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We present a new iterative method based on the line search filter method with the nonmonotone
strategy to solve the system of nonlinear equations. The equations are divided into two groups;
some equations are treated as constraints and the others act as the objective function, and the two
groups are just updated at the iterations where it is needed indeed. We employ the nonmonotone
idea to the sufficient reduction conditions and filter technique which leads to a flexibility and
acceptance behavior comparable to monotonemethods. The new algorithm is shown to be globally
convergent and numerical experiments demonstrate its effectiveness.

1. Introduction

We consider the following system of nonlinear equations:

ci(x) = 0, i = 1, 2, . . . , m, (1.1)

where each ci : Rn → R (i = 1, 2, . . . , m) is a twice continuously differentiable function. It is
one of the most basic problems in mathematics and has lots of applications in many scientific
fields such as physics, chemistry, and economics.

In the context of solving nonlinear equations, a well-known method is the Newton
method, which is known to exhibit local and second order convergence near a regular
solution, but its global behavior is unpredictable. To improve the global properties, some
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important algorithms [1] for nonlinear equations proceed by minimizing a least square
problem:

minh(x) = c(x)Tc(x), (1.2)

which can be also handled by the Newton method, while Powell [2] gives a counterexample
to show a dissatisfactory fact that the iterates generated by the above least square problem
may converge to a nonstationary point of h(x).

However, as we all know, there are several difficulties in utilizing the penalty
functions as a merit function to test the acceptability of the iterates. Hence, the filter, a new
concept first introduced by Fletcher and Leyffer [3] for constrained nonlinear optimization
problems in a sequential quadratic programming (SQP) trust-region algorithm, replaces
the merit fuctions avoiding the penalty parameter estimation and the difficulties related to
the nondifferentiability. Furthermore, Fletcher et al. [4, 5] give the global convergence of
the trust-region filter-SQP method, then Ulbrich [6] gets its superlinear local convergence.
Consequently, filter method has been actually applied in many optimization techniques,
for instance the pattern search method [7], the SLP method [8], the interior method [9],
the bundle approaches [10, 11], and so on. Also combined with the trust-region search
technique, Gould et al. extended the filter method to the system of nonlinear equations
and nonlinear least squares in [12], and to the unconstrained optimization problem with
multidimensional filter technique in [13]. In addition, Wächter and Biegler [14, 15] presented
line search filter methods for nonlinear equality-constrained programming and the global
and local convergence were given.

In fact, filter method exhibits a certain degree of nonmonotonicity. The idea of
nonmonotone technique can be traced back to Grippo et al. [16] in 1986, combined with the
line search strategy. Due to its excellent numerical exhibition, many nonmonotone techniques
have been developed in recent years, for example [17, 18]. Especially in [17], a nonmonotone
line search multidimensional filter-SQP method for general nonlinear programming is
presented based on the Wächter and Biegler methods [14, 15].

Recently, some other ways were given to attack the problem (1.1) (see [19–23]). There
are two common features in these papers; one is the filter approach is utilized, and the
other is that the system of nonlinear equations is transformed into a constrained nonlinear
programming problem and the equations are divided into two groups; some equations
are treated as constraints and the others act as the objective function. And two groups of
equations are updated at every iteration in those methods. For instance combined with the
filter line search technique [14, 15], the system of nonlinear equations in [23] becomes the
following optimization problem with equality constraints:

min
∑

i∈S1

c2i (x)

s.t. cj(x) = 0, j ∈ S2.

(1.3)

The choice of two sets S1 and S2 are given as follows: for some positive constant n0 > 0, it is
defined that c2i1(xk) ≥ c2i2(xk) ≥ · · · ≥ c2im(xk), then S1 = {ik | k ≤ n0} and S2 = {ik | k ≥ n0 + 1}.

In this paper we present an algorithm to solve the system of nonlinear equations,
combining the nonmonotone technique and line search filter method. We also divide the
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equations into two groups; one contains the equations that are treated as equality constraints
and the square of other equations is regarded as objective function. But different from those
methods in [19–23], we just update the two groups at the iterations where it is needed
indeed, which can make the scale of the calculation decrease in a certain degree. Another
merit of our paper is to employ the nonmonotone idea to the sufficient reduction conditions
and filter which leads to a flexibility and acceptance behavior comparable to monotone
methods. Moreover, in our algorithm two groups of equations cannot be changed after an
f-type iteration, thus in the case that |A| < ∞, the two groups are fixed after finite number
of iterations. And the filter should not be updated after an f-type iteration, so naturally the
global convergence is discussed, respectively, according to whether the number of updated
filter is infinite or not. Furthermore, the global convergent property is induced under some
reasonable conditions. In the end, numerical experiments show that the method in this paper
is effective.

