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Valparaı́so 2362807, Chile

2 Department of Engineering Science, University of Auckland, Auckland 1020, New Zealand
3 Instituto de Estadı́stica, Pontificia Universidad Católica de Valparaı́so, Valparaı́so 2362807, Chile
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We present a hybridization of two different approaches applied to the well-known Capacitated
Facility Location Problem (CFLP). The Artificial Bee algorithm (BA) is used to select a promising
subset of locations (warehouses) which are solely included in the Mixed Integer Programming
(MIP)model. Next, the algorithm solves the subproblem by considering the entire set of customers.
The hybrid implementation allows us to bypass certain inherited weaknesses of each algorithm,
which means that we are able to find an optimal solution in an acceptable computational
time. In this paper we demonstrate that BA can be significantly improved by use of the MIP
algorithm. At the same time, our hybrid implementation allows the MIP algorithm to reach
the optimal solution in a considerably shorter time than is needed to solve the model using
the entire dataset directly within the model. Our hybrid approach outperforms the results
obtained by each technique separately. It is able to find the optimal solution in a shorter time
than each technique on its own, and the results are highly competitive with the state-of-the-
art in large-scale optimization. Furthermore, according to our results, combining the BA with a
mathematical programming approach appears to be an interesting research area in combinatorial
optimization.
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1. Introduction

Heuristics and bioinspired techniques have become efficient and effective alternatives for
researchers in solving several complex optimization problems. These types of techniques are
able to provide satisfactory solutions for most of the applied problems within acceptable
computational times. However, in spite of their effectiveness, these techniques are not
able to reach the optimal solution (or ensure its optimality) for large-scale combinatorial
optimization problems. In contrast, mathematical programming techniques, particularly the
Mixed Integer Programming (MIP), have been studied and developed by scholars over
several decades with the main goal of obtaining optimal solutions to difficult problems
using as little CPU time as possible. In this case, researchers must face the tradeoff between
computational time and the quality of the result. For these reasons, the combination of meta-
heuristics and various mathematical approaches has become a well-studied area. Interested
readers can find two recent and comprehensive works on the hybridization of stochastic
techniques and mathematical programming (MP) approaches in [1, 2].

Swarm Intelligence (SI), as well as other mathematical programming techniques, has
been applied successfully to several difficult combinatorial optimization problems (see [3–
6] for a range of applications). Additionally, as mentioned above, hybrid strategies have
been developed to improve the effectiveness of these techniques. A more complete review
is provided in Section 2.

The Artificial Bee algorithm (BA) is a relatively new approach in SI. Originally
proposed in 2006 [7], it was mainly inspired by the foraging behavior of honeybees and
has been applied to a range of problems in both combinatorial and functional optimizations
with highly successful results. The BA has also been applied to large-scale problems [8]
and has outperformed other well-known swarm-based algorithms, including Particle Swarm
Optimization (PSO) and Differential Evolution (DE). However, as with almost all stochastic
approaches, the BA cannot ensure optimality even when the optimal solution is found. For
small- and medium-size instances, this limitation is not highly relevant because heuristics
techniques have empirically demonstrated their ability to achieve convergence in quite
acceptable time; therefore, solutions provided by stochastic approaches are likely to be
optimal (or a very good approximation) in large-scale instances. However, when large-scale
optimization is considered, it is not possible to know how “good” the solution provided by
the heuristic.

In this paper, we propose a hybrid algorithm of the BA and the MIP for solution
of several large-scale instances of the well-known Capacitated Facility Location Problem
(CFLP). The CFLP is one of the most important problems for companies that distribute
products to their customers. The problem consists of selecting specific sites at which to install
plants, warehouses, and distribution centers while assigning customers to service facilities
and interconnecting facilities using flow assignment decisions. This paper considers a two-
level supply chain in which a single plant serves a set of warehouses, which in turn serve a
set of end customers or retailers. Figure 1 shows the basic configuration of our supply chain.
Therefore, we aim to solve this problem by finding a set of locations that allow us to serve
the entire set of customers in an optimal way. As Figure 1 shows, each customer (or cluster)
is served only by one warehouse.

