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Abstract

Using the irrational rotation transformation 7' as a map of the interval (2-interval
exchange), we study the corresponding f-expansions, which turn out to be Sturmian
sequences. Contrasting the maps T for more familiar expansions, like -expansions
and continued fraction expansions, this map 7T is zero-entropy and invertible. As a
result, the corresponding f-expansions have some unusual properties. Most signifi-
cantly, convergence is painfully slow and there are no periodic (or finite) Sturmian
expansions. We also generalize this to n-interval exchanges T, with 2 < n < oo,
discussing the von Neumann adding machine transformation (n = co) in detail.

1. Introduction

Sturmian sequences were introduced by Morse and Hedlund [10] as the sequences
that code the orbits of the geodesic flow on a flat 2-torus. In this paper, we restrict
our attention to (1-sided) aperiodic Sturmian sequences, which may be defined to
be those sequences d = .dydads - - - € {0, 1}N that have exactly n+ 1 distinct factors
(subsequences w = d;d;11 ...d;n—1) of length n. This property is often expressed
by saying that a Sturmian sequence d has complezity function cq(n) = n+ 1. If
ce(n) is the complexity function of a sequence e € {0,1}Y, it is known (see [5],
Chapter 6) that ce(k) = k for some k if and only if e is eventually periodic. Thus
Sturmian sequences are the least complex among aperiodic sequences.
A sequence d = .dydads - - - € {0, 1} is said to be balanced if for any i, j,¢ > 1

i+0—1 Jj+e—1

S d— ) di| <1
k=i k=3

It can be shown that a sequence is balanced if and only if it is Sturmian, and from
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this, one can prove (see [5], Chapter 6) that the limit

1
= l'm—gd 1
o nloonkzlk (1)

exists, and that « is irrational. The number « is called the slope of d.

Morse and Hedlund [10] showed that if d = .d1dads ... is a Sturmian sequence
with slope « € (0,1)\Q, then there is a unique x € [0,1), called the intercept, so
that d either has the form

dp = |la(n+1)+2z| — |an+ x|, (2)

for all n € N, or
dp =Ta(n+1)+z] — [an + x]. (3)

Note that (2) and (3) are the same unless na + 2 = 0 mod 1 for some n > 1, in
which case they disagree in exactly one or two adjacent digits.

Given a Sturmian sequence d, one can easily determine its slope a using (1).
The goal of this paper is to exhibit a similarly simple formula for the intercept
2. In particular, we show how the intercept & can be obtained using a well know
generalization of continued fraction and radix expansions, called an f-expansions.
Another way to say this is that a Sturmian sequence d = .dydads - - - € {0,1} can
be regarded as type “binary expansion” of its intercept z. We refer to this as the
Sturmian a-ezpansion of x (and call « the base).

After a brief discussion of f-expansions in general, we discuss general some prop-
erties of Sturmian a-expansions. In particular, Sturmian a-expansions differ sig-
nificantly from nearly all other familiar numeration systems, including continued
fraction expansions and (-expansions — two examples we use to draw this contrast.
We conclude by mentioning several other examples that have properties similar to
Sturmian a-expansions.

2. f-Expansions

Let f : R — [0,1] be a continuous monotonic function with f(R) = [0,1]. An
f-expansion is an expression of the form

= f(di + f(do + f(ds +...))), (4)

where the digits di are integers. We call d = .d1dads ... the digit sequence of the
expansion (4). In particular, the expression (4) means that x,, — x, where

Tn = fldi+ f(dz + -+ f(dn))). ()
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This idea goes back to Kakeya [7], who observed in 1924 that examples of f-
expansions include! both regular continued fractions and base 3 radix expansions,
B > 1. In particular, regular continued fractions

= f(dy+ f(da+ f(ds+...)))) = )
di +
ds +

1
ds+ -

correspond to the case f(x) = 1/x, whereas base-j3 radix expansions

ds+ ...
dy + =

d _|_—5
1 /8 [e%e) dk
= fldi+ f(do+ fds+...)))) = :Z@
k=1

B

correspond to f(xz) =z/f.

Although more than one digit sequence in (4) may yield the same number
z € [0,1) (just as 0.099--- = 0.100... in base 10), there is a standard algorithm
that takes x and produces a particular digit sequence d = .didsds... that we
call the proper f-expansion of x. As Rényi [14] observed in 1957, this algorithm
may be described in terms of a dynamical system. Starting with f, we define the
f-transformation T : [0,1) — [0,1) by

Tz = f~*(z) mod 1. (6)

We also define a labeled interval partition € a.e. on [0,1), defined to be the positive
measure level sets of the function pe : [0,1) — Z defined pe(x) = [f~1(z)]. In
particular, £ = {A(d) : d € D}, where A(d) = [a,b) = £ (d), and D = {d € Z :
a # b}. The sets A(d) are called fundamental intervals, and D C Z is called the
digit set. Assuming x is such that T" 'z exists for all n € N, the proper digit
sequence d = .didads . .. is defined by

dp =pe(T" '2), neN. (7)

If the proper digit sequence d = .djdads ... is used in the f-expansion (4), we call
it the proper f-expansion of x.