The paper is outlined as follows. In Section 2, we describe and analyze the
nonmonotone line search filter method. In Section 3 we prove the global convergence of the
proposed algorithm. Finally, some numerical tests are given in Section 4.

2. A Nonmonotone Line Search Filter Algorithm

Throughout this paper, we use the notations mk(x) = ‖cS1(x)‖22 =
∑

i∈S1
c2i (x) and θk(x) =

‖cS2(x)‖22 =
∑

i∈S2
c2i (x). In addition, we denote the set of indices of those iterations in which

the filter has been augmented byA ⊆ N.
The linearization of the KKT condition of (1.3) at the kth iteration xk is as follows:

⎛

⎝
Bk Ak

S2(
Ak

S2

)T
0

⎞

⎠
(
sk
λ+
k

)
= −
(

gk
ckS2

)
, (2.1)

where Bk is the Hessian or approximate Hessian matrix of L(x, λ) = mk(x) + λTcS2(x), A
k
S2

=
∇cS2(xk) and g(xk) = ∇mk(xk). Then the iterate formation is xk(αk,l) = xk + αk,lsk, where sk
is the solution of (2.1) and αk,l ∈ (0, 1] is a step size chosen by line search.

Now we describe the nonmonotone Armijo rule. Let M be a nonnegative integer. For
each k, letm(k) satisfym(0) = 1, 0 ≤ m(k) ≤ min{m(k−1)+1,M} for k ≥ 1. For fixed constants
γm, γθ ∈ (0, 1), we might consider a trial point to be acceptable, if it leads to sufficient progress
toward either goal, that is, if

θk(xk(αk,l)) ≤
(
1 − γθ
)
max

{
θk(xk),

m(k)−1∑

r=0

λkrθk−r(xk−r)

}

or mk(xk(αk,l)) ≤ max

{
mk(xk),

m(k)−1∑

r=0

λkrmk−r(xk−r)

}
− γmθk(xk),

(2.2)

where λkr ∈ (0, 1),
∑m(k)−1

r=0 λkr = 1.
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For the convenience we set m(xk) = max{mk(xk),
∑m(k)−1

r=0 λkrmk−r(xk−r)}, and θ(xk) =
max{θk(xk),

∑m(k)−1
r=0 λkrθk−r(xk−r)}. In order to avoid the case of convergence to a feasible but

nonoptimal point, we consider the following switching condition:

gT
k sk < −ξsTkBksk, −αk,lg

T
k sk > [θk(xk)]

sθ , (2.3)

with ξ ∈ (0, 1], sθ ∈ (0, 1). If the switching condition holds, the trial point xk(αk,l) has to satisfy
the Armijo nonmonotone reduction condition,

mk(xk(αk,l)) ≤ m(xk) + τ3αk,lg
T
k sk, (2.4)

where τ3 ∈ (0, 1/2) is a fixed constant.
To ensure the algorithm cannot cycle, it maintains a filter, a “taboo region” Fk ⊆

[0,∞] × [0,∞] for each iteration k. The filter contains those combinations of constraint
violation value θ and the objective function value m, that are prohibited for a successful
trial point in iteration k. During the line search, a trial point xk(αk,l) is rejected, if
(θ(xk(αk,l)), m(xk(αk,l))) ∈ Fk. We then say that the trial point is not acceptable to the current
filter, which is also called xk(αk,l) ∈ Fk.

