the proposed model, the
prediction performance of the proposed model is evaluated using multiple performance
measurement criteria. Sensitivity evaluation of the proposed model is also conducted using
different number of hidden nodes and training sample sizes. The result shows that HBNN can
provide not only the predictive distribution but also the heterogeneous parameter estimates
for each path.

The rest of this paper is organized as follows: Section 2 introduces the proposedHBNN
model for failure time prediction. In Section 3, the fatigue crack growth data from Bogdanoff
and Kozin [15] is illustrated, and the model estimation procedure is provided. Failure time
prediction and sensitivity analysis are demonstrated in Section 4. Concluding remarks are
offered in Section 5.

2. HBNN Model for Failure Time Prediction

To model failure time, we adapted the growth-curve equation used by Liski and Nummi [16]
as follows:

ti,j = βi,m=0 +
M∑

m=1

βi,mΓi,m,j + εi,j ,

Γi,m,j = ψ
(
�i,k=0,m +�i,k=1,myi,j +�i,k=2,m ln

(
yi,j

))
,

(2.1)

where yi,j is the jth crack length of the ith path and ti,j is the observed cycle time of the ith
path, where i = 1, 2, . . . ,N and j = 1, 2, . . . , ni. In addition, βi,m are the weights of the ith path
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attached to the hidden nodes m (m = 1, 2, . . . ,M), M is the number of hidden nodes, Γi,m,j
is the output of the mth hidden node when the jth crack length of the ith path is presented,
�i,k=1,m are the weights from the first input, yi,j , to the hidden node m, and ψ is the activation
function. Typically, the choice of M depends upon the problem under consideration. The
testing results of neural network with combinations of different numbers of hidden nodes
have been investigated. In the present case, we have set the number of hidden nodes M
equal to 3 because it gives the best predicting result.

According to the above equation, we know that there are totallyN paths from a given
population, and ni observations are available for path i at fixed crack lengths yi,1, yi,2, . . . , yi,ni
(i.e., The observations at length yi,1, yi,2, . . . , yi,ni are ti,1, ti,2, . . . , ti,ni , resp.). Herein, we assume
that the conditional distribution of ti,j given yi,j is normally distributed as f(ti,j | yi,j) ∼
N(βi,0 +

∑M
m=1 βi,mΓi,m,j , σ

2). It means that each value of yi,j produces a random value of ti,j
from a normal distribution with a mean of βi,0 +

∑M
m=1 βi,mΓi,m,j and a variance σ2. Moreover,

from literature [17, 18], we understand that degradation signals are usually autocorrelated
in nature. We also noticed that the values of the first-order autocorrelation r1 of the residuals
in Lu and Meeker [1] are not exactly equal to 2.0. Therefore, we suspected that the error
term might be characterized as a first-order autoregressive process. Based on this finding, we
proposed a new parametric crack growth model with autocorrelated errors as the following
equations:

ti,j = βi,0 +
M∑

m=1

βi,mΓi,m,j + εi,j , (2.2)

Γi,m,j = ψ
(
�i,0,m +�i,1,myi,j +�i,2,m ln

(
yi,j

))
, (2.3)

εi,j = ρiεi,j−1 + Zi,j , (2.4)

where ρi is the autocorrelation coefficient and Zi,j is a normal distributed error withN(0, σ2)
form. Note that the elements ti,1, ti,2, . . . , ti,ni in (2.2) are independent given βi,m,�i,k,m, σ

2, ρi
and yi,j , where k is the number of inputs. The function ψ(·) is referred to as an activation
function in a neural network. Typically, the activation function is nonlinear. Some of the
most common choices of ψ(·) are the logistic and the hyperbolic tangent functions. In order
to describe the heterogeneity varying from path to path, we characterized βi by a 4-variate
normal distribution with mean vector β and covariance matrix Vβ, βi | β, Vβ ∼ N4(β, Vβ), i =
1, 2, . . . ,N, and �i,m is characterized by a 3-variate normal distribution with mean vector
�m, and covariance matrix V�m for m = 1, 2, and 3. Equations (2.2)–(2.4) specify a general
model for studying when observed cycle time sensitivity to crack length may increase. The
heterogeneity among paths is captured by parameters βi, �i,k,m, and the specification of
covariates Vβ and V�m .

