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Abstract

A bounded function ϕ : G→ C on an LCA group G is called Hartman measurable if it can
be extended to a Riemann integrable function ϕ∗ : X → C on some group compactification
(ιX , X), i.e. on a compact group X such that ιX : G → X is a continuous homomorphism
with image ιX(G) dense in X and ϕ = ϕ∗ ◦ ιX . The concept of Hartman measurability
of functions is a generalization of Hartman measurability of sets, which was introduced -
with different nomenclature - by S. Hartman to treat number theoretic problems arising
in diophantine approximation and equidistribution. We transfer certain results concerning
Hartman sets to this more general setting. In particular we assign to each Hartman measur-
able function ϕ a filter F(ϕ) on G and a subgroup Γ(ϕ) of the dual Ĝ and show how these
objects encode information about the involved group compactification. We present methods
how this information can be recovered.
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1 Introduction

1.1 Motivation:

In [5] the investigation of finitely additive measures in number theoretic context led to the
concept of a Hartman measurable subset H ⊆ G of a discrete abelian group G. By definition,

H is Hartman measurable if it is the preimage H = ι−1
X (M) of a continuity set M ⊆ X in

a group compactification (ιX , X) of G. This, more explicitly, means that ιX : G → C is

a group homomorphism with ι(G) dense in the compact group X and that µX(∂M) = 0.
Here ∂M denotes the topological boundary of M and µX the normalized Haar measure on

X. By putting mG(H) = µX(M) one can define a finitely additive measure on the Boolean

set algebra of all Hartman measurable sets in G. For the special case G = Z a Hartman set
H ⊆ Z, by identification with its characteristic function, can be considered to be a two-sided

infinite binary sequence, called a Hartman sequence. Certain number theoretic, ergodic and
combinatorial aspects of Hartman sequences have been studied in [9] and [10], while [12]

presents a method to reconstruct the group compactification (ιX , X) for given H .

In order to benefit from powerful tools from functional and harmonic analysis it is de-

sirable to study appropriate generalizations of Hartman measurable sets by replacing their
characteristic functions by complex valued functions not only taking the values 0 and 1.

The natural definition of a Hartman measurable function ϕ : G → C is the requirement
ϕ∗ ◦ ιX , where (ιX , X) is a group compactification of G and ϕ∗ is integrable in the Riemann

sense, i.e. its points of discontinuity form a null set with respect to the Haar measure on
X. This definition is equivalent to the one of R-almost periodicity, introduced in [6] by S.

Hartman. The investigation of the space H(G) of all Hartman measurable functions on G
is the content of [8]. Here we are going to transfer ideas from [12] into this context. Thus

our main topic is to describe (ιX , X) only in terms of ϕ. In particular we establish further

connections to Fourier analysis. The natural framework for our investigation is that of LCA
(locally compact abelian) groups.

1.2 Content of the paper

After the introduction we collect in section 2 the necessary preliminary definitions and facts
about Hartman measurable sets and functions.

Section 3 treats the following situation: Given a Hartman measurable function ϕ : G→ X
on an LCA group G, we know by the very definition of Hartman measurability that there is

some group compactification (ιX , X) of G such that ϕ = ϕ∗◦ιX for some Riemann integrable

function ϕ∗ : X → C. We say that ϕ can be realized in (ιX , X) resp. by ϕ∗. It is easy to
see that in this case ϕ can be realized as well on any ”bigger” compactification (ιX̃ , X̃). The

notion of ”bigger” and ”smaller” is made more precise in the next section.
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In particular every Hartman measurable function can be realized in the maximal group
compactification of G, the Bohr compactification (ιb, bG). The question arises if there is a

realization of ϕ in a group compactification that is as ”small” as possible. If a Hartman
measurable function ϕ possesses a so called aperiodic realization then the group compacti-

fication on which this aperiodic realization can be obtained is minimal (Theorem 1). This
approach works for arbitrary Hartman measurable ϕ if one allows ”almost realizations”, i.e.

if one demands ϕ = ϕ∗ ◦ ιX almost everywhere with respect to the finitely additive Hartman
measure mG on G rather than ϕ = ϕ∗ ◦ ιX everywhere on G (Theorem 2). Whenever ϕ is

even almost periodic one can guarantee ϕ = ϕ∗ ◦ ιX everywhere on G. The group compact-

ification on which the minimal realization of ϕ occurs is unique up to equivalence of group
compactifications. It can be obtained by a method involving filters on G similar to that

presented in [12].

The content of section 4 is motivated by the following reasoning: Every group compacti-

fication of the LCA group G corresponds to a (discrete) subgroup Γ of the dual Ĝ in such a
way that it is equivalent to the group compactification (ιΓ, CΓ) defined by ιΓ : g → (χ(g))χ∈Γ,

CΓ := ιΓ(G) ≤ TΓ. If (ιX , X) is a group compactification admitting an aperiodic almost real-
ization of the Hartman measurable function ϕ, the corresponding subgroup Γ ≤ Ĝ contains

all characters χ such that the corresponding Fourier coefficient mG(ϕ ·χ) does not vanish. If
ϕ is almost periodic or if ϕ can be realized on a finite dimensional compactification this result

is sharp in the sense that the subgroup Γ is minimal with the above property (Theorem 3).
For general Hartman measurable functions the situation is more difficult. This is discussed

and illustrated by an example.

Section 5 summarizes the main results and includes an illustrating diagram.