Despite its good performance in several optimization problems, the BA is not able to
provide an optimal solution for large-scale problems. Furthermore, it is possible to become
trapped in a local optimum. To bypass these drawbacks, we propose a hybrid algorithm that
selects a subset of promising centers using the BA and subsequently solves the subproblem
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Figure 1: A two-level supply chain network configuration.

using a simple MIP algorithm. The BA guides the process while theMIP provides the optimal
values of the simplified problems. One distinctive feature of our algorithm is that it solves the
primary problem directly using the MIP algorithm, which is possible due to the reduction of
the search space produced by the BA algorithm.

Although several works that have proposed various hybrid approaches to solve the
CFLP and its uncapacitated (UFLP) version exist in the literature (e.g., [9, 10]), we are
unaware of any prior publications that use the Bees Algorithm (BA) to solve a large-scale
CFLP. Moreover, we have found no articles that hybridize the BA with an MP approach
in any optimization problem. Therefore, one contribution of this paper is the presentation
of a performance analysis for the hybrid BA-MIP algorithm. A second contribution is the
application of the BA to a large-scale problem that provides optimal solutions rather than
only locally optimal solutions.

The remainder of this paper is organized as follows. Section 2 presents an overview
of the CFLP and BA concepts. The hybrid BA-MIP algorithm is covered in Section 3, and a
detailed explanation of the algorithm is also presented in this section. Section 4 begins with
a brief description of the benchmarks used in this paper, and the experimental results are
subsequently presented and discussed. Finally, Section 5 outlines selected conclusions.

2. Literature Review

This section presents a literature review. Section 2.1 discusses the mathematical model for
CFLP and provides relevant background for certain approaches presented in the literature.
Section 2.2 provides an overview of the BA and highlights its main features.

2.1. Capacitated Facility Location Problem

The CFLP in this work contains a set of warehouses that supply a set of customers that are
uniformly distributed in a limited area. The model considers the installation cost (i.e., the
cost associated with opening a specific warehouse) and transportation or assignation cost
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(i.e., the cost related to transportation of a specific amount of products from a warehouse to
a customer). The mathematical model for the CFLP is presented as follows:

N∑

i=1

FiXi +
N∑

i=1

M∑

j=1

CijYij , (2.1)

s.t.:

N∑

i=1

Yij = 1, ∀j = 1, . . . ,M (2.2)

Yij ≤ Xi, ∀i = 1, . . . ,N, ∀j = 1, . . . ,M (2.3)

M∑

j=1

μjYij ≤ ICAP
i , ∀i = 1, . . . ,N (2.4)

Xi ∈ {0, 1}, Yij[0, 1], ∀i = 1, . . . ,N; ∀j = 1, . . . ,M. (2.5)

Equation (2.1) represents the total system cost. The first term denotes the fixed setup and
operating cost for opening warehouses, and the second term indicates the daily transport
cost between the warehouse and the customers. Equation (2.2) ensures that the customer
demands are completely served by the system. Equation (2.3) ensures that the customers are
assigned to the installed warehouses (Xi = 1). Equation (2.4) states that the summation of the
demand μ of each customer served by a particular warehouse imust be less than or equal to a
threshold ICAP

i , which can be different for each warehouse. Finally, (2.5) states the integrality
(0-1) for the variableXi and sets the range of the variable Yij . This model is NP-hard because it
is clearly an extension of the UFLP, which is known to be NP-hard. Additionally, this model
is one of the most basic examples related to location research, and several comprehensive
surveys on location theory can be found in [11, 12].