According to the above setting, the likelihood function for the data can be written as

l
(
βi,�i,m, σ

2, ρi |
{
ti,j

}) ∝
N∏

i=1

ni∏

j=1

[
ti,j | Yi,j , βi,�i,m, σ

2, ρi
]
. (2.5)

To reduce the computational burden of posterior calculation and exploration, we
define β ∼ N4(α, Vα), Vβ ∼ Inv.Wishart (f0, G0), �m ∼ N3(p, Vp), V�m ∼ Inv.Wishart (f1, G1),
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σ2 ∼ Inv.Gamma(r0/2, S0/2), ρi ∼ Uniform(−1, 1) as the conjugate priors on the parameters
βi, β, Vβ,�i,m,�m, V�m, σ

2, and ρi, respectively. Typically, the selection of priors is problem-
specific. Some have even criticized Bayesian approach as relying on “subjective” prior
information. However, we should also notice that the basis of prior information could be
“objective” or data-based. The power prior developed by Ibrahim et al. [19] is an example
of it. However, in most empirical cases, the utilization of diffuse prior for parameters is a
reasonable default choice.

By using the Bayes theorem with the sample information and prior distribution of
each parameter, the posterior distribution of each parameter can be derived. The posterior
distributions and the details of the estimation procedure can be referred to Carlin and Louis
[20]. The posterior distributions of estimated parameters can be summarized as the full
conditional probability formulas shown in the Appendix.

In addition to the posterior distribution for the estimated parameter, the predictive
distribution of the unobserved cycle time, tpred, given the observed cycle time, t, is one of
our main objectives. The predictive distribution is analytically intractable because of the
requirement of highly dimensional numerical integration. However, theMarkov chainMonte
Carlo (MCMC) method provides an alternative, whereby we sample from the posterior
directly and obtain sample estimates of the quantities of interest, thereby performing the
integration implicitly [21]. In other words, Bayesian analysis of hierarchical models has been
made feasible by the development of MCMC methods for generating samples from the full
conditionals of the parameters given the remaining parameters and the data.

Among these MCMC methods, Gibbs sampling algorithm is one of the best known
estimation procedures that uses simulation as its basis [22] and will be used herein to
estimate our parameters. It has been shown that, under the mild condition, the Markov chain
will converge to a stationary distribution [23]. Beginning with the conditional probability
distributions in (5), the Gibbs and Metropolis-Hasting sampling procedure uses recursive
simulation to generate random draws. Details of the conditional distributions for the full
information model are available upon request. The values of these random draws are then
used as the conditional values in each conditional probability distribution, and according to
the procedure, generated random draws are carried out again in the next iteration. After
numerous reiterated simulations are performed in this way, the convergent results yield
random draws that are the best estimates of the parameters.

3. Illustrative Example and Model Estimation

3.1. Illustrative Example

We use the fatigue crack growth data from Bogdanoff and Kozin [15] as an illustrative
example to demonstrate the modeling procedure and effectiveness of the proposed
Hierarchical Bayesian neural network approach. Figure 1 is a plot of the total 30 sample
degradation paths. It is obvious that variability amongst paths does exist. There are several
possible factors, such as different operating conditions and different material properties,
which could cause the variability. Therefore, it is a big challenge to construct a model to
capture the statistical properties of degradation paths and to predict failure time.

In this data set, there are 30 sample paths in total and each sample path has 164 paired
observations, cycle time, and crack length. The cycle time is observed at some fixed crack
lengths. We predefined the path as “failure” as soon as its crack length reaches a particular
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Figure 1: Thirty paths of fatigue crack growth data from Bogdanoff and Kozin [15].

critical level of degradation (i.e., Df = 49mm) and assumed the experiment was terminated
at 40mm. In other words, based on the measurements of degradation from 9mm to 40mm,
we would like to model the degradation process and use the proposed model to predict the
failure time ti,j = Df to the assumed critical level for the degradation path (i.e., crack length
= 49mm). As mentioned, because the fatigue experiment was conducted on paths with fixed
crack length, we are interested in the predicted failure time for the path when a specific crack
length (i.e., 49mm) is reached.

3.2. Model Estimation

Because the coefficients βi,m and �i,k,m used to depict the degradation process are high
dimensional, it is difficult to integrate out these parameters to obtain the distribution of
failure time, especially when complex interactions among random parameters are present. To
solve this problem, estimation was carried out using the Markov chain Monte Carlo methods
using R language. The chain ran for 20,000 iterations, and the last 10,000 iterations are used
to obtain parameter estimates. Convergence was assessed by starting the chain frommultiple
points and inspecting time-series plots of model parameters. Posterior draws from the full
conditional are used to compute means and standard deviations of the parameter estimates.