2 Preliminaries and Notation

Throughout this paper G denotes always an LCA (locally compact abelian) group. For

group compactifications of G let us write (ιX1 , X1) ≤ (ιX2 , X2) iff there is a continuous group

homomorphism π : X2 → X1 such that the diagram

X2

�
�

�
�

�
ιX2

�

G
ιX1 � X1.

π

�

commutes. In this situation we say that (ιX1 , X1) is covered by (ιX2 , X2). If (ιX1 , X1) is
covered by (ιX2 , X2) (via π1) and (ιX2 , X2) is covered by (ιX1 , X1) (via π2) then (ιX1 , X1) and

(ιX2 , X2) are called equivalent. In this case compactness of X1 and X2 implies that π1 and
π2 are both topological and algebraic isomorphisms between X1 and X2. ” ≤ ” is a partial
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order on the class of group compactifications modulo equivalence. The maximal element
with respect to this order is (ιb, bG), the Bohr compactification of the topological group G.

Recall that AP (G), the set of almost periodic functions on G, is isometrically isomorphic
to C(bG), the set of continuous functions on bG. The mapping ι∗b : C(bG) → AP (G),

defined via f �→ f ◦ ιb, is an isometry. Note that this is just a different way to characterize
those continuous functions on G, which can be extended to continuous functions on bG.

This definition (which is best suited for our purposes) is equivalent to the notion of almost
periodicity established by Bohr resp. Bochner.

For a locally compact abelian (LCA) group G let us denote by Ĝ the set of all continuous

homomorphisms χ : G → T ∼= R/Z. We will occasionally identify T with the unimodular
group {z ∈ C : |z| = 1}. This will cause no confusion.

Ĝ endowed with the compact-open topology is an LCA group in its own right. Ĝ is the
Pontryagin dual of G. Every subset Γ ⊆ Ĝ induces a group compactification (ιΓ, CΓ) of G

via ιΓ(g) := (χ(g))χ∈Γ ∈ TΓ and CΓ := ιΓ(G) ≤ TΓ

One can show that every group compactification (ιX , X) of an LCA group G is equivalent

to the group compactification induced by the subgroup {ιX ◦ η : η ∈ X̂} ≤ Ĝ (Theorem
26.13 in [7]). Thus group compactifications of LCA groups can be described by subgroups

of the dual and vice versa.

The system Σ(G) ⊆ P(G) of all Hartman measurable sets on G, i.e. the system of

all preimages ι−1
b (M) of µb-continuity sets in the Bohr compactification (ιb, bG) of G, is a

Boolean set algebra and enjoys the property that there exists a unique translation invariant
finitely additive probability measure mG on Σ(G): mG(ι−1

X (M∗)) = µX(M∗). For details we

refer to [5].

Let us denote by ∆ the symmetric difference of sets and by τg the translation operator

on an abelian group defined by τg(h) := g + h. We introduce two mappings:

• for a Hartman measurable set M denote by dM : G → [0, 1] the mapping g �→
mG(M∆τgM),

• for a µX-continuity set M∗ on some group compactification (ιX , X) denote by dM∗ :

X → [0, 1] the mapping g �→ µX(M∗∆τgM∗).

Note that the mapping dM∗ (and similarly the mapping dM) can be used to define a

translation invariant pseudometric by letting ρM∗(g, h) := dM∗(g − h). The set of zeros
{g : dM∗(g) = 0} is always a closed subgroup. We will denote this subgroup by ker dM∗ .

Now consider sets of the form F (M, ε) := {g ∈ G : dM(g) < ε} and denote by F(M)

the filter on G generated by {F (M, ε) : ε > 0}, i.e. the set of all F ⊆ G such that there
exists an ε > 0 with F (M, ε) ⊆ F . When we have a realization M∗ of M on some group

compactification (ιX , X) we can transfer the topological data encoded in the neighborhood
filter of the unit 0X in X to G by considering the pullback induced by ιX .
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To be precise: Let (ιX , X) be a group compactification and U(X, 0X) the filter of all
neighborhoods of the unit 0X in X. By U(ιX ,X) we denote the filter on G generated by

ι−1
X (U(X, 0X)). Note that if the mapping ιX is one-one, ι−1

X (U(X, 0X)) is already a filter.

For Z, the group of integers, Theorem 2 in [12] states that for any Hartman set M ⊆ Z

there is a group compactification (ιX , X) such that F(M) and U(X, 0X) coincide. Hence
the filter F(M) on Z contains much information about the group compactification (ιX , X):

If M ⊆ Z is a Hartman measurable set and (ιX , X) is a group compactification of the

integers such that M can be realized on X via the continuity set M∗ then H = ker dM∗ is a
closed subgroup of X and F(M) = U(πH◦ιX ,X/H), for πH : X → X/H the canonical quotient

mapping.

In what follows we need to generalize this result to arbitrary (LCA) groups. This poses no

problem since the proof given in [12] for G = Z applies verbatim to an arbitrary topological
group.

Recall that for a filter F ⊆ P(X) on some set X and a function ϕ : X → C the
filter-limit F−limx∈X ϕ(x) is defined to be the unique λ ∈ C such that ∀ε > 0 we have

{x ∈ X : |ϕ(x) − λ| < ε} ∈ F . In [12] the filter F = F(M) is also used to define the
subgroup Sub(M) of T consisting of all those elements α such that F−limn∈Z	nα
 = 0 (or

equivalently: F−limn∈Z e
2πinα = 1).