For continued fractions, the f-transformation is the Gauss map Tz = 1/x mod 1,
and D = N. (Sometimes in cases like this, where some of the digits d,, are multi-
digit numbers when written in base 10, it will be convenient to write the digit
sequence as d = [dy,ds,ds,...] rather than d = .d;dads....) For base-§ radix

IThe same observation was made independently by Bissinger [2] for f increasing, and Everett
[4] for f decreasing.
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expansions, the f-transformation Tx = Bz mod 1 is called the (-transformation,
and D = {0,1,...[8] — 1}. The case § € N gives the usual radix expansions (e.g.,
base 2, base 10).

We say f-expansions have unique proper digits if the proper digit sequence map
x — d is injective, and we say f-expansions are wvalid if for each x, such that T"x
exists for all n > 0, the proper f-expansion converges to x. A typical approach to
this problem is the following (see [7] and also [17]).

Theorem 1 (Kakeya’s theorem). Assume [ is strictly monotone on an interval
(a,b) C R with a,b € Z, and

—co<a<a+1l<b<+oo,

and (8)
f((a,)) = [0,1].
If the f-transformation T satisfies
T (z)] > 1 ae., (9)

then f has unique proper digits and f-expansions are valid.
Note that (9) is equivalent to
|f(z)| <1 a.e. on (a,b). (10)

Similar results due to Bissinger [2] and Everett [4] require that f satisfies a Lipshitz
condition with constant K < 1 instead of (10).

3. Sturmian a-Expansions

Let us fix an irrational number « € [0,1)\Q and consider as the irrational rotation
transformation Tx = x+« mod 1. This can be interpreted as the f-transformation
(6) for the function

0 ifr<a
fx)=Rz—a ifa<z<a+l (11)
1 ifx>a+1.

The corresponding labeled partition is given by

(@) 0 ifo<zr<l—a«
€Tr) =
Pe 1 fl-a<z<l,

with digit set D = {0, 1}.
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Tt is easy to see that for the function f, defined by (11), the proper digit sequence
d = .didads ... for z € [0,1), is equal to the Sturmian sequence d given by (2) with
slope a and intercept x. These are our Sturmian a-expansions. The irrational
rotation transformation 7' clearly fails to satisfy Kakeya’s hypotheses (9). However,
we can still obtain the following result?.

Theorem 2. Sturmian a-expansions have unique proper digit sequences, and are
valid.

Proof. Given z € [0,1), let © — d = .dydads ... be the proper digit sequence map,
and let d,(z) = dids...d, € D" Let £ be the partition of [0,1) into those

subintervals [a},b}), k = 1,2,..., of [0,1), on which d,,(x) is constant. We claim
that for each n = 1,2,..., there are |¢(™| = n + 1 such intervals, and if they
are arranged so that bk+1 = ay, then the cut points af,ay,...,a; | are the first

n + 1 points orbit O, (0) = {T~"*0 : n € N} of 0 under the irrational rotation
transformation Tfla: =z+ (1 —a) mod 1.

The claim is true for n = 1, so assume it holds for n. Since T~! is an is an
irrational rotation, OF._, (0) is dense in [0, 1) (see [19]) so T~ ("+1)0 is in the interior
of [a},b}) for some ¢. We then have

[a], b}) if1<k<d,

[ap, T=("+D0)  if k= ¢,
[T=(+D0,07)  ifk=0+1,
[af_1, 07 1) ifl+1<k<n+1,

[ n+1 bn—i—l)

so the claim holds for n + 1.
By the claim, the cutpoints of £ satisfy {a},a},...,a%, } = {T7F0 : k =
.,n} for all n. Define |[(™)|| = max{b—a: A = [a,b) € £™}. Since OF_, (z) is
dense, it follows that |[¢(™]| — 0. This shows Sturmain a-expansions have unique
proper digit sequences.
For z € [0,1) and n € N we have

z € [a"(x), b" () = [af, b}) € £ (12)
for some unique k = k(n). We claim that
a™(x) = f(di + f(dz + -+ f(dn)))

and

b"(xz) = f(dy+ f(da +--- dn +1)))

