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This paper presents an upper and lower solution theory for boundary value problems modelled from the
Thomas—Fermi equation subject to a boundary condition corresponding to the neutral atom with Bohr
radius.
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1 INTRODUCTION

In 1927, L. H. Thomas and E. Fermi independently derived a boundary value problem for
determining the electrical potential in an atom. There analysis leads to the nonlinear second
order differential equation

Y =232,

The boundary conditions in investigating

(a) the neutral atom with Bohr radius a are given by
W) =1, ay(a)=ya);
(b) the ionized atom are given by
y0) =1, ya)=0;
(c) the isolated neutral atom are given by

y(0)=1, lim y(x) =0.
X—>00
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Almost all the papers in the literature (see [1,4,5,7] and the references therein) discuss
boundary condition (b) or (c). Only a handful of papers [2, 6] have discussed the boundary
condition (a). This paper discusses boundary condition (a) and we present an upper and lower
solution theory for such problems. In fact our theory applies to the more general equation
(considered in [2])

b
Y +oy=/@ty), 0<b<l,

and we discuss this also in Section 2.

2 EXISTENCE

Motivated by the Thomas—Fermi problem in Section 1 we begin by discussing the two point
boundary value problem

¥(0) = ao @1

Iy”:qf(t,y), O<t<a
k/(a) =ya), k=a

where a > 0 is fixed. By an upper solution f to (2.1) we mean a function g € C'[0,a]N
C%(0, a) with

B(0) = ao 22

[ B'(t) < q@f (1, B®), O<t<a
kp'(a) > B(a)

and by a lower solution « to (2.1) we mean a function & € C'[0, a] N C%(0, a) with

o'(0) = q(O)f (¢, (?)), O <t<a
«(0) < ao (2.3)
ko (a) < a(a)

In our first existence result we will assume the following conditions are satisfied:

g € C(0,a) N L0, a] with g >0 on (0, a) 2.4)

f:10,a] x R — R is continuous (2.5)
and

{ there exists o, f§ respectively lower and upper 2.6)

solutions of (2.1) with a(f) < B(¢) for ¢ € [0, a].

THEOREM 2.1  Suppose (2.4)~(2.6) hold. Then (2.1) has a solution y € C'[0, a] N C*(0, a)
with a(t) < y(t) < B(¢) for t € [0, a].
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Proof To show (2.1) has a solution we consider the boundary value problem

¥0) =ao @7

{}’”—y=f*(t,y), O<t<a
ky (@) = y(a)

where

qlf ¢, B@O) +r(y — )] — B@), y > B(®)
M ty) =1 9@f ¢, y) -y, alt) <y < @)
qOlf (¢, u(®) +r(y — ()] — a(®), y < a(?)

and 7: R — [—1, 1] is the radial retraction defined by

@ I)gc x| <1
rx)=43 %

"k x| > 1.

Solving (2.9) is equivalent to finding a fixed point of the operator N where
N: C[0, a] - C[0, a] is given by (here y € C[0, 1])

Ny(t) = 4é' + (a, — A)e™" — %e“ r E1*(s, y(s)) ds + %e’ Jt e f*(s, y(s)) ds
0 0

where

_ a1+ ke = (1/2)(k + Ve~ [y &f*(s, (s)) ds _ (1/2)(k — De” ' e=*f*(5, 7(5)) ds

A (1 + ke + (k— 1)e (I + ke + (k— e

Remark 2.1 Note (1+k)e™® # (1 —k)e*. To see this notes if (1 +k)e™ = (1 — k)e?
then with u(f) =&’ —e™* we have ¥’ —u =0, u(0) =0 and k/(a) = u(a), so u=0, a
contradiction.

A standard argument [7] guarantees that N:C[0,a] — C[0,a] is continuous and
compact. Schauder’s fixed point theorem guarantees that N has a fixed point y. Thus y is a
solution of (2.7).

To finish the proof it remains to show a(?) < y(f) < B(¢) for ¢ € [0, a]. Once this is shown
then y is a solution of (2.1) and we are finished. First we show y(f) < B(¢) for ¢ € [0, a). If this
is not true then y — f attains a positive absolute maximum somewhere on [0, a], say at #,.
Note # # 0 since B(0) > ao = y(0). Consider first the case #y € (0, a). Then (y — B)'(t) =0
and (y — B)"(ty) < 0. Also since y(ty) > B(ty) we have

O — B)'(t0) = f*(t0, ¥(t0)) + ¥(t0) — B"(t0) = f™*(t0, ¥(t0)) + Ht0) — q(to)f (to, B(to))
= {q(t)lf (to, B(t0)) + r(¥(t0) — B(t0))] — B(t0)} + ¥(to) + q(t0)f (t0, B(to))
= q(to)r((to0) — B(t0)) + ((t0) — B(t0)) > O,
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a contradiction. Thus #y ¢ (0, a). It remains to discuss the case #p = a. Assume ) = a. Then

(y — B)Y(a) = 0. Also since y(0) — B(0) < 0 there exists 4,0 < 6 < a with y(f) — p(¢) > 0 for
t € (6, a) and y(6) — B(6) = 0. In addition for ¢ € (6, a) we have

o = B (1) =1*(t, W) + y(O) — B" () = f*(t, (1)) + ¥() — q(O)f (¢, B(®)
= q(Or((®) — B(®) + (@) — B(®») > 0.