All three objects - filter, compactification and subgroup - carry the same information

regarding a fixed Hartman set M . It is interesting to note that any subgroup of a compact

abelian group G can be written as {g ∈ G : F−limχ∈Ĝ χ(g) = 1} for some filter F on Ĝ (cf.
[2]).

We transfer these concepts into our more general context. To that cause we need the
following definitions. Recall that a bounded function f on a group compactification (ιX , X)

is called Riemann integrable iff the set disc(f) of points of discontinuity is a µX-null set,
for µX the normalized Haar measure on X. Let us denote the set of all such functions by

RµX
(X) or, simply, R(X). We use the following characterization, a proof of which can be

found in [11].

Proposition 1. Let X be a compact space and µX a finite positive Borel measure on X.

For a bounded real-valued µX-measurable function f the following assertions are equivalent:

1. f is Riemann integrable.

2. For every ε > 0 there exist continuous functions gε and hε such that gε ≤ f ≤ hε and∫
X

(hε − gε)dµX < ε.

Let ϕ be a function defined on a topological group G and (ιb, bG) the Bohr compact-
ification of G. We call a function ϕb defined on bG an extension (or realization) of ϕ iff

ϕ = ϕb ◦ ιb. For example: The set of almost periodic functions on G coincides with the set of
those functions that can be extended to continuous functions on the Bohr compactification.
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Definition 2. Let (ιb, bG) be the Bohr compactification of the topological group G. We call a
bounded function ϕ on G Hartman measurable iff ϕ can be extended to a Riemann integrable

function ϕb on bG. The set of Hartman measurable functions {ϕ∗ ◦ ιb : ϕ∗ ∈ Rµb
(bG)} is

denoted by H(G).

Given a Hartman measurable function ϕ, we say that ϕ∗ realizes ϕ if ϕ∗ is a Riemann
integrable function defined on some group compactification (ιX , X) such that ϕ = ϕ∗ ◦ ιX ,

cf. the diagram below:

bG

�
�

�ιb � �
�

�
ϕb

�

G
ϕ� C

�
�

�
ιX
� �

�
�

ϕ∗
�

X

π

�

In this situation we also say that ϕ can be realized on (ιX , X). Most of this paper is
devoted to the task of finding a minimal group compactification on which a given ϕ ∈ H(G)

can be realized. Note that ϕ∗ ∈ R(X) implies ϕb = ϕ∗ ◦ π ∈ R(bG) (cf. [8]).

3 Filters associated with Hartman measurable func-

tions

By definition every ϕ ∈ H(G) has a realization on bG by a Riemann integrable function

ϕ∗ ∈ Rµb
(bG). The mapping

dϕ∗ : x �→ ‖ϕ∗ − τxϕ
∗‖1 :=

∫
bG

|ϕ∗ − τxϕ
∗|dµ

is continuous (cf. [3], Corollary 2.32). This implies that dϕ := dϕ∗ ◦ ιb is an almost periodic
function on G.

The finitely additive invariant measure mG can be extended to an invariant mean on
H(G), i.e. to an invariant and non-negative normalized linear functional on H(G). It will

cause no confusion if we denote this invariant mean again by mG (cf. [8]). Thus we can also
write dϕ(g) = mG(|ϕ− τgϕ|). It is then obvious to define F (ϕ, ε) := {g ∈ G : dϕ(τgϕ) < ε}
and denote by F(ϕ) the filter on G generated by {F (ϕ, ε) : ε > 0}.

In the LCA setting, we can apply the tools developed in [12] to conclude a functional
analogue of Theorem 2 in [12].
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Definition 3. Let ϕ ∈ H(G) be realized by ϕ∗ on the group compactification (ιX , X). ϕ∗ is
called an aperiodic realization iff ker dϕ∗ := {x ∈ X : ‖ϕ∗ − τxϕ

∗‖1 = 0} = {0X}.
Theorem 1. Let ϕ ∈ H(G) be realized by ϕ∗ on the group compactification (ιX , X). Then
F(ϕ) ⊆ U(ιX ,X). Furthermore F(ϕ) = U(ιX ,X) if ϕ∗ is an aperiodic realization.

Proof. Suppose ϕ = ϕ∗◦ιX with ϕ∗ ∈ RµX
(X) for a group compactification (ιX , X). For any

set A ∈ F(ϕ) there exists ε > 0 such that dϕ(x) < ε implies x ∈ A. Using almost periodicity

of dϕ, i.e. continuity of dϕ∗ , we find a neighborhood U ∈ U(X, 0X) such that dϕ∗(U) ⊆ [0, ε).
For every x ∈ ι−1

X (U) we have dϕ(x) < ε. Consequently ι−1
X (U) ⊆ A ∈ U(ιX ,X) and hence

F(ϕ) ⊆ U(ιX ,X).

Suppose that ϕ∗ ∈ RµX
(X) is aperiodic, i.e. dϕ∗(x) = 0 iff x = 0X , the unit in X. Let

A ∈ U(ιX ,X) be arbitrary; w.l.o.g. we can assume A ⊇ ι−1
X (U) for an open neighborhood

U ∈ U(X, 0X). Due to the continuity of dϕ∗ and compactness of X we have dϕ∗(x) ≥ ε > 0

for x ∈ X \ U◦. This implies ιX({g ∈ G : dϕ(g) < ε}) ⊆ U and hence {g ∈ G : dϕ(g) < ε} ⊆
ι−1
X (U) ⊆ A ∈ F(ϕ). Thus U(ιX ,X) ⊆ F(ϕ) and consequently U(ιX ,X) = F(ϕ).