The CFLP is well known in the operational research literature, and several
authors have tackled this problem using different techniques (e.g., Genetic Algorithms are
implemented in [13], and the Tabu Search (TS) algorithm is used in [14]). A comparison
of the performance of these heuristics is provided in [15]. Additionally, mathematical-based
approaches have been extensively developed to solve the CFLP, and algorithms based on
Lagrangian relaxation represent the most common math-based approach [4, 8, 16]. In [17],
the authors develop a column generation strategy to obtain the exact solution for large-
scale instances. Other mathematical approaches are revised in [18, 19]. Moreover, mixed
approaches usingMP techniques and heuristics have been previously proposed. For instance,
in [20], the authors develop a Lagrangian-based heuristic (LH) that provides lower bounds
to the problem, and the TS algorithm is subsequently used to find the upper bound of
the problem. In this case, the TS is initialized using the primary information provided
by LH. Additionally, in [21], the authors combine Lagrangian relaxation with Ant Colony
Optimization (ACO). Although the CFLP is one of the most studied models in combinatorial
optimization, to the best of our knowledge, no BA study has tackled this problem.
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2.2. Bees Algorithm

The Bees Algorithm (BA) is a nature-inspired approach that was originally proposed by
Pham et al. [7] to solve complex optimization problems. Subsequently, several authors have
applied different versions of the BA to tackle a wide range of combinatorial and continuous
optimization problems. The algorithm has been demonstrated to be highly competitive,
especially when compared with other swarm/population-based approaches such as the PSO
[22] or Genetic Algorithms [23]. Karaboga and Akay [24] provide a comprehensive literature
review and a comparison of the most important swarm/population-based approaches. A
complete survey of various BA applications is also provided by Karaboga and Akay in [25].
In the following section, we present a brief description of the general structures of our BA.
This description is mainly based on the descriptions provided by [7, 24–26].

One of the most important characteristics of swarm intelligence is the ability to
exchange relevant information among individuals. This feature allows the swarm to generate
and develop collective knowledge. In the case of the BA, this information addresses the
recognition of promising sources of food found by any individual insect of the swarm.
Another relevant feature of the bee swarm is the ability to intensify the search in certain
patches that have been identified as promising. The two main attributes of most heuristics
used in optimization are exploration and exploitation. The first provides a fast and wide
search throughout the search space (which is usually too large). The second allows an
intensive search of certain reduced search spaces (neighborhoods) that have been identified
as “good-quality patches” during the exploration phase. In the BA case, the scout bees
provide the exploration characteristics. The scout bees seek the search space in a (usually)
random manner. Each scout bee visits a patch and evaluates it, and the scout bees have the
ability to communicate the quality of the patch (fitness) to the unemployed bees. Depending
on the attractiveness of each patch, the unemployed foragers will follow the scout bees
to exploit the most promising patches. Once the patch is no longer attractive, a subset of
bees will continue to search while the others wait for another promising patch. As in other
heuristics, the balance between exploitation and exploration is a notably important issue for
the BA. If we prioritize the exploration phase of the BA, it is likely to suffer from rather slow
convergence. However, if we prioritize the exploitation phase of the BA, it is likely to become
trapped in local minima. In most of the swarm optimization algorithms as well as other
heuristics (e.g., Tabu Search), the BA uses memory structures to influence the next population
(swarm). In this case, two main strategies provide information from former population to the
new population. The first strategy uses experienced foragers, that is, bees with notably good
fitness are included in the next population. The second strategy includes the best bee from a
subset of the high-quality patches. In this manner, the use of various elements will determine
the balance between exploration and exploitation.

3. Hybrid BA and LP Algorithm

In this paper, we present a BA that is hybridized with a MIP algorithm provided by GUROBI.
Our algorithm contains the following distinctive features.