Consequently y — f8 is convex on (J, a) and so we have [3 pp. 134],

(@) — B@] — [¥0) — BO)] _ y(a) — @)

Y@ —f) = 5 — (2.8)

We break the proof into two cases, namely £ > a and k = a.

Case (4) k> a.
Then ky/(a) = y(a) and kf'(a) > B(a) together with (2.8) implies

(@) = B@) _ y(a@) - b@
a—-6 ~ ’

a

@)~ f@) = V@) ~ @) =
so k < a, a contradiction.

Case (B) k=a.
We break the argument into two subcases, namely 6 > 0 and 6 = 0.

Subcase (i) 6 > 0.
Then ay/(a) = y(a) and af’(a) > B(a) together with (2.8) implies

l[y(a) - B(a)] = }/(a) — ﬂ/(a) > y(a) _ ﬂ(a) > y(a) — ﬁ(a) ,
a P 5 -

a contradiction,
Remark 2.2 1f B(0) > ao then 6 > 0.

Subcase (i) 6 = 0.
Then 1(0) — B(0) =0, y(¢) — B(f) > 0 for ¢t € (0,a] and (y — B)’(¥) > 0 for ¢ € (0, a).
Thus for ¢ € (0, a) we have by the mean value theorem that

G-B@--p® >0,
and so since af’(a) > B(a) we have

y@) — B(a)
a

0-BO<-p@= for ¢ € (0, a).
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That is

ya) — Ba)
a

0-p'® < for t € (0, a),

so the mean value theorem implies

0 - Bia - & - pro) <220,

This together with y(0) — f(0) = 0 yields
ya) = Ba) < y(a) — f(a).

a contradiction.

Remark 2.3 Notice the argument in subcase (ii) can also be applied to subcase (i).
Thus in both cases we have a contradiction, so ) # a. As a result £y ¢ [0, a]. This implies
¥(&) < B for t € [0, a]. A similar argument shows a(f) < y(¢) for ¢ € [0, a]. As a result

YV =y=qftt,y)—y forte(0,a),
and we are finished. -

Remark 2.4 (i) In Theorem 2.1, (2.5) could be replaced by the less restrictive condition

f*:10,a] x R — R is continuous. 2.9)

(ii) There is also an analogue of Theorem 2.1 (we leave the details to the reader) for the more
general problem

M0) = ao

[y”:qf(t,y), O<t<a
k/(a) —y@) =bo, k=a.

Example 2.1 (Bohr radius Thomas—Fermi equation.)
Consider the boundary value problem

Y =tV 0<t<a
20) =1 (2.10)

ay(a) = y(a),
with @* > 9/4.

To show (2.11) has a solution we will apply Theorem 2.1 to the boundary value problem

W0) = 1 @2.11)

{y” =12pP2, 0<t<a
ay'(a) = y(a),
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with k = a, ag = 1, q(¢f) = t~'/? and f(t,y) = |y|*/%. Clearly (2.4) and (2.5) hold. Now let
o = 0. We claim « is a lower solution of (2.11). To see this notice

20)=0<1, ad(@)=0=owu(a) and o’ —qf(t,0) =0 for e (0,a).

Next we show
4 2
N = P2 L2 B
By =377 +2a
is an upper solution of (2.11). Notice

2 3,23 . 3.9
= — > ——= > —
B(0) 3a 233 1 since a 27

and since f(f) = 2¢'/? we have
/ 3/2 4 30,2 3p 3/2 y
af'(@) =2a’* and B(a) = 39 + 397 = 2a°*, so aff'(a) = P(a).

Finally since B"(f) = t~'/? we have

B’ —af(t, B) =t7"/* = 2BOP = 21 - [BOP?) < 0

for ¢ € (0, a), since B(f) > 2a*? > 1 for ¢ € (0, a). Thus B is an upper solution of (2.11) so
(2.6) holds. Theorem 2.1 guarantees that there exists a solution y € C'[0, a] N C%(0, a) to
(2.11) with

4 2
0 <y < -§t3/2 + §a3/2 for ¢ € [0, a].