Definition 4. Let ϕ ∈ H(G) and let (ιX , X) be a group compactification of G. A function
ψ∗ ∈ RµX

(X) is called an almost realization of ϕ iff mG(|ϕ− ψ|) = 0 for ψ := ψ∗ ◦ ιX and

mG the unique invariant mean on H(G).

Theorem 2. Every ϕ ∈ H(G) has an aperiodic almost realization on some group compacti-
fication (ιX , X). If ϕ∗ : X → C is any aperiodic almost realization of ϕ then F(ϕ) = U(ιX ,X).

Proof. We only have to prove that an aperiodic almost realization exists, the rest follows

from Theorem 1. Let ϕ∗ be a realization of ϕ on X. The reader will easily check that
H := ker dϕ∗ = {x ∈ X : dϕ∗(x) = 0} is a closed subgroup of the compact abelian group X.

Weil’s formula for continuous functions on quotients (Theorem 3.22 in [3]) states that
there exists α > 0 such that for every f ∈ C(X)∫

X/H

( ∫
H

f(s+ t)dµH(t)︸ ︷︷ ︸
=�f(s)

)
dµX/H(s) = α

∫
X

f(u)dµX(u) (1)

holds. This implies that the canonical mapping � : C(X) → C(X/H), f → �f defined by
�f(s + H) =

∫
H
f(s + t)dµH(t) satisfies ‖�f‖1 ≤ α‖f‖1. We rescale the Haar measure on H

such that α = 1. Thus we can extend � to a continuous linear operator L1(X) → L1(X/H).
Furthermore positivity of � enables us to extend � to a mapping defined on RµX

(X) in the

following way:

According to Proposition 1 f ∈ RµX
(X) implies that there are gn, hn ∈ C(X) such that

gn ≤ f ≤ hn and ‖hn − gn‖1 → 0 as n→ ∞. Thus every function f̃ on X/H satisfying

f• := sup
n≥0

�gn ≤ f̃ ≤ inf
n≥0

�hn =: f •
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is in RµX/H
(X/H). Note that f• and f • are µH-measurable and coincide µH-a.e.; to define

�f we pick any function f̃ satisfying f• ≤ f̃ ≤ f •. Then Weil’s formula (1) will still be valid,

regardless of the particular choice of the gn, hn and �f .

Since ϕ∗ is Riemann integrable on X, there exist functions ϕn ∈ C(X) such that ‖ϕ∗ −
ϕn‖1 → 0. Note that dϕn → dϕ∗ even uniformly on X:

|dϕn(s) − dϕ∗(s)| =
∣∣∣‖τsϕn − ϕn‖1 − ‖τsϕ∗ − ϕ∗‖1

∣∣∣ ≤ 2‖ϕn − ϕ∗‖1 → 0.

Using the continuity of � as a mapping on L1(X) the same argument also shows that |d�ϕ∗(s+
H) − d�ϕn

(s+H)| ≤ 2‖ϕn − ϕ∗‖1 → 0 uniformly on X/H. Suppose d∗�ϕ(s+H) = 0. Then

dϕ∗(s) = lim
n→∞

dϕn(s) = lim
n→∞

d�ϕn
(s+H) = 0

implies s ∈ H , i.e. s+H = 0X +H ∈ X/H. So �ϕ∗ is aperiodic.

We show that ϕ∗ being a realization of ϕ implies that �ϕ∗ is an almost realization of ϕ.

By definition t ∈ H iff At := {s ∈ X : ϕ∗(s+ t) = ϕ∗(s)} has µX-measure 1. Applying Weil’s
formula (1) to the function f = 1IAt ∈ L1(X) gives∫

X/H

�fdµX/H =

∫
X/H

�1IAt(s+H)dµX/H(s+H) =

∫
X

fdµX = 1. (2)

Plugging the definition of � into (2) we get µX/H -a.e. the identity

�1IAt(s+H) =

∫
H

1IAt(s+ u)dµH(u) = 1.

So for every t ∈ H and µX/H-a.e. s + H we know that the set {u ∈ H : ϕ∗(s + t + u) �=
ϕ∗(s+ u)} is a µH-null set. This means

τt(τsϕ
∗
|H) = τsϕ

∗
|H µH-a.e.

Thus τsϕ
∗ is constant µH-a.e. on H and for µX/H almost all s+H we have

�ϕ∗(s+H) =

∫
H

τsϕ
∗(t)dµH(t) =

∫
H

ϕ(s)∗dµH(t) = ϕ∗(s).

Let πH : X → X/H be the quotient mapping onto the group compactification (ιX/H , X/H).

Let ψ∗ := �ϕ∗ ◦ πH . Since �ϕ∗ is Riemann integrable on X/H it is an elementary fact that ψ∗

is Riemann integrable on X (cf. [8]). Once again, Weil’s formula (1) together with the fact
that the Haar measure on the quotient X/H is given by µX/H = π−1

H (µX) implies ψ∗ = ϕ∗

µX-a.e. Thus the function ψ defined by

ψ := ψ∗ ◦ ιX = �ϕ∗ ◦ ιX/H

satisfies mG(|ϕ − ψ|) = ‖ϕ∗ − ψ∗‖1 = 0 for the unique invariant mean mG. Thus ψ∗ is the
required almost realization of ϕ.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(3) (2005), #A12 9

Corollary 5. Every ϕ ∈ AP (G) has an aperiodic realization on some group compactification
(ιX , X).