If a trial point xk(αk,l) /∈ Fk satisfies the switching condition (2.3) and the reduction
condition (2.4), then this trial point is called an f-type point, and accordingly this iteration is
called an f-type iteration. An f-type point should be accepted as xk+1 with no updating of the
filter, that is

Fk+1 = Fk. (2.5)

While if a trial point xk(αk,l) /∈ Fk does not satisfy the switching condition (2.3), but
this trial point satisfies (2.2), we call it an h-type point, or accordingly an h-type iteration. An
h-type point should be accepted as xk+1 with updating of the filter, that is

Fk+1 = Fk

⋃{
(θ,m) ∈ R2 : θ ≥ (1 − γθ

)
θ(xk), m ≥ m(xk) − γmθk(xk)

}
. (2.6)

In some cases it is not possible to find a trial step size that satisfies the above criteria.
We approximate a minimum desired step size using linear models of the involved functions.
For this, we define

αmin
k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{
1 −
(
1 − γθ
)
θ(xk)

θk(xk)
,
m(xk) −mk(xk) − γmθk(xk)

gT
k sk

,
[θk(xk)]

sθ

−gT
k sk

}
,

if gT
k sk < −ξsTkBksk,

1 −
(
1 − γθ
)
θ(xk)

θk(xk)
, otherwise.

(2.7)

If the nonmonotone line search encounters a trial step size with αk,l < αmin
k , the algorithm

reverts to a feasibility restoration phase. Here, we try to find a new iterate which is acceptable
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to the current filter and for which (2.2) holds, by reducing the constraint violation with some
iterative method.

The corresponding algorithm can be written as follows.

Algorithm 2.1. Step 1. Initialization: choose an initial guess x0, ρ1, ρ2 ∈ (0, 1), ρ1 < ρ2, and ε > 0.
Compute g0, ci(x0), S0

1, S
0
2, and Ak for i ∈ S0

2. Set M > 0, m(0) = 1, k = 0, and F0 = ∅.
Step 2. If ‖c(xk)‖ ≤ ε then stop.
Step 3. Compute (2.1) to obtain sk. If there exists no solution to (2.1), go to Step 8. If

‖sk‖ ≤ ε then stop.
Step 4. Use nonmonotone line search. Set l = 0 and αk,l = 1.

Step 4.1. If αk,l < αmin
k , where the αmin

k is obtained by (2.7), go to Step 8. Otherwise
we get xk(αk,l) = xk + αk,lsk. If xk(αk,l) ∈ Fk, go to Step 4.3.

Step 4.2. Check sufficient decrease with respect to current iterate.

Step 4.2.1. If the switching condition (2.3) and the nonmonotone reduction
condition (2.4) hold, set Fk+1 = Fk and go to Step 5. While only the switching
condition (2.3) are satisfied, go to Step 4.3.
Step 4.2.2. The switching conditions (2.3) are not satisfied. If the nonmonotone
filter condition (2.2) holds, set xk+1 = xk + αk,lsk, augment the filter using (2.6)
and go to Step 6. Otherwise, go to Step 4.3.

Step 4.3. Choose αk,l+1 ∈ [ρ1αk,l, ρ2αk,l]. Let l = l + 1 and go to Step 4.1.

Step 5. Set xk+1 = xk + αk,lsk, Sk+1
1 = Sk

1 and Sk+1
2 = Sk

2 . Go to Step 7.
Step 6. Compute Sk+1

1 and Sk+1
2 by (1.3). If (θk+1(xk+1), mk+1(xk+1)) ∈ Fk+1, set Sk+1

1 = Sk
1

and Sk+1
2 = Sk

2 .
Step 7. Compute gk+1, Bk+1, Ak+1 and m(k + 1) = min{m(k) + 1,M}. Let k = k + 1 and

go to Step 2.
Step 8 (restoration stage). Find xr

k
= xk + αr

k
sr
k
such that xr

k
is acceptable to xk and

(θk(xr
k
), mk(xr

k
)) /∈ Fk. Set xk+1 = xr

k
and augment the filter by (2.6). Let k = k + 1, m(k) = 1

and go to Step 2.

In a restoration algorithm, the infeasibility is reduced and it is, therefore, desired to
decrease the value of θk(x). The direct way is to utilize the Newton method or the similar
ways to attack θk(x + s) = 0. We now give the restoration algorithm.

Restoration Algorithm

Step R1. Let x0
k
= xk,H0 = En, Δ0

k
= Δ0, gθ = ∇θk(x), j = 0, η1 = 0.25, η2 = 0.75.

Step R2. If xj

k is acceptable to xk and (θk(xr
k), mk(xr

k)) /∈ Fk, then let xr
k = x

j

k and
stop.