3.1. Variable Neighborhood Sizes

We use three different neighborhood sizes. It is important to note that we only refer to
the “size” and not the “structure” of the neighborhood. More specifically, the neighborhood
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Figure 2: Three implemented neighborhood sizes: (a) small-sizemovement, (b)medium-sizemovement, and
(c) large-sizemovement.

structure does not change during the algorithm execution. Figure 2 shows the three sizes
and their function in the experiments. Figure 2(a) shows a small-size move in which only
one location is modified (in this case, warehouse 4 is opened), and Figure 2(b) presents an
example of a medium-size move. In this case, two locations are modified (warehouse 1 is
closed, and warehouse 4 is opened). Figure 2(c) shows a large-size move.

Using notation from [27], we describe our variable neighborhoods as follow: let S
denote any subset of open warehouses (S ⊆ M); the solution space � may be subsequently
defined as all such possible subsets. The total number of solutions in � is 2m− 1. To define
the neighborhoods, [27] defines a distance function as follows: let S1, S2 be any two solutions
in �; the distance between them is defined by ρ(S1, S2) = |(S1 \ S2) ∪ (S1 \ S2)|. Therefore,
the distance between one solution and another will increase when allocation of a specific
customer in S1 is different from the allocation of the same customer made in S2. An intuitive
consequence of the above is that the distance between solutions S1, S2 is zero if and only if S1

= S2. Figure 1 shows an example of the distance between the different solutions. For instance,
in Figure 2(a), ρ(S1, S2) = 1; in Figure 2(b), ρ(S1, S2) = 2; and in Figure 2(c), ρ(S1, S2) = 4.
The values of ρ() used in our algorithm are shown at the end of Section 3. It is important
to note that we do not implement a variable neighborhood strategy as in [27]. Instead, we
define different neighborhood structures that are only applied for quite specific tasks during
the execution of our algorithm.

(i) Neighborhood-based start strategy: the set of scout bees is initialized with a
neighborhood-based strategy that uses the “large” movement to move from one
solution to the other. This strategy allows us to use the LP solver more efficiently
without compromising the algorithm performance.

(ii) Intensification procedure: we implement an intensification procedure to exploit the
promising patches found by the bees. When a promising solution is found, the
intensification procedure is triggered, and a local search using a rather “small”
neighborhood movement is carried out. The intent behind this procedure is to find
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a local (and hopefully global) minimum as fast as possible, and this minimum is
likely to be located near the promising solutions.

(iii) Roulette-wheel selection procedure: we implement a procedure based on the well-
known roulette wheel to select the elite bees and to assign the follower bees to
particular elite (or selected nonelite) bees. This procedure allows for the inclusion
of selected diversification mechanisms during the algorithm execution.

(iv) Use of experienced foragers: we include the information of the best solution in the
form of “experienced foragers” in each iteration of the algorithm, which allows us to
include certain historical information to improve the convergence of the algorithm.

The algorithm begins with a set of ns scout bees, which are initialized using the
neighborhood-based start strategy. Other techniques have found that certain “warm” start
solutions could be implemented as well. However, in our practical experience, our approach
is an easier and faster method of initializing the set of scout bees mainly due to the efficiency
mechanisms of the solver. Once the ns scout bees are generated, they are sorted according to
their fitness. The fitness is calculated using the objective function (2.1), which corresponds
to an attractiveness measure in relation to the other scout bees. Note that the cost of
each bee corresponds to the optimal solution for the subset of warehouses. This optimal
value is provided by the MIP solver in less than two seconds on average. Therefore, this
approach allows us to carry out a “global” optimization in different subspaces of the problem.
Equations (3.1) and (3.2) state this attractiveness measure:

∑

b∈S
f(b) = tc, (3.1)

fitnessb =
(
f(b)
tc

)
, (3.2)

where S is the set of scout bees and f(x) is our objective function (2.1). The total cost of
the set of scout bees is calculated n (3.1) and in (3.2), and the fitness is calculated based
on the fitness of a specific bee and the total cost of the swarm. Because we are aiming to
optimize the fitness, our results must be normalized such that the lowest cost becomes the
most attractive. Once the scout bees have been sorted, the e bees (elite bees) are selected
using the roulette-wheel selection procedure. We note that, if there are important differences
among the costs of the ns scout bees, then the algorithm will likely select the emost attractive
ones. In the same way, the ne (nonelite) bees are selected from the remaining scout bees.
Subsets e and ne are sorted, and the attractiveness of each bee is calculated as explained
above. Next, a set F (followers) is generated and assigned to the both elite and nonelite bees.
Because the roulette-wheel selection procedure is used again, the elite bees are likely to recruit
more followers than the less attractive nonelite bees. A local search is carried out at this stage
using medium-size movements. Once the local search is completed, the algorithm selects
the best bee from each patch. If a new best solution is reached, the intensification procedure
is triggered. Following that procedure, the entire swarm is sorted based on fitness. Next,
the elite and nonelite classification is executed again. In this step, a few random bees are
added to the swarm to diversify the search. Additionally, the best solution is included via
an experienced forager. The pseudocode for our hybrid BA-MIP algorithm is presented as
follows Algorithm 1.
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(1) Init
(2) Generate initial swarm S
(3) Solve MIP of each Sb
(4) Sort S based on fitness
(2.5) Select elite and non-elite bees
(3.1) While not end-criterion
(3.2) Assign followers
(8) For each elite and non-elite
(9) Search η(E) ∪ η(NE)
(10) End For
(11) Select Best Bee (bBEST)
(12) If bBEST < BestSol
(13) BestSol← bBEST
(14) Intensification
(15) End If
(16) Joint and Sort F , E , NE
(17) Sort S based on fitness
(18) Select elite and non-elite bees
(19) Add Random Bees
(20) Add BestSol Bee
(21) End While
(22) End

Algorithm 1: Hybrid BA-MIP algorithm.

Table 1: Results of the parameter tuning process.

Item Test Best
ns 10; 20 10
e 10%; 20%; 50% of ns 20%
ne 10%; 40% of ns 10%
Followers 20; 100 20
Neigh small 1; 2 2
Neigh med 4; 6 4
Intensification size 10; 20 20
Elite followers 60%; 90% 60%

3.2. Parameter Tuning

To obtain a parameter set for the BA algorithm, we performed several tests using different
values for each parameter of the algorithm, and these values are presented in Table 1. The
tests were applied on one of the medium-size instances. The selected values are shown in
bold.

4. Computational Experiments and Discussion

This section explains the experiments, certain benchmarks from the literature included to
validate our algorithm, and the generation of a set of large-scale instances. The results
obtained from our BA-MIP algorithm are compared with those from a simple local search
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Table 2: Optimal DND obtained for both the ILM-PR and ILM-CR models.

Instance Opt BA BA +MIP LS +MIP
Time GAP Time (sec) GAP Time (sec) GAP

capa 19,240,822.449 Max >300% 426.022 0% 367.735 0%
capb 13,656,379.578 Max >300% 345.501 0% 317.468 0%
capc 11,646,596.974 Max >300% 553.624 0% 129.336 0%

strategy (which uses the MIP to solve the allocation problem) as well as those from both the
MIP algorithm and the BA applied independently. A comprehensive analysis and discussion
is outlined at the end of this section.

4.1. Experiments and Computational Results

In this subsection, we present the benchmarks applied for performance comparison and the
computational results obtained for the hybrid algorithm. Finally, we show a summary of the
principal results obtained. The computational experiments were performed on an Intel Core
Duo processor CPU T2700, 2.33GHz with 2GB of RAM and Windows XP operating system.
The BA algorithm was implemented in the JAVA programming language using NetBeans
IDE, and the MIP algorithm was modeled with the GUROBI solver.