Table 1 reports the posterior mean and standard deviation of the parameters for the
proposed model. It shows that the values of Γm=1,j ,Γm=2,j , and Γm=3,j become steady when
ln(yi,j) becomes a large number. The covariance matrix of the heterogeneity distribution is
reported in Table 2. It shows that the posterior mean of the diagonal elements of matrix Vβ are
ranged from 0.0002 to 0.0004. Compared to the outputs of hidden nodes (Γm,j ranged from 0 to
1), all these diagonal elements are not really small. It represents that the heterogeneity across
paths does exist. According to above findings, we can conclude that the proposed HBNN
model can successfully determine the heterogeneity across various paths even though, in this
particular data set, we were unable to provide explanation to the cause of heterogeneities
because of the limited information in data.
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Table 1: Estimated mean and STD for posterior parameters.

Estimated parameter

β �m=1 �m=2 �m=3 σ2 ρi

Posterior Mean

⎡

⎣
−0.0013
0.3218
0.2925
0.2749

⎤

⎦
[−8.0899
0.1952
0.8385

] [−38.3625
−0.6606
19.3739

] [−26.610
−0.1878
9.8855

]
0.001521 0.7806321

Posterior STD

⎡

⎣
0.0153
0.0119
0.0178
0.0152

⎤

⎦
[ 0.0075
0.0003
0.0012

] [ 0.0093
0.0008
0.0093

] [ 0.0019
0.0070
0.0084

]
0.000313 0.073125

Table 2: Covariance matrix of the distribution of heterogeneity.

Estimated parameter Posterior Mean Posterior STD

Vβ

⎡

⎣
0.043 0.016 0.023 0.021
0.023 0.001 0.009 0.044
0.029 0.050 0.024 0.020
0.023 0.018 0.006 0.041

⎤

⎦

⎡

⎣
0.0043 0.0024 0.0044 0.0006
0.0051 0.0022 0.0044 0.0051
0.0030 0.0009 0.0040 0.0030
0.0039 0.0003 0.0001 0.0033

⎤

⎦

V�m=1

[ 0.062 0.022 0.044
0.074 0.053 0.016
0.033 0.046 0.063

] [ 0.009 0.013 0.038
0.055 0.039 0.068
0.051 0.006 0.018

]

V�m=2

[ 0.144 0.051 0.020
0.026 0.003 0.024
0.081 0.043 0.099

] [ 0.033 0.021 0.028
0.006 0.011 0.057
0.066 0.012 0.069

]

V�m=3

[ 0.075 0.005 0.033
0.036 0.076 0.001
0.020 0.045 0.073

] [ 0.071 0.016 0.034
0.029 0.001 0.057
0.062 0.002 0.078

]

4. Failure Time Prediction and Sensitivity Analysis

4.1. Failure Time Prediction

The model estimation shown in Section 3 allows us to predict failure time ti,j to the assumed
critical level of degradation (i.e., Df = 49mm) based on the measurements of degradation
from 9mm to 40mm. In order to demonstrate the effectiveness of the proposed hierarchical
Bayesian neural network model, the prediction performance is evaluated using the following
performance measures: the root mean square error (RMSE), mean absolute difference
(MAD), mean absolute percentage error (MAPE), and root mean square percentage error
(RMSPE). The definitions of these criteria were summarized in Table 3. RMSE, MAD, MAPE,
and RMSPE are measures of the deviation between actual and predicted failure times. The
smaller the deviation, the better the accuracy. The failure time prediction results using the
proposed hierarchical Bayesian neural network model are computed and summarized in
Figure 2 and Table 4. Table 4 shows that RMSE, MAD, MAPE, and RMSPE of the HBNN
model are 0.37340, 0.27121, 1.058%, and 1.440%, respectively. It can be observed that these
values are very small. It indicates that there is a smaller deviation between the actual and
predicted failure times obtained by the proposed model. Moreover, the proposed HBNN
can provide not only posterior estimates of the spatial covariance but also a natural way
to incorporate the model uncertainty in statistical inference.
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Figure 2: Prediction of failure time at 49mm (when data collection is stopped at 40mm).

Table 3: Performance measures and their definitions.

Metrics Calculation

RMSE RMSE =
√∑30

i=1(Ti − Pi)2/30
MAD MAD =

∑30
i=1 |Ti − Pi|/30

MAPE MAPE =
∑30

i=1 |(Ti − Pi)/Ti|/30
RMSPE RMSPE =

√∑30
i=1 ((Ti − Pi)/Ti)2/30

∗Note that T and P represent the actual and predicted failure time, respectively.

Table 4: Summary of failure time prediction results by HBNNmodel.

Models RMSE MAD MAPE RMSPE

HBNN 0.37340 0.27121 1.058% 1.440%

4.2. Sensitivity Analysis

To evaluate the sensitivity of the proposed method, the performance of the HBNN model
was tested using different number of hidden nodes and training sample sizes. In this section,
we set the number of hidden nodes as 3, 4, 5, and 6. And three different sizes of the training
dataset (observations collected from 9 (mm) to 30 (mm), 9 (mm) to 35 (mm), and 9 (mm)
to 40 (mm) resp.) were considered. The prediction results made by the HBNN model are
summarized in Table 5 in terms of RMSE, MAD, MAPE, and RMSPE.