Step R3. Compute

min gT
θ s +

1
2
sTHjs s.t. ‖s‖ ≤ Δj

k
(2.8)

to get sj
k
. Let rj

k
= (θk(x

j

k
) − θk(x

j

k
+ s

j

k
))/(−gT

θ
s
j

k
− (1/2)sj

k

T
Hjs

j

k
).
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Step R4. If rj
k
≤ η1, set Δ

j+1
k

= (1/2)Δj

k
; If rj

k
≥ η2, set Δ

j+1
k

= 2Δj

k
; otherwise, Δj+1

k
=

Δj

k
. Let xj+1

k
= x

j

k
+ s

j

k
, Hj be updated toHj+1, j = j + 1 and go to Step R2.

The above restoration algorithm is an SQP method for θk(x + s) = 0. Of course,
there are other restoration algorithms, such as the Newton method, interior point restoration
algorithm, SLP restoration algorithm, and so on.

3. Global Convergence of Algorithm

In this section, we present a proof of global convergence of Algorithm 2.1. We first state the
following assumptions in technical terms.

Assumptions. (A1)All points xk that are sampled by algorithm lie in a nonempty closed
and bounded set X.

(A2) The functions ci(x), j = 1, 2, . . . , m are all twice continuously differentiable on an
open set containing X.

(A3) There exist two constants b ≥ a > 0 such that the matrices sequence {Bk} satisfies
a‖s‖2 ≤ sTBks ≤ b‖s‖2 for all k and s ∈ Rn.

(A4) (Ak
s2)

T has full column rank and ‖sk‖ ≤ γs for all k with a positive constant γs.
In the remainder of this section, we will not consider the case where Algorithm 2.1

terminates successfully in Step 2, since in this situation the global convergence is trivial.

Lemma 3.1. Under Assumption A1, there exists the solution to (2.1) with exact (or inexact) line
search which satisfies the following descent conditions:

|θk(xk + αsk) − (1 − 2α)θk(xk)| ≤ τ1α
2‖sk‖2, (3.1)

∣∣∣mk(xk + αsk) −mk(xk) − αgT
k sk
∣∣∣ ≤ τ2α

2‖sk‖2, (3.2)

where α ∈ (0, 1), τ1 and τ2 are all positive constants independent of k.

Proof. By virtue of the Taylor expansion of c2i (xk + αsk)with i ∈ S2, we obtain

∣∣∣c2i (xk + αsk) − c2i (xk) − 2αci(xk)∇ci(xk)Tsk
∣∣∣

=
∣∣∣c2i (xk + αsk) − c2i (xk) − 2ci(xk)∇ci(xk)T (αsk)

∣∣∣

=
∣∣∣∣
1
2
(αsk)T
[
2ci(xk + ζαsk)∇c2i (xk + ζαsk) + 2∇ci(xk + ζαsk)∇ci(xk + ζαsk)

T
]
(αsk)
∣∣∣∣

=
∣∣∣α2sTk

[
ci(xk + ζαsk)∇c2i (xk + ζαsk) +∇ci(xk + ζαsk)∇ci(xk + ζαsk)

T
]
sk
∣∣∣

≤ 1
m
τ1α

2‖sk‖2,
(3.3)
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where the last inequality can be done by Assumption A1 and ζ ∈ [0, 1]. Furthermore, from
(2.1)we immediately obtain ci(xk)+∇ci(xk)

Tsk = 0, that is, −2αc2i (xk)−2αci(xk)∇ci(xk)
Tsk =

0. With |S2| ≤ m, thereby,

|θk(xk + αsk) − (1 − 2α)θk(xk)|

=

∣∣∣∣∣
∑

i∈S2

(
c2i (xk + αsk) − (1 − 2α)c2i (xk)

)∣∣∣∣∣

≤
∑

i∈S2

∣∣∣c2i (xk + αsk) − (1 − 2α)c2i (xk)
∣∣∣

=
∑

i∈S2

∣∣∣c2i (xk + αsk) − c2i (xk) − 2αci(xk)∇ci(xk)Tsk
∣∣∣

≤ m · 1
m
τ1α

2‖sk‖2

≤ τ1α
2‖sk‖2,

(3.4)

then the first inequality consequently holds.
According to the Taylor expansion of