Proof. We use the notation from Theorem 2. If ϕ is almost periodic then ϕ∗ is continuous.
Consequently �ϕ∗ and ψ∗ := �ϕ∗ ◦ π are also continuous. Since these functions coincide

µX-a.e. they coincide everywhere on X. This implies that ϕ∗ is constant on H-cosets and
�ϕ∗(s+H) = ϕ∗(s) for all s+H ∈ X/H. So ϕ∗ is truly a realization of ϕ, not only an almost

realization.

This Corollary is a special case of Følner’s ”Main Theorem for Almost Periodic Func-

tions”, for a detailed treatment cf. [4].

Remark: Note that for any given realization of a Hartman measurable function ϕ ∈ H(G)

on a group compactification (ιX , X) we can always assume that there exists an aperiodic
almost realization of ϕ on a group compactification (ι̃X , X̃) with (ι̃X , X̃) ≤ (ιX , X). Since in

[8] it is shown that every Hartman measurable function on an LCA group with separable dual
has a realization on a metrizable group compactification, every Hartman measurable function

on such a group has an aperiodic almost realization on a metrizable group compactification.

Lemma 6. Let G be an LCA group and let (ιX , X) be a group compactification. Then there

exists a unique subgroup Γ ≤ Ĝ such that (ιΓ, CΓ) and (ιX , X) are equivalent. Furthermore

(ιX , X) is the supremum of all group compactifications (ιγ, Cγ) such that (ιγ , Cγ) ≤ (ιX , X)
(writing in short (ιγ , Cγ) for (ι〈γ〉, C〈γ〉)).

The mapping (ιX , X) �→ CΓ is a bijection between equivalence classes of group compacti-
fications of G and subgroups of Ĝ.

Proof. See Theorem 26.13 in [7].

Corollary 7. Let ϕ ∈ H(G). Any two group compactifications (ιX1 , X1) and (ιX2 , X2) on

which ϕ has an aperiodic almost realization are equivalent.

Proof. By Theorem 1 we have U(ιX1
,X1) = F(ϕ) = U(ιX2

,X2). A straight forward generalization
of Theorem 1 in [12] implies that the mapping

Φ : Ĝ ≥ Γ �→ (ιΓ, CΓ)

coincides with the composition of the mappings

Σ : (ιb, bG) ≥ (ιX , X) �→ U(ιX ,X),

Ψ : P(G) ⊃ F �→ {χ ∈ Ĝ : F−lim
g∈G

χ(g) = 0}.

Since Lemma 6 states that Φ = Ψ ◦ Σ is invertible, Σ must be one-one. In particular

U(ιX1
,X1) = U(ιX2

,X2) implies that (ιX1 , X1) and (ιX2 , X2) are equivalent group compactifica-
tions.
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For the rest of this section assume that G is an LCA group with separable dual.

Corollary 8. Every filter F(ϕ) with ϕ ∈ H(G) coincides with a filter U(ιX ,X) for a metrizable

group compactification (ιX , X). If ϕ∗ is an arbitrary realization of ϕ, say on the Bohr
compactification bG, we can take X ∼= bG/ ker dϕ∗.

Corollary 9. Hartman measurable functions induce exactly the filters coming from metriz-
able group compactifications.

Proof. In Theorem 3 in [12] for every metrizable group compactification (ιX , X) of the inte-
gers G = Z, an aperiodic Hartman periodic function of the form f = 1IA is constructed. The

same construction can be done in an arbitrary LCA group G as long as the dual Ĝ contains a
countable and dense subset. This shows that any U(ιX ,X) with metrizable X can be obtained

already by Hartman measurable sets, i.e. by a filter F(ϕ) with ϕ = 1IA. Since any Hartman
measurable function on G can be realized on a metrizable group compactification (cf. [8]).

Thus Theorem 1 implies that no filter F(ϕ) can coincide with U(ιX ,X) for a non metrizable
group compactification (ι, C).

4 Subgroups associated with Hartman measurable func-

tions

For Hartman measurable ϕ let us denote by Γ(ϕ) the (countable) subgroup of Ĝ generated
by the set

spec ϕ := {χ ∈ Ĝ : mG(ϕ · χ) �= 0}
of all characters with non vanishing Fourier coefficients. We will prove that Γ = Γ(ϕ)

determines a group compactification (ιΓ, CΓ) such that ϕ can be realized aperiodically on
CΓ. First we deal with almost periodic functions:

Proposition 10. Let ϕ ∈ AP (G) and (ιX , X) a group compactification such that every

character χ ∈ Γ(ϕ) has a representation χ = η ◦ ιX with a continuous character η ∈ X̂.
Then every function f ∈ spanΓ(ϕ) ⊆ AP (G) has a realization on (ιX , X).

Proof. This is essentially a reformulation of Theorem 5.7 in [1]. In fact the Stone-Weierstrass

Theorem implies that span Γ(ϕ) = ι∗Γ C(X). Furthermore ϕ ∈ span Γ(ϕ), i.e. ϕ can be
realized by some continuous ϕ∗ : X → C.