To validate the algorithm and measure its convergence, we chose a set of
medium-size instances that have known optimal solutions, namely, capa, capb, and capc.
These instances were obtained from Beasley’s ORLibrary (http://people.brunel.ac.uk/∼
mastjjb/jeb/info.html). Additionally, a set of large instances (300 warehouses and 1000
clients, 500 warehouses and 1000 clients, and 1000 warehouses and 1000 clients) was created
using the strategy provided in [8]. The set of customers and the set of warehouses are
uniformly distributed over a plane of 10 × 10 distance units. The Euclidean distance between
a customer i and a warehouse j corresponds to the transportation cost Yij . The demand dj is
calculated using a uniform distribution U [5, 35]. The ICAP

i is calculated using U [100, 1600],
and we amplify the capacity of the warehouse to obtain harder instances. Finally, the fixed

cost of warehouse i is calculated by Fi = U[0, 90]+U[100, 110]
√
I
cap
i /10. This expression takes

into account the economies of scale [8]. As proposed in [8], we generate three different classes
of problems: 300 × 1000, 500 × 1000, and 1000 × 1000 (warehouses × customers). To avoid
any instance-dependent effects, we generated 10 different instances for each class. We also
executed the algorithm 30 times for each instance to assess and avoid outlier performance.
The results presented in this section correspond to the average values from these experiments.
The MIP algorithm was executed only once per instance due to its deterministic behavior,
and the results obtained from the MIP algorithm are presented in Table 2. The stop criterion
used in the three first instances (capa, capb, and capc) was GAP ≈ 0%, that is, we forced the
algorithm to find the (known) optimal solution. Because the optimal solution value is not
known for our generated large-scale instances, the algorithm was aborted after 2000 seconds
or GAP ≤ 1%, whichever occurred first.

Figures 3 and 4 show the convergence of two algorithms (MIP and BA + MIP) for the
instances 500 3 and 1000 4, respectively.

As shown in Figure 3 for the 500 3 instance, the two algorithms are both able to find
notably good solutions within the time allotted. As expected, the MIP requires more CPU
time than the BA-MIP hybrid algorithm to find the solution, and the solid line shows the LB



10 Mathematical Problems in Engineering

0

50000

100000

150000

200000

250000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fu
nc

ti
on

 v
al

ue

Time (s)

BA-LP
MIP-UB
LP-LB

Figure 3: Comparison of the convergence between the MIP solver and the BA-MIP algorithm (instance
500 3).
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Figure 4: Comparison of the convergence between the MIP solver and the BA-MIP algorithm (instance
1000 4).

of this instance. A remarkable feature of our hybrid approach is its “warm” initial solution.
As shown in Figure 3, the first iterations produce very good solutions that are quite close to
the best solution reached by the MIP algorithm after the 2,000 seconds. We assume that this
observation is due to our neighborhood-based start strategy.
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Figure 4 shows a similar situation for the 1000 4 instance. The main difference in this
case is the rapid convergence of the MIP algorithm. Despite this observation, the MIP is not
able to find a better solution than that obtained by our BA-MIP algorithm.

Table 2 shows the average results obtained by the four algorithms for the three
medium-size instances. TheOpt column shows the optimal value produced for the respective
instance. The Time column reports the CPU time required by the respective algorithm to
reach the optimal value. The GAP column shows the difference between the average value
and the optimal value as a percentage. A value of GAP = 0% indicates that the optimal
value was reached, and GAP > 0% otherwise. The maximum time available for each instance
corresponds to the time in which the MIP algorithm was able to find the optimal value for
that instance.

As shown in Table 2, the BA + MIP and the LS + MIP were able to find the optimal
solution more quickly than the MIP solver.

These results demonstrate that the robustness of our algorithm highlights the speed of
our hybrid approach, which could be a determining factor for notably large-scale instances
in which the MIP is not able to find the optimal value within a reasonable CPU time.