∑
i∈S1

(c2i (xk + αsk)) (i.e., mk(xk + αsk)), we then
have

∣∣∣∣∣
∑

i∈S1

(
c2i (xk + αsk)

)
−
∑

i∈S1

(
c2i (xk)
)
− αgT

k sk

∣∣∣∣∣ =

∣∣∣∣∣
1
2
α2(sk)T∇2

∑

i∈S1

(
c2i
(
xk + �αsk

))
sk

∣∣∣∣∣ ≤ τ2α
2‖sk‖2,

(3.5)

where the last inequality follows from Assumption A1 and � ∈ [0, 1]. That is to say,

∣∣∣mk(xk + αsk) −mk(xk) − αgT
k sk
∣∣∣ ≤ τ2α

2‖sk‖2, (3.6)

which is just (3.2).

Lemma 3.2. Let {xki} be a subsequence of iterates for which (2.3) holds and has the same S1 and S2.
Then there exists some α̂ ∈ (0, 1] such that

mki(xki + α̂ski) ≤ mki(xki) + α̂τ3g
T
ki
ski . (3.7)

Proof. Because {xki} have the same S1 and S2, it follows that mki(x) are fixed and by (2.3) dki

is a decent direction. Hence there exists some α̂ ∈ (0, 1] satisfying (3.7).

Theorem 3.3. Suppose that {xk} is an infinite sequence generated by Algorithm 2.1 and |A| < ∞,
one has

lim
k→∞

∥∥∥ck
Sk
2

∥∥∥ + ‖sk‖ = 0, (3.8)
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namely, every limit point is the ε solution to (1.1) or a local infeasible point. If the gradients of ci(xk)
are linear independent for all k and i = 1, 2, . . . , m, then the solution to SNE is obtained.

Proof. From |A| < ∞, we know the filter updates in a finite number, then there exists K ∈ N,
for k > K the filter does not update. As h-type iteration and restoration algorithm all need
the updating of the filter, so for k > K our algorithm only follows the f-type iterations. We
then have that for all k > K both conditions (2.3) and (2.4) are satisfied for xk+1 = xk + αksk
and mk(x) = mK(x).

Then by (2.4) we get mk(xk+1) ≤ max{mk(xk),
∑m(k)−1

r=0 λkrmk−r(xk−r)} + τ3αkg
T
k
sk. We

first show that for all k ≥ K + 1, it holds

mk(xk) < m(xK) + λτ3
k−2∑

r=K

αrg
T
r sr + τ3αk−1gT

k−1sk−1 < m(xK) + λτ3
k−1∑

r=K

αrg
T
r sr , (3.9)

where m(xK) = max{mK(xK),
∑m(k)−1

r=0 λKrmK−r(xK−r)}. We prove (3.9) by induction.
If k = K + 1, we have mK+1(xK+1) < m(xK) + τ3αkg

T
k sk < m(xK) + λτ3αkg

T
k sk. Suppose

that the claim is true for K + 1, K + 2, . . . , k, then we consider two cases.
Case 1. If max{mk(xk),

∑m(k)−1
r=0 λkrmk−r(xk−r)} = mk(xk), it is clear that

mk+1(xk+1) < mk(xk) + τ3αkg
T
k sk < m(xK) + λτ3

k−1∑

r=K

αrg
T
r sr + τ3αkg

T
k sk

≤ m(xK) + λτ3
k∑

r=K

αrg
T
r sr .

(3.10)

Case 2. If max{mk(xk),
∑m(k)−1

r=0 λkrmk−r(xk−r)} =
∑m(k)−1

r=0 λkrmk−r(xk−r), let u = m(k)−1.
By the fact that

∑u
t=0 λkt = 1, λ ≤ λkt < 1, we have

mk+1(xk+1) <
u∑

t=0

λktmk−t(xk−t) + τ3αkg
T
k sk

<
u∑

t=0

λkt

(
m(xK) + λτ3

k−t−2∑

r=K

αrg
T
r sr + τ3αk−t−1gT

k−t−1sk−t−1

)
+ τ3αkg

T
k sk

= λk0

(
m(xK) + λτ3

k−u−2∑

r=K

αrg
T
r sr + λτ3

k−2∑

r=k−u−1
αrg

T
r sr + τ3αk−1gT

k−1sk−1

)
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+ λk1

(
m(xK) + λτ3

k−u−2∑

r=K

αrg
T
r sr + λτ3

k−3∑

r=k−u−1
αrg

T
r sr + τ3αk−2gT

k−2sk−2

)