Proposition 11. Let ϕ ∈ AP (G) and (ιΓ, CΓ) the group compactification of G induced by
the subgroup Γ = Γ(ϕ) ≤ Ĝ. Then for every continuous character ψ ∈ Γ(ϕ) there exists a

continuous ψ∗ : CΓ → C such that ψ = ψ∗ ◦ ιΓ.
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Proof. Given the group compactification (ιΓ, CΓ), then the compact group CΓ is by definition
topologically isomorphic to {(χ(g))χ∈Γ : g ∈ G} ≤ TΓ.

The restriction of each projection

πχ0 : CΓ ≤ T
Γ → T, (xχ)χ∈Γ �→ xχ0

is a bounded character of CΓ for each χ0 ∈ Γ(ϕ). I.e. πχ0 is an element of ĈΓ. Thus

χ0 = πχ0◦ιΓ for each χ0 ∈ Γ(ϕ) and we may apply Proposition 10 to obtain the assertion.

Proposition 12. Let ϕ ∈ AP (G) and let (ιX , X) be a group compactification of G such that
ϕ can be realized by a continuous function ϕ∗ : X → C. Then each continuous character

χ ∈ Γ(ϕ) has a representation χ = η ◦ ιΓ with η ∈ X̂.

Proof. Obviously it is enough to prove the assertion for a generating subset of Γ(ϕ). Let

χ ∈ Ĝ be such that mG(ϕ · χ) �= 0. Define a linear functional mχ : C(X) → C via
ψ �→ mχ(ψ) = mG((ψ ◦ ιΓ) · χ). It is routine to check that mχ is bounded and ‖mχ‖ = 1.

Since X is compact the complex-valued mapping η̃ : X �→ mχ(τxϕ
∗) is continuous on X (the

mapping x �→ τxϕ
∗ is continuous). For g ∈ G we compute

η̃ ◦ ιX(g) = mG((τιX(g)ϕ
∗ ◦ ιX) · χ) = mG(τg(ϕ

∗ ◦ ιX) · χ)

= mG((ϕ∗ ◦ ιX) · τ−gχ) = mG((ϕ∗ ◦ ιX) · χ(g)χ)

= χ(g)mχ(ϕ∗) = χ(g)η̃(0).

Since η̃(0) = mχ(ϕ∗) = mG(ϕ · χ) �= 0 we can define η := η̃(0)−1η̃. The mapping η : X → T

is continuous and satisfies the functional equation

η(ιX(g) + ιX(h)) = η̃(0)−1η̃(ιX(g) + ιX(h)) = χ(g)χ(h) = η(ιX(g))η(ιX(h))

on the dense set ιX(G). Hence η is a bounded character on X and η ◦ ιX = χ.

Corollary 13. Let ϕ ∈ H(G) be realized by ϕ∗ on the group compactification (ιX , X). Then

each χ ∈ Γ(ϕ) has a representation χ = η ◦ ιX with η ∈ X̂.

Proof. For every χ ∈ Ĝ withmG(ϕ·χ) = α �= 0 we can pick a continuous function ψ∗ : X → C

such that ‖ψ∗ − ϕ‖1 < |α|/2. Then ψ := ψ∗ ◦ ιX satisfies

|mG(ϕ · χ) −mG(ψ · χ)| ≤ mG(|ϕ− ψ|) ≤ ‖ψ∗ − ϕ∗‖1 < |α|/2.
In particular mG(ψ ·χ) �= 0. Applying Proposition 12 to the function ψ ∈ AP (G) yields that
the character χ can be realized on X.

Thus for almost periodic functions ϕ the subgroup Γ(ϕ) contains all the relevant infor-
mation to reconstruct ϕ from its Fourier-data in a minimal way. It is not obvious how to

obtain similar results for Hartman measurable functions that are not almost periodic. The
following example illustrates how a straight forward approach may fail.
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Example 14. Let ϕn(k) :=
∏n

j=1 cos2
(
2π k

3j

)
on G = Z. Each ϕn is a finite product of

periodic (and hence almost periodic) functions. Since AP (Z) is an algebra, ϕ is almost

periodic. In [8] it is shown that ϕ(k) := limn→∞ ϕn(k) exists and defines a non negative
Hartman measurable function with mZ(ϕ) = 0. Since Γ(ϕn) ∼= Z/3nZ we have (using

obvious notation):

lim
n→∞

Γ(ϕn) =
∞⋃

n=1

Γ(ϕn) ∼= Z
∞
3 ,

the Prüfer 3-group (i.e. the subgroup of all complex 3n-th roots of unity for n ∈ N), but

Γ( lim
n→∞

ϕn) = {0}.

Proposition 15. Let {Kn}∞n=1 denote the family of Fejér kernels on Tk

Kn(exp(it1), . . . , exp(itk)) =
1

k

k∏
j=1

(
sin(1

2
ntj)

sin(1
2
tj)

)2

.

The linear convolution operators on L1(Tk) defined by

σn : ϕ �→ Kn ∗ ϕ

are non negative, their norm is uniformly bounded by ‖σn‖ = 1 and σnϕ(x) → ϕ(x) a.e. for

every ϕ ∈ L1(Tk). Furthermore σnϕ ∈ span Γ(ϕ) for every n ∈ N.

Proof. This is a reformulation of the results in section 44.51 in [7].