The Time column in Table 3 shows the time (in seconds) in which the best value
was found by the respective algorithm. The GAP column shows the difference between the
average value and the lower bound value as a percentage. As stated previously, themaximum
time available for each instance was 2000 seconds. The excellent performance of our hybrid
approach is quite obvious; it outperforms the MIP approach in almost all cases, especially
those instances in which the number of warehouses is greater than or equal to 500. This
situation demonstrates the robustness of our algorithm as well as its reliability. It is also
important to note that, in most of the cases, the best value obtained by the MIP algorithmwas
improved upon by our BA-MIP algorithm before 1500 seconds had elapsed, which implies
a time saving of 25% compared with the mathematical approach. Moreover, in most cases,
the best value provided by our hybrid algorithm was found near the time limit, which could
be considered as a quite promising feature because it means that our algorithm is able to
escape from local optima. Additionally, we note that, in the few cases in which the MIP
reached a better value than our hybrid approach did, the difference is not greater than 1%
of the GAP. The results obtained from the simple BA algorithm are surprisingly poor. We
believe this situation may be partially due to the size of the search space as well as to a
lack of precision in the parameter tuning. However, even when a careful parameter tuning
process was conducted, the improvement is only marginal if we consider the current GAP
between the LB for each instance and the UB obtained by BA. However, the LS-MIP obtains
very good results for all instances. These results confirm that even rather simple heuristic
strategies can be significantly improved when combined with mathematical programming
approaches. However, we note that most of the best values were obtained early in the time
elapsed, which may mean that the LS-MIP algorithm is not able to explore large spaces and
quickly converges to local minima. Despite this weakness, the good performance shown by
the LS-MIP algorithm encourages further exploration with different hybrid approaches.

Table 4 summarizes the results (GAP, as a percentage) obtained by our three
algorithms (the BA is not considered) independent of any instance-dependent effects. It can
be clearly observed that despite the effects provoked by particular instances, our algorithm
presents the most desirable features, that is, a reduced mean, which suggests that the result
is closer to the LB on average, and the small variance can be interpreted as a measure of
robustness and reliability.
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Table 3: Obtained results per algorithm for all (very) large instances.

Instance GAP MIP BA BA +MIP LS +MIP
Time (sec) GAP (%) Time (sec) GAP (%) Time (sec) GAP (%)

300 1 2.54 1,083.566 319.94 1,191.68 2.52 823,748 3.48
300 2 4.32 521.891 326.39 1,114.84 1.22 1,859.55 1.23
300 3 5.38 418.646 344.74 1,183.13 5.67 67.170 5.47
300 4 0.25 576.624 325.64 1,354.32 0.53 291.096 0.92
300 5 7.69 499.160 340.61 1,181.11 3.60 248,047 5.03
300 6 0.10 0.440 311.72 1,779.96 0.76 1,068.721 0.87
300 7 7.24 1,532.097 333.29 1,942.37 4.16 810.303 4.82
300 8 3.39 247.004 322.63 1,716.07 0.91 122.122 2.13
300 9 6.24 1,401.028 331.60 842.08 4.55 446.381 4.89
300 10 3.82 1,786.086 331.14 1111016 2.14 82.730 4.68
500 1 4.30 1,515.316 425.51 1,382.22 4.41 656.431 3.43
500 2 8.34 29.623 432.50 1,960.32 4.43 400.010 5.73
500 3 11.61 741.206 428.80 1,636.51 4.51 83.878 7.23
500 4 8.54 1,740.442 441.34 1,476.66 4.62 519.690 3.78
500 5 7.27 364.557 437.55 1,742.31 4.83 816.807 4.98
500 6 8.09 151.569 430.50 1,306.528 5.20 328.605 6.00
500 7 6.63 1,493.073 425.32 1,892.530 4.48 1,093.399 5.07
500 8 11.18 1,357.436 420.11 1,177.792 4.98 828,960 4.14
500 9 9.64 853.731 427.62 1,647.911 5.16 860.271 4.69
500 10 12.88 1,826.382 423.29 1,333.395 5.99 231,932 6.64
1000 1 18.75 89.000 331.06 1,514.020 15.62 246.482 17.13
1000 2 22.97 92.000 336.27 1,641.200 15.65 1,210.875 14.30
1000 3 20.33 85.000 337.88 1,979.140 16.45 1,165.605 15.22
1000 4 20.06 1,842.591 339.48 1,954.162 16.10 1,997.213 17.97
1000 5 17.91 88.000 332.41 1,974.203 16.64 305,483 17.60
1000 6 16.84 90.000 340.57 1,993.361 14.72 741838 14.41
1000 7 18.80 88.000 339.95 1,898.845 17.30 104.692 17.80
1000 8 19.20 89.000 322.16 1,948.752 14.31 1,206.733 14.76
1000 9 17.62 1,807.162 340.03 1,737.584 15.87 378.913 14.99
1000 10 18.93 317.728 340.53 1,074.975 17.25 609,155 16.98