+ · · · + λku

(
m(xK) + λτ3

k−u−2∑

r=K

αrg
T
r sr + τ3αk−u−1gT

k−u−1sk−u−1

)
+ τ3αkg

T
k sk

< m(xK) + λτ3
k−u−2∑

r=K

αrg
T
r sr + λτ3

k−1∑

r=k−u−1
αrg

T
r sr + τ3αkg

T
k sk

= m(xK) + λτ3
k−1∑

r=K

αrg
T
r sr + τ3αkg

T
k sk < m(xK) + λτ3

k∑

r=K

αrg
T
r sr .

(3.11)

Moreover, since mk(xk) is bounded below as k → ∞, we get
∑k

r=K αrg
T
r sr < ∞, that is,

limk→∞ αrg
T
r sr = 0. By Lemma 3.2, there exists a α̂ ∈ (0, 1] such that αk ≥ α̂. Then together

with gT
k sk < −ξsTkBksk and Assumption A1, we have limk→∞‖sk‖ = 0. From −αk,lg

T
k sk >

[θk(xk)]
sθ it is easy to obtain that limk→∞θk(xk) = 0. This completes the proof.

Lemma 3.4. Under Assumptions A1 and A2, if gT
k
sk ≤ −ε0 for a positive constant ε0 independent

of k(∈ a subsequence) and for all α ∈ (0, 1] and α ≥ αmin
k,l with (θk(xk), mk(xk)) /∈ Fk, then

there exists γ1, γ2 > 0 so that (θk(xk + αsk), mk(xk + αsk)) /∈ Fk for all k(∈ a subsequence) and
α ≤ min{γ1, γ2θk(xk)}.

Proof. Choose γ1 = ε0/τ2γ
2
s , then α ≤ γ1 implies that −αε0 + τ2α

2γ2s ≤ 0. So we note from (3.2)
that

mk(xk + αsk) ≤ mk(xk) + αgT
k sk + τ2α

2‖sk‖2

≤ mk(xk) − αε0 + τ2α
2γ2s

≤ mk(xk).

(3.12)

Let γ2 = 2/τ1γ2s , then α ≤ γ2θk(xk) implies that −2αθk(xk) + τ1α
2γ2s ≤ 0. So from (3.1),

we obtain

θk(xk + αsk) ≤ θk(xk) − 2αθk(xk) + τ2α
2‖sk‖2

≤ θk(xk) − 2αθk(xk) + τ1α
2γ2s

≤ θk(xk).

(3.13)

We further point a fact according to the definition of filter. If (θ,m) /∈ Fk and θ ≤ θ,
m ≤ m, we obtain (θ,m) /∈ Fk. Thus from (θk(xk), mk(xk)) /∈ Fk, mk(xk + αsk) ≤ mk(xk), and
θk(xk + αsk) ≤ θk(xk), we have (θk(xk + αsk), mk(xk + αsk)) /∈ Fk.
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Lemma 3.5. If gT
k sk ≤ −ε0 for a positive constant ε0 independent of k(∈ a subsequence), then there

exists a constant α > 0, for all k(∈ a subsequence) and α ≤ α such that

mk(xk + αsk) −max

{
mk(xk),

m(k)−1∑

r=0

λkrmk−r(xk−r)

}
≤ τ3αg

T
k sk. (3.14)

Proof. Let α = (1 − τ3)ε0/τ2γ2s . In view of (3.2), ‖sk‖ ≤ γs and α ≤ α, we know

mk(xk + αsk) −max

{
mk(xk),

m(k)−1∑

r=0

λkrmk−r(xk−r)

}
− αgT

k sk

≤ mk(xk + αsk) −mk(xk) − αgT
k sk

≤ τ2α
2‖sk‖2

≤ τ2ααγ
2
s = (1 − τ3)αε0 ≤ −(1 − τ3)αgT

k sk,

(3.15)

which shows that the assertion of the lemma follows.