+1(
Indeed, [f(d1), f(d1 + 1)) = [f(0), f(1)) = [0,1 — a) = [a*(x),b (x)) if d; = 0 and
[f(d1), f(dr + 1)) =[f(1), f(2)) = [1 — a, 1) = [a!(x),b  (x)) if d; = 1, so the claim

2This fact was noted in passing by Parry in [12].
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holds for n = 1. We proceed by induction. Note that
[a" (), 0" (2)) = [a' (), b" (x)) N T~ a" " (a"), 0"~ ("))
where 2/ = Tx. By induction,

a" 2" = f(do+ flds + -+ + f(dn)))

and
D" ) = (s + Fds o fldn+ 1)),
Thus
a*(x) = T '(a" (') Nlal(z),0'(x))
= fldi+a" ' (2")
= fldi+ f(da +---+ f(dn))),
and

b'(z) = T'O"N(a))Nal(x), b (x))
= fldi+0""1(2))
= fldi+ f(da+---+ f(dn +1))).

Finally, since [|¢(™)|| — 0, it follows that z,, = a™(z) — =, so Sturmian a-
expansions are valid. O

As an example, let the base be a = /2 — 1. Then for z = 1/2, we have
d = .0101001010100101001010100101001010010101001010010101000... .,

admittedly, not a very intuitive expansion for 1/2. The first 30 partial convergents
(partial f-expansions) are shown in Table 1. Note that (in general) the convergents
,, lie in the set Z + aZ (in the example, Z[v/2]). Table 1 suggests that convergence
is very slow. This is reinforced by Figure 1, which shows a plot of the first 1000
convergents. Note that z1900 = 1105 — 781/2 ~ .49921, still correct to only three
decimal places. Figure 1 and Table 1 both suggest that there are long intervals of
n where the convergents x,, remain constant.

As a second example, again for @ = v/2 — 1, let z = 16 — 111/2 ~ .44365. Then
we get

d = .0101001010100101001010010101001010010101001010010100101. ...

A calculation shows that z1 =0, o = x3 =3 — 22 x4 = =129 =6—4v2 and
T10 = 11 = T12 = --- = 16—11y/2. So the convergents reach z after a finite number
of steps (and never change) even though the represenation d is infinite. These facts
are explained by the following proposition, which we state without proof.
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n Tn ~ T n Tn ~ Tn n Tn ~ Ty
1 0 00000 || 11 | 16 — 11v/2 | .44365 || 21 | 16 — 114/2 | .44365
2 [3—2v2|.17157 || 12 | 16 — 11v/2 | 44365 || 22 | 16 — 114/2 | .44365
3 13—2v2|.17157 || 13 | 16 — 112 | .44365 || 23 | 33 — 23v/2 | .47309
4 [6—4v2].34315 || 14 | 16 — 112 | .44365 || 24 | 33 — 232 | .47309
5 1 6—4v2 | .34315 || 15 | 16 — 11+/2 | .44365 || 25 | 33 — 23v/2 | .47309
6 | 6—4v2|.34315 || 16 | 16 — 11+/2 | .44365 || 26 | 33 — 23v/2 | .47309
7 1 6—4v2].34315 || 17 | 16 — 11v/2 | .44365 || 27 | 33 — 23v/2 | .47309
8 | 6—4v2 | .34315 || 18 | 16 — 112 | .44365 | 28 | 33 — 23v/2 | .47309
9 | 6—4v2|.34315 || 19 | 16 — 11+/2 | .44365 || 29 | 33 — 23v/2 | .47309
10 | 6 —4v/2 | 34315 || 20 | 16 — 11+/2 | .44365 || 30 | 33 — 23v/2 | .47309

Table 1: First 20 convergents of x = 1/2 = .5 in the Sturmian expansion, base

a=+2-1.

Proposition 3. Fiz « € [0,1)\Q, and for x € [0,1), define
z, = max({T_kO tk=0,...,n}N[0,2))

and
T, =min ({T7%0:k=1,...,n}Uu{1}) N (z,1]),

so that x € [x,,,Ty) for all n € N. Then there exist strictly increasing sequences
ny, g € N so that
z, =T70 forn € [y, 1)

and
Ty =T ™0 forn € [Tk, Thot1)-

Moreover, if a™(x) and b™(x) are as in (12), then [a™(x),b"(x)) = [z,,, Tn)- O

Note that z, = z,,. We are now in a position to give a qualitative description of
the long intervals in N on which the convergents are constant. By Proposition 3,
these are the intervals [n;,n;, ). At step n; there are n;, + 1 intervals in ¢ one
of which, [a% (x),b(z)) contains x. Thus O, (z) will visit every other interval
in £ at least once before its first return to [a™ (), b (z)). Thus, n,,, will be
a least twice n;,. We will discuss the relation between Sturmian a-expansions and
Ostrowski numeration (see [5], Chapter 5) in a later paper [15].