Table 4: Summary of the results obtained by the MIP, LS-MIP, and BA-MIP.

MIP LS-MIP BA-MIP
Instances

300x 4.14 6.47 3.35 3.14 2.61 2.93
500x 8.85 5.89 5.17 1.37 4.86 0.22
1000x 19.14 2.64 16.12 2.04 15.99 0.87

5. Conclusions and Future Work

In this paper, we have presented a hybrid algorithm based on the BA and the MIP and used
it to solve the CFLP. The BA is applied primarily for the purpose of solving the location
problem, that is, finding a subset from the available set of locations that satisfy the entire
demand of the system. In contrast, the MIP is applied for the purpose of finding the optimal
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solution by considering a specific subset of locations, that is, solving the allocation problem.
Certain considerations are important and must be highlighted in this approach.

First, because the algorithm is able to find the optimal solution for each subset of
selected warehouses, we are able to fairly compare those subsets. At the same time, our
hybrid algorithm is able to find the optimal solution to medium-large problems, which is
not possible with the use of common local search strategies. Additionally, obtaining the
optimal solution allows us to compare the different strategies for warehouse selection and
local search.

Second, compared with the widely used local search approaches that implement a
swap in the assignation vector as a neighborhood move, our approach is able to visit more
solutions because the entire tree corresponding to the feasible allocations is considered for
each subset of warehouses in the search for the optimal solution of the subproblem by the
MIP algorithm.

Third, our BA does not require extensive computational resources because most of the
calculations are handled by the MIP solver, which is by far more efficient than many common
heuristics implementations.

Our hybrid BA-MIP algorithm was able to find the optimal solution for a set of
well-known large-scale instances found in the literature. Moreover, it outperformed both
the BA and MIP approaches as applied separately. Compared with the state-of-the-art
algorithms for location problems, our BA-MIP algorithm is highly competitive and reaches an
optimal solution using less CPU time than both exact and stochastic approaches. Moreover,
when the instances are notably large, the algorithm is able to find a better solution than
that of the MIP approach in a fraction of the time. As widely reported in the literature
over the last three decades, the combination of mathematical programming with heuristics
and/or metaheuristics (Matheuristics [1]) provides robust and straightforward approaches
to solving these types of problems.

In this paper, we have developed a hybrid algorithm using BA and LP using an
approach that has not yet been reported. Due to the hybrid nature of the algorithm, certain
changes were made in the structure of the BA heuristic. Use of the variable neighborhood
“size,” the neighborhood-based initialization procedure, the intensification procedure, and
the experienced foragers are the most important features of our implementation. These
distinctive components allow us to improve the performance of the simple BA when
combined with MIP.

The hybridization of BA with other such mathematical programming approaches as
interior point methods, column generation, and gradient-based algorithms shows promise
as a potentially valuable research area. Additionally, the application of similar hybrid
approaches to more complex large-scale problem will be an interesting future research line.
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