Let f be Riemann integrable on X = Tk, w.l.o.g. real-valued, and ϕi, ψi ∈ C(X) such

that ϕi ≥ f ≥ ψi and ‖ϕi−ψi‖1 < εi for a sequence {εi}∞i=1 of positive real numbers, tending
monotonically to 0. We know that σnf(x) → f(x) for a.e. x ∈ X. Thus we have

ϕ∗
n := σnϕn ≥ σnf ≥ σnψn = ψ∗

n

and

‖ϕ∗
n − ψ∗

n‖1 ≤ ‖σn(ϕ∗
n − ψ∗

n)‖1 ≤ ‖σn‖ ‖ϕn − ψn‖1 ≤ εn.

Let ϕ∗ := infn∈N ϕn and ψ∗ := supn∈N ψn. If we assume w.l.o.g. ψn to increase and ϕn to

decrease as n→ ∞, the same will hold for ψ∗
n and ϕ∗

n. This implies that in the inequality

ϕ∗(x) = lim
n→∞

ϕ∗
n(x) ≥ lim sup

n→∞
σnf ≥ lim inf

n→∞
σnf ≥ lim

n→∞
ψ∗

n(x) = ψ∗(x)

actually equality holds µX-a.e. on X. Thus we can apply Proposition 1 and conclude that

any function f ∗ with ϕ∗ ≥ f ∗ ≥ ψ∗ is Riemann integrable (and coincides µX-a.e. with
f). In particular f • := lim supn→∞ σnf and f• := lim infn→∞ σnf are (lower resp. upper

semicontinuous) Riemann integrable functions that coincide µX-a.e. with f .
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Let us call a group compactification (ιX , X) finite dimensional iff X is topologically
isomorphic to a closed subgroup of Tn for some n ∈ N. Note that if (ιX , X) is finite

dimensional, then every group compactification covered by (ιX , X) is finite dimensional as
well. A Hartman measurable function ϕ ∈ H(G) can be realized finite dimensionally iff there

exists a realization of ϕ on some finite dimensional group compactification.

Proposition 16. For a compact LCA group C the following assertions are equivalent:

1. C is finite dimensional,

2. Ĉ is finitely generated,

3. C is topological isomorphic to Tk × F for k ∈ N and a finite group F of the form

F =

N∏
i=1

(Z/niZ)pi , pi prime.

Proof. Folklore.

Proposition 17. Let ϕ ∈ H(G). If ϕ can be realized finite dimensionally, then there is an
almost realization of ϕ on the (finite dimensional) compactification induced by Γ := Γ(ϕ).

Proof. Let ϕ be realized finite dimensionally on some group compactification (ιX , X). Since

there exists a group compactification covered by (ιX , X), on which ϕ can be almost real-
ized aperiodically (cf. Theorem 2), we can assume w.l.o.g. that ϕ can be almost realized

aperiodically already on (ιX , X). We have to show that (ιX , X) and (ιΓ, CΓ) are equivalent.

Let ψ∗ be an aperiodic realization of ϕ on CΓ
∼= T

k × F with k ∈ N and F finite. Let
us denote the elements of Tk × F by tuples (�α, x). For every fixed �α ∈ Tk define a mapping

ψ	α : F → R via
ψ∗

	α(x) := ψ∗(�α, x).

For each χ ∈ F̂ , the dual of the finite group F , define the F -Fourier coefficient of ψ∗
	α as

cχ(�α) :=

∫
F

ψ∗
	α(x)χ(x)dx =

1

#F

∑
x∈F

ψ∗(�α; x)χ(x) ∈ C.

We want to show that cχ : T
k → C is a Riemann integrable function: The mapping γx :

Tk → X defined via �α �→ (�α; x) is continuous and measure-preserving for every x ∈ F . ψ∗ is

by definition Riemann integrable. Thus the mapping ψ∗ ◦γx : T
k → C is Riemann integrable

for each x ∈ F . Note that

cχ(�α) =
∑
x∈F

(ψ∗ ◦ γx)(�α)χ(x).

Hence, for each fixed character χ ∈ F̂ , the mapping cχ : T
k → C defined via �α �→ ∑

x∈F (ψ∗ ◦
γx)(�α)χ(x) is Riemann integrable on Tk.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(3) (2005), #A12 14

Thus Proposition 15 implies σncχ(�α) → cχ(�α) a.e. on Tk. Taking into account that the
Haar measure on F is the normalized counting measure, we get

ψ∗
n(�α; x) :=

∑
χ∈F̂

(σncχ(�α))χ(x) →
∑
χ∈F̂

cχ(�α)χ(x) = ψ∗
	α(x) = ψ∗(�α; x) (3)

for almost every �α ∈ Tk and every x ∈ F , as n → ∞. Since Haar measure µC on C is

the product measure of the Haar measures on the groups T
k and F , the relation (3) holds

µC-a.e. on C. We conclude that any function majorizing lim infn→∞ ψ∗
n and minorizing

lim supn→∞ ψ∗
n is an almost realization of ϕ. Note that according to the properties of the

Fejér kernels on Tk (see 44.51 in [7]) for each character (η × χ)(�α; x) := η(�α)χ(x), η ∈ T̂k

and χ ∈ F̂ , there exists an n0 ∈ N such that for n ≥ n0 in the Fourier expansion of ψ∗
n

the Fourier coefficient (computed in C) associated with the character does not vanish iff the
Tk-Fourier coefficient of cχ

cη(cχ) =

∫
Tk

cχ(�α)η(�α)d�α

does not vanish. A simple computation shows that the Fourier coefficients of ψ∗ are given
by

cη×χ(ψ∗) =

∫
Tk

∫
F

ψ∗(�α, x)η(�α)χ(x)d�αdx

=

∫
Tk

cχ(�α)η(�α)d�α = cη(cχ)

So the character η×χ contributes to the Fourier expansion of ψ∗ if and only if cη×χ(ψ) �= 0.
Thus ψ∗

n ∈ span Γ(ϕ) for every n ∈ N, implying that there exist almost realizations of ϕ on

the group compactification induced by Γ(ϕ), e.g. lim infn→∞ ψ∗
n or lim supn→∞ ψ∗

n.