Theorem 3.6. Suppose that {xk} is an infinite sequence generated by Algorithm 2.1 and |A| = ∞.
Then there exists at least one accumulation which is the ε solution to (1.1) or a local infeasible point.
Namely, one has

lim
k→∞

inf
[∥∥∥ck

Sk
2

∥∥∥ + ‖sk‖
]
= 0. (3.16)

If the gradients of ci(xk) are linear independent for all k and i = 1, 2, . . . , m, then the solution to (1.1)
is obtained.

Proof. We prove that limk→∞,k∈A θk(xk) = 0 first.
Suppose by contradiction that there exits an infinite subsequence {ki} of A such that

θki(xki) ≥ ε for some ε > 0. At each iteration ki, (θki(xki), mki(xki)) is added to the filter which
means that no other (θ,m) can be added to the filter at a later stage within the area:

[
θ(xki) − γθε, θ(xki)

]
× [m(xki) − γmε,m(xki)

]
, (3.17)

and the area of the each of these squares is at least γθγmε2.
By Assumption A1 we have

∑n
i=1 c

2
i (xk) ≤ Mmax. Since 0 ≤ mk(xk) ≤ mk(xk)+θk(xk) =∑n

i=1 c
2
i (xk) and 0 ≤ θk(xk) ≤ mk(xk) + θk(xk) =

∑n
i=1 c

2
i (xk), then (θ,m) associated with the

filter are restricted to

B = [0,Mmax] × [0,Mmax]. (3.18)

TherebyB is completely covered by atmost a finite number of such areas in contraction
to the infinite subsequence {ki} satisfying θki(xki) ≥ ε. Therefore, limk→∞,k∈A θk(xk) = 0.
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By Assumption A1 and |A| = ∞, there exits an accumulation point x, that is,
limi→∞ xki = x, ki ∈ A. It follows from limk→∞,k∈A θk(xk) = 0, that

lim
i→∞

θki(xki) = 0, (3.19)

which implies limi→∞‖cki
S
ki
2

‖ = 0. If limi→∞‖ski‖ = 0, then (3.16) is true. Otherwise, there

exists a subsequence {xkij
} of {xki} and a constant ε1 > 0 so that for all kij ,

∥∥∥skij
∥∥∥ ≥ ε1. (3.20)

The choice of {xkij
} implies

kij ∈ A for all kij . (3.21)

According to ‖skij ‖ ≥ ε1, Assumption A1 as well as ξ ∈ (0, 1), we have

gT
kij
skij + ξsTkij

Bkij
skij = (ξ − 1)sTkij Bkij

skij −
(
λ+kij

)T
c
kij

S
kij

2

≤ (ξ − 1)a
∥∥∥skij
∥∥∥
2
+ c1

∥∥∥∥∥c
kij

S
kij

2

∥∥∥∥∥

≤ (ξ − 1)aε21 + c1

∥∥∥∥∥c
kij

S
kij

2

∥∥∥∥∥.

(3.22)

Since ξ − 1 < 0 and ‖ckij
S
kij

2

‖ → 0 as j → ∞, we obtain

gT
kij
skij ≤ −ξsTkij Bkij

skij , (3.23)

for sufficiently large j. Similarly, we have

αgT
kij
skij + [θk(xk)]

sθ ≤ −αsTkij Bkij
skij + c1

∥∥∥∥c
kij
kij 2

∥∥∥∥ + [θk(xk)]
sθ

≤ −αaε21 + c1

∥∥∥∥c
kij
kij 2

∥∥∥∥ + [θk(xk)]
sθ ,

(3.24)

and thus

−αgT
kij
skij ≥ [θk(xk)]

sθ , (3.25)
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Table 1: Numerical results of Example 4.1.

Starting point NIT NOF NOG
(1, 0) 2 5 7
(1, 2) 6 13 12

Table 2: Numerical results of Example 4.2.

Starting point NIT NOF NOG
(0, 0, 0) 10 21 22
(1.5, 1.5, 1.5) 7 15 15

for sufficiently large j. This means the condition (2.3) is satisfied for sufficiently large j.
Therefore, the reason for accepting xk+1 must been that xk+1 satisfies nonmonotone Armijo
condition (2.4). In fact let ε0 = ξaε21, then gT

kij
skij ≤ −ξsTkij Bkij

skij ≤ −ξaε21 = −ε0; by Lemma 3.5

we obtain nonmonotone Armijo condition (2.4) is satisfied. Consequently, the filter is not
augmented in iteration kij which is a contraction to (3.21). The whole proof is completed.