Now let us consider Sturmian a-expansions for digit sequences ¢ € DY that are
not necessarily proper. In particular, given any ¢ = .cicacz -+ € {0, 1} let

ele)=fler+ flea+ fles+-..))).

Let < denote lexicographic order on {0, l}N. That is, ¢ < e, e = .ejeqze3. .., if and
only if for somen >1,¢1...cp, =e€1...€n, cpp1 =0 and e 11 = 1.
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Figure 1: A bar graph of the first 500 convergents of x = 1/2 in Sturmian base

a:\/?—l.

Lemma 4. If f is given by (11), then for any ¢ = .cicacz--- € {0,1}N, the f-
expansion (c) = f(c1 + f(ca + f(ezs +...))) converges. Moreover, if ¢ < e then
e(e) < e(e).

Proof. Since f is nondecreasing, x,+1 > %, and moreover, x,, < 1 since f(z) < 1.
Thus e(¢) converges.

Suppose ¢; = 0 and e; = 1 so that ¢ < e. Since f(c2 + f(ez+...)) < 1 and
flea+ fles +...)) >0, it follows that ¢; + f(ca+...) <e1+ f(ea +...), and so
flevt flea+..0)) < flen+ flea +...)).

Now suppose ¢ < e. Let n be such that cica...cp_1 =eje3...€,_1, withc,, =0
and e, = 1. By the previous paragraph f(c,+f(chy1+...)) < flen+f(ent1+...)).
Since f is increasing it follows that f(c; + -+ 4+ f(cn + flens1 +...))) < fler +
ot flen+ flens1 +-.0)). O

4. Ergodic Properties of Sturmian a-Expansions

As Rényi observed in his landmark paper [14], many properties of f-expansions
reflect the “ergodic” properties of the corresponding f-transformation 7. In this
section, we compare the irrational rotation map Tz = z + o mod 1 to the Gauss
map Tz = 1/x mod 1 and to the [-transformations Tx = [z mod 1. A T-
invariant probability measure p on [0, 1) is a Borel measure so that u([0,1)) = 1 and
w(T~1E) = u(E) for every Borel set E. A measure u is an absolutely continuous
if there is a density p(x) > 0 on [0,1) with u(E) = [, p(x)dx, and “Lebesgue-
equivalent” if p(x) > 0 a.e. (i.e., p(x) = du/dx is the Radon-Nikodym derivative of
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©). A measure is ergodic if u(T~*EAE) = 0 implies u(A) =0 or 1.

All of the transformations we are discussing have an ergodic Lebesgue-equivalent
invariant probability measure (“ELEM” for short). For the Gauss map, the density
for this measure, called the Gauss measure, is given by p(z) = 10;2 1_1H For -
transformations T' with 8 € N, Lebesgue measure itself is invariant (i.e., p(z) = 1).
When 3 ¢ N, p(z) is a step function, and p is called the Parry measure (see [14]
and [11]). Finally, if T is an irrational rotation transformation the ELEM is, again,
Lebesgue measure.

For all three of these transformations, the existence of a ELEM implies that for
the corresponding proper f-representation d, almost every x € [0,1) is a normal
number. In particular, for u € D" let

Lo(u,d) = [{j € [L,....n] : dljj,. jt+ju-1 = v}

denote the number of occurrences of w in the first n places in d. A standard
argument using Birkhoff ergodic theorem (see e.g.[19]) shows that for almost every
x €10,1), for any u € D",

1
lim =L, (u,d) :/
n—oon A(d)NT=1A(d2)N---NT=7+1A(d,)

p(x) dx. (13)
Thus, in a typical proper f-expansion, every finite sequence of digits occurs with a
well defined frequency (which may sometimes be zero).

Beyond these simple facts, however, an irrational rotation transformations T is
very different from either the Gauss map or any [-transformation, and this this
leads to some unusual properties for Sturmian a-expansions. To begin with, the
Gauss map or any [-transformation has other ergodic invariant measures besides
its ELEM. On the other hand, Lebesgue measure is the unique invariant measure
for an irrational rotation T', a property known as unique ergodicity. One corollary
of unique ergodicity is that the ergodic theorem (13) converges for all x (see [19])
rather than just almost everywhere. Thus every x € [0,1) is a normal number for a
Sturmian a-expansion.