Combining this result with the results of the previous section we obtain

Theorem 3. Let ϕ ∈ H(G) and Γ = Γ(ϕ) ≤ Ĝ. The following assertions hold:

1. (ιΓ, CΓ) ≤ (ιX , X) for every compactification (ιX , X) on which ϕ can be realized. In
particular F(ϕ) ⊆ U(ιΓ,CΓ).

2. Assume that ϕ ∈ AP (G) or that ϕ can be realized finite dimensionally. Then ϕ can be
realized aperiodically on CΓ. In particular F(ϕ) = U(ιΓ,CΓ).

We strongly conjecture that the second assertion in Theorem 3 holds for any Hartman

measurable function, at least on LCA groups G with separable dual Ĝ. A proof of this might

utilize more general summation methods (in the flavour of Theorems 44.43 and 44.47 in [7])
than the Fejér summation presented here.

In [12] it is shown that for any Hartman measurable set M ⊆ G = Z and the induced
filter F = F(M) there is an aperiodic realization of ϕM = 1IM on the compactification
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determined by the subgroup Sub(M) = {α : F−limn∈Z	nα
 = 0} or, equivalently, Sub(M) =
{α : F−limn∈Z e

2πinα = 1}.
Together with Theorem 3 this implies that for Hartman setsM with finite dimensional re-

alization both the group compactifications of Z induced by the subgroups Γ(ϕM) and Sub(M)

admit aperiodic realizations of ϕM . Hence uniqueness of the minimal compactification with
aperiodic realization (Corollary 7) implies that in this special case Γ(ϕM) = Sub(M). In the

general situation we can prove up to now far only the following

Proposition 18. For a Hartman measurable function ϕ ∈ H(G) let F = F(ϕ), Γ = Γ(ϕ)

and Sub(ϕ) = {χ ∈ Ĝ : F−limg∈G χ(g) = 1C}. Then Γ(ϕ) ≤ Sub(ϕ).

Proof. Suppose χ ∈ Γ(ϕ). To prove F−limg∈G χ(g) = 1C (unit element of the multiplicative

group of complex numbers) we have to show that for every ε > 0 the set {g ∈ G : |1−χ(g)| <
ε} belongs to the filter F(ϕ), i.e. that there exists δ = δ(ε) > 0 such that

{g ∈ G : mG(|τgϕ− ϕ|) < δ} ⊆ {g ∈ G : |1 − χ(g)| < ε} ∈ F(ϕ). (4)

Using the fact that mG is an invariant mean and that χ is a homomorphism, we have

χ(g)mG(ϕ · χ) = mG(τgϕ · χ) = mG((τgϕ− ϕ) · χ) +mG(ϕ · χ).

Using ‖χ‖∞ = 1 this implies

|1 − χ(g)| · |mG(ϕ · χ)| = |mG((τgϕ− ϕ) · χ)| ≤ mG(|τgϕ− ϕ|).
Since mG(ϕ · χ) �= 0 we can define δ := ε · mG(|τgϕ−ϕ|)

|mG(ϕ·χ)| > 0. With this choice of δ indeed

mG(|τgϕ− ϕ|) < δ implies |1 − χ(g)| < ε, i.e. the inclusion (4) holds.

5 Summary

The content of the present paper essentially deals with the definition and properties of the
objects occurring in the diagram below. Abusing the terminus technicus of commutative

diagrams in a kind of sloppy way, the theorems of this paper circle around the question
under which assumptions this diagram is commutative:

Sub(ϕ)

�
�

��
.......�
�
.......

F(ϕ) � ϕ � Γ(ϕ)

U(X, 0X)

	
........ �

........
� (ιX , X)

�
....�
�.... (ιΓ, CΓ).

�
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Section 3 deals with the left half of this diagram: to every Hartman measurable function ϕ
a filter F(ϕ) is associated and to every group compactification (ιX , X) on which ϕ can be

realized a filter U(X, 0X) is associated. In general U(X, 0X) ⊇ F(ϕ), and there always exists
compactifications such that equality holds (indicated by ↑↓).

Section 4 deals with the right half of the diagram: to every Hartman measurable function
ϕ a subgroup Γ(ϕ) of the dual is associated, which in turn induces a group compactification

(ιΓ, CΓ). In general (ιΓ, CΓ) ≤ (ιX , X) for every group compactification (ιX , X) on which ϕ

can be realized. If ϕ is either almost periodic or can be realized finite dimensionally then
(ιA, XA) is itself a group compactification on which ϕ can be realized (indicated by →

←) and

the filter U(XA, 0XA
) associated with this particular compactification coincides with F(ϕ).

The filter F(ϕ) in turn defines a subgroup Sub(ϕ) of the dual Ĝ. While it can be shown that

in general Γ(ϕ) ≤ Sub(ϕ) it is and open problem whether this inclusion can be reversed.
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