According to the table, theHBNNmodel has a lower RMSE,MAD,MAPE, and RMSPE
with observations collected from 9 (mm) to 40 (mm) than with observations collected from 9
(mm) to 30 (mm). This is because the sample size of the 9 (mm) to 30 (mm) dataset is smaller
than the sample size of the 9 (mm) to 40 (mm) dataset. However, the RMSE, MAD, MAPE,
and RMSPE are almost the same for the cases of hidden nodes = 3, 4, 5, or 6. This result
suggests that there is no difference for the predictions when the number of hidden nodes
varies.
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Table 5: Sensitivity analysis.

# of hidden nodes Training dataset RMSE MAD MAPE RMSPE

3
from 9 (mm) to 30 (mm) 0.40576 0.29048 1.108% 1.543%
from 9 (mm) to 35 (mm) 0.38022 0.27297 1.081% 1.486%
from 9 (mm) to 40 (mm) 0.37340 0.27121 1.058% 1.440%

4
from 9 (mm) to 30 (mm) 0.40568 0.29060 1.089% 1.558%
from 9 (mm) to 35 (mm) 0.38070 0.27326 1.057% 1.487%
from 9 (mm) to 40 (mm) 0.37366 0.27088 1.089% 1.467%

5
from 9 (mm) to 30 (mm) 0.40592 0.29036 1.082% 1.520%
from 9 (mm) to 35 (mm) 0.38076 0.27350 1.056% 1.456%
from 9 (mm) to 40 (mm) 0.37391 0.27065 1.062% 1.435%

6
from 9 (mm) to 30 (mm) 0.40606 0.29047 1.104% 1.536%
from 9 (mm) to 35 (mm) 0.38051 0.27393 1.098% 1.489%
from 9 (mm) to 40 (mm) 0.37357 0.27068 1.076% 1.461%

5. Conclusion

In this paper, we applied the HBNN approach to model the degradation process and to make
the failure time prediction. In the process of developing the HBNN model, the MCMC was
utilized to estimate the parameters. Since the prediction of failure timemade byHBNNmodel
can sufficiently represent the actual data, the time-to-failure distribution can also be obtained
successfully. In order to demonstrate the effectiveness of the proposed hierarchical Bayesian
neural network model, the prediction performance of the proposed model is evaluated using
multiple performance measurement criteria. Sensitivity evaluation of the proposed model is
also conducted using different number of hidden nodes and training sample sizes. As the
results reveal, using HBNN can provide not only the predictive distribution but also accurate
parameter estimate. By specifying the random effects on the coefficients βi and �i,m in the
HBNN model, the heterogeneity varying across individual products can be studied. Based
on these heterogeneities, the engineers will be able to conduct a further investigation in the
manufacturing process and then to find out the causes of differences.

For the future research, statistical inferences of failure time based on degradation
measurement, such as failure rate and tolerance limits, can be further evaluated given the
predicted failure time. In addition, for some highly reliable products, it is not easy to obtain
the failure data even under the elevated stresses. In such case, accelerated degradation testing
(ADT) can be an alternative that provides an efficient channel for failure time prediction.
The proposed HBNN approach can also be applied to depict the stress-related degradation
process by including those stress factors as covariates in the model.

Appendix

The Full Conditional Probability of Estimated Parameters

[
βi | rest

] ∝
[
ti | Yi, βi,�i,m, σ

2, ρi
]
·
[
βi | β, Vβ

]
,

[
β | rest

]
∝

N∏

i=1

[
βi | β, V β

]
·
[
β | μβ, Vβ

]
,
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[
Vβ | rest

] ∝
N∏

i=1

[
βi | β, Vβ

]
· [Vβ | f0, G0

]
,

[�i,m | rest] ∝
ni∏

j=1

[
ti | Γi, βi, �i,m, σ

2, ρi
]
· [�i,m | �m,V�m],

[�m | rest] ∝
N∏

i=1

[�i,m | �m,V�m] ·
[
�m | p, Vp

]
,

[V�m | rest] ∝
N∏

i=1

[�i,m | �m,V�m] ·
[
V�m | f1, G1

]
,

[
σ2 | rest

]
∝

N∏

i=1

[
ti | Yi, βi,�i,m, σ

2, ρi
]
·
[
σ2 | r0, s0

]
,

[
ρi | rest

] ∝
[
ti | Yi, βi,�i,m, σ

2, ρi
]
· [ρi

]
.

(A.1)
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