Now since y(f) > 0 for ¢ € [0, a] we have that y is a solution of (2.10).
It is also possible to extend the ideas in this section to other boundary value problems. To
show what is possible we consider the boundary value problem (motivated partly from [2])

@YY =afey), 0<t<a
W0) =a 2.12)
[, @spenttim poy o1 =

By an upper solution f to (2.12) we mean a function § € C[0, a] N C*(0, a), pp’ € ACI0, a]
with

]l)(pﬁ’)’(t) <qOf(t. 1), O<t<a
B(0) = ao @.13)
[ @t im pop 01 > pla
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and by a lower solution « to (2.12) we mean a function a € C[0, a] N C*(0, a), po’ € ACI0, a]
with

G0 = g0 20), 0 <1<a
(0) < a (2.14)
[[ @spentim px @) < @)

For our existence result, (2.5) is assumed and also we will suppose the following conditions
are satisfied:

p € C[0,a] N CY(0,a) withp >0 on (0, a) (2.15)

a

q € C(0,a), g >0 on (0,a) and J p()g(s)ds < oo (2.16)
0

and

{there exists «, ff respectively lower and upper 2.17)

solutions of (2.12) with a(¢) < p(¢) for ¢ € [0, a].

THEOREM 2.2 Suppose (2.5), (2.15)-(2.17) hold. Then (2.12) has a solution
y € C[0,a]l N C%(0, a), py € ACI0, a] with a(f) < y(t) < B(¢) for t € [0, a}

Proof To show (2.12) has a solution we consider the boundary value problem

@Y =y =11, 0<i<a
yg)) =ay (2.18)
[ cspenttim ooy o1 =t

where f™* is as in Theorem 2.1. A slight modification of the argument in Theorem 2.1 (see
[7, Chapter 3]) guarantees that (2.18) has a solution y.

We now show y(¢) < B(¢) for ¢ € [0, a]. If this is not true then y — f attains a positive
absolute maximum somewhere on [0, a], say at f. Note f # 0. Consider first the case
ty € (0, ). Then (y — B) (t) = 0 and (p(y — B)) (to) < 0. Also since y(tp) > B(ty) we have

@G — B)) (o) = p(t0)[f* (to, ¥(t0)) + ¥(t0)] — (B') (o)
> p(to)[f* (to, (o)) + ¥(t0)] — p(t0)q(to)f (to, B(0))
= p(to)q(to)r(¥(to) — B(to)) + p(to)(¥(to) — B(t0)) > 0,

a contradiction. Thus # ¢ (0, a). It remains to discuss the case fy = a. Assume #) = a. Now
since y(0) — B(0) < 0 there exists §,0 < <a with y(t) — f(t) >0 for ¢t € (6,a) and
() — B(6) = 0. In addition for ¢ € (9, a) we have

@O = B)Y (@) = pOlf* (. y(®) + O] — B ()
= pO)q@O)r((9) — B©)) + p(OO(?) — B(®) > 0.
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Thus for ¢ € (6, a) we have from the mean value theorem that
po =B (@ —ply— B >0,

and so since

J o) i —=[1lim p()y ()] = y(a@) and J PE )[hm pOB )] = B(a),

we have

/ ’ y(a) - B(a)

po =B @) <ply—p)(a =< m for t € (6, ).

That is

s 1 @)~ f@)

0-Ph® <p(t)——fg(ds/p(s)) for t € (6, a),

so we have

a) - p@)

=B - -PB)o) < J.O (ds/p(s)) J p(t)

< ¥a) — f(a).

This together with y(6) — B() = 0 yields
Wa) — (@) < y(a) — B(a),

a contradiction. Thus #, # a. As a result #) & [0, a]. This implies y(t) < f(¢) for ¢ € [0, d]. A
similar argument shows a(¢) < y(¢) for ¢ € [0, a], and we are finished. |

Remark 2.5 In Theorem 2.2, (2.5) can be replaced by (2.9).

References

[1] Agarwal, R. P, O’Regan, D. and Wong, P. J. Y. (1999) Positive Solutions of Differential, Difference and Integral
Equations. Dordrecht: Kluwer Academic Publishers.

[2] Chan, C. Y. and Hon, Y. C. (1988) Computational methods for generalized Thomas—Fermi models of neutral
atoms, Quart. Applied Math., 46, 711-726.

[3] Conway, J. B. (1978) Functions of One Complex Variable. New York: Springer Verlag.

[4] Granas, A., Guenther, R. B. and Lee, J. W. (1981) A note on the Thomas—Fermi equation, Z4MM, 61, 204-205.

[5] Mooney, J. W. (1978) Monotone methods for the Thomas—Fermi equation, Quart. Applied Math., 36, 305-314.

[6] O’Regan, D. (1992) Existence theorems for certain classes of singular boundary value problems, J Math. Anal.
Appl., 168, 523-539.

[7]1 O’Regan, D. (1994) Theory of Singular Boundary Value Problems. Singapore: World Scientific.