4. Numerical Experiments

In this section, we test our algorithm on some typical test problems. In the whole process, the
program is coded in MATLAB and we assume the error tolerance ε in this paper is always
1.0e − 5. The selected parameter values are γθ = 0.1, γm = 0.1, sθ = 0.9, ρ1 = 0.25, ρ2 = 0.75,
and M = 3. In the following tables, the notations NIT, NOF, and NOG mean the number of
iterates, number of functions, and number of gradients, respectively.

Example 4.1. Find a solution of the nonlinear equations system as follows:

(
x + 3y2

(x − 1.0)y

)
=
(
0
0

)
. (4.1)

The only solution of Example 4.1 is (x∗, y∗) = (0, 0). Define the line Γ = {(1, y) : y ∈ R}.
If the starting point (x0, y0) ∈ Γ, the Newton method [24] are confined to Γ. We choose two
starting points which belong to Γ in the experiments and then the (x∗, y∗) is obtained. Table 1
shows the results.

Example 4.2. Consider the system of nonlinear equations:

c1(x) = x3
1 − x3

2 + x3
3 − 1,

c2(x) = x2
1 + x2

2 − x2
3 − 1,

c3(x) = x1 + x2 + x3 − 3.

(4.2)

The solution to Example 4.2 is x∗ = (1, 1, 1)T . The numerical results of Example 4.2 are
given in Table 2.
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Table 3: Numerical results of Example 4.3.

Starting point NIT NOF NOG NIT [22]
(3, 1) 6 10 8 17
(30, 10) 7 14 13 7
(300, 100) 10 17 16 15

Table 4: Numerical results of Example 4.4.

Starting point (0.5, 0.5) (−0.5, 0.5) (0.5,−0.5)
NIT 5 5 6
NOF 8 7 9
NOG 7 6 9
Solution (1, 1) (−1, 1) (1,−1)
NIT [22] 5 6 9

Example 4.3. Find a solution of the nonlinear equations system:

⎛

⎝
x

10x
(x + 0.1)

+ 2y2

⎞

⎠ =
(
0
0

)
. (4.3)

The unique solution is (x∗, y∗) = (0, 0). It has been proved in [2] that, under initial
point (x0, y0) = (3, 1), the iterates converge to the point z = (1.8016, 0.0000), which is not
a stationary point. Utilizing our algorithm, a sequence of points converging to (x∗, y∗) is
obtained. The detailed numerical results for Example 4.3 are listed in Table 3.

Example 4.4. Consider the following system of nonlinear equations:

c1(x) = x2
1 + x1x2 + 2x2

2 − x1 − x2 − 2,

c2(x) = 2x2
1 + x1x2 + 3x2

2 − x1 − x2 − 4.
(4.4)

There are three solutions of above example, (1, 1)T , (−1, 1)T , and (1,−1)T . The
numerical results of Example 4.4 are given in Table 4.

Example 4.5. Consider the system of nonlinear equations:

ci(x) = − (N + 1) + 2xi +
N∑

j=1,j /= i

xj , i = 1, 2, . . . ,N − 1, (4.5)

cN(x) = − 1 +
N∏

j=1

xj , (4.6)

with the initial point x
(0)
i = 0.5, i = 1, 2, . . . ,N. The solution to Example 4.5 is x∗ =

(1, 1, . . . , 1)T . The numerical results of Example 4.5 are given in Table 5.



14 Mathematical Problems in Engineering

Table 5: Numerical results of Example 4.5.

N = 10 N = 20 N = 40 N = 60 N = 120
NIT 7 10 19 28 52
NOF 14 22 26 39 77
NOG 13 21 23 34 68
NIT [22] 8 17 22 41 Fail

Refer to these above problems, running the Algorithm 2.1with different starting points
yields the results in the corresponding tables, which, summarized, show that our proposed
algorithm is practical and effective. From the computation efficiency, we should point out our
algorithm is competitive with the method in [22]. The results in Table 5 in fact show that our
method also succeeds well to solve the cases when more equations are active.

Constrained optimization approaches attacking the system of nonlinear equations are
exceedingly interesting and are further developed by using the nonmonotone line search
filter strategy in this paper. Moreover, the local property of the algorithm is a further topic of
interest.
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