Another consequence of unique ergodicity is minimality, which means that O ()
is dense for every x. A minimal map T has no periodic or eventually periodic
points. This means that there are no periodic or eventually periodic proper Stur-
mian a-expansions. But periodic points are dense for both the Gauss map and
B-transformations. In both of these cases, periodic expansions have important num-
ber theoretic consequences. However, even though there are no periodic expansions
for Sturmian a-expansions, minimality implies that all proper digit sequences have
the following “almost periodicity” property. Suppose a finite sequence u € {0,1}"
occurs in the proper Sturmian a-expansion ¢ of some y. Then there is a constant
K > 0 (K = K(u,«)) so that w occurs within K of an arbitrary location in
the proper Sturmian a-expansion d of any x. Qualitatively, all proper Sturmian
a-expansions look pretty much alike.
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A special case of eventual periodicity for (-expansions occurs when the proper
expansion of z ends in zeros. In base § = 2, for example, such numbers are the
dyadic rationals. We say the J-expansion of x is finite. Note that the B-expansion
of x is a finite sum in this case. A similar situation can be imposed on continued
fractions by defining 70 = ps(0) = f(0) = 0 and allowing 0 € D. In this case,
a number z € [0,1) has a finite continued fraction expansion if and only if it is
rational.

At first it appears that there is no analogous situation for Sturmian expansions,
since no proper Sturmian expansions end in infinitely many zeros. On the other
hand, let € O, (0) and let d = .d1dads ... be the proper Sturmian expansion of
x. Then there exists ng € N so that x = f(dy + f(d2 + --- + f(dn))) for n > ng
(namely, T™0 = z). Moreover, it is easy to see that the digit sequence d’' =
.didy ...d,,0000... gives an improper Sturmian a-expansion of z. It follows that
there are uncountably many d” € {0,1}" satisfying d’ < d” < d that are all
Sturmian a-expansions of x. So in this sense Sturmian a-expansions can be highly
non-unique.

5. Entropy and Generators

Let T be a measure-preserving transformation of [0, 1), with p the invariant Borel
probability measure. Let & be a finite or countable partition of [0, 1) into positive
measure Borel sets C. In general, we do not assume p is an ELEM or that ¢ is
a labeled interval partition. We say a Borel set A satisfies A < £ if A is a union
of elements C € & Let £VE :={CNC" :C € &0 € &,u(CnC’) > 0}
Define £") = ¢ VTEV --- v T-"t1¢, and if T is invertible, also define £(=7) =
T=mEV---VEV---VT™E. A partition £ is called a 1-sided generator T if for any Borel
set A, and n € N, there exists A, € £&M™ so that p(Ap,AA) — 0. If T is invertible,
€ is a 2-sided generator if there is an A, < £-™™ such that p(A4,AA) — 0.

Let T be an f-transformation with an ELEM g and let £ be the corresponding
partition into fundamental intervals. It follows from the Lebesgue Density Theorem
that ¢ is a l-sided generator if and only if [|¢™|| — 0. This is equivalent to
the unique proper digits property, and it holds for all three transformations under
consideration.

The entropy of a finite partition & is given by H(£) = — > ¢ #(C) log(C). Note
that H(§) < log(|¢]). The entropy of T with respect to £ is defined by h,(T,§) =
limy, oo 2 H (™), and entropy of T is defined by h,(T) = SUP 7 (¢) <0 Pu (T €)-
In practice, the supremum in the definition of entropy often makes it difficult to
apply directly, but the Kolmogorov-Sinai theorem, says the supremum is achieved,
h(T) = h,(T,€), provided ¢ is a (1- or 2-sided) generator.

In the case of an irrational rotation transformation T', we have [€()| = cq(n) =



INTEGERS: 11B (2011) 11

n 41 (for any x), so H(£(™) < log(n + 1). Since ¢ is a (1-sided) generator for T
(by Theorem 2), the Kolmogorov-Sinai theorem implies h,(T) = 0. When § € N,
the Kolmogorov-Sinai theorem shows the G-transformation 7" has h,(T) = log 3. It
is not so easy to apply this when 5 ¢ N, or to the Gauss map T. However, for a lot
of f-transformations T, the entropy is given by Rohlin’s entropy formula:

1
D) = [ 0|7 (0)] dp. (14)

In particular (14) gives the well known result h,(T) = m%/(6log2) for the the
Gauss map (with Gauss measure) and gives h,, (1) = log 3 for all S-transformations
T. Note that the entropy is positive in both of these cases.

The validity of Rohlin’s formula (14) can be deduced under various hypotheses
(see e.g., [16],[13]), which always seem, at least implicitly, to include Kakeya’s hy-
pothesis (9). This suggests that (14) is valid only in the case h,(T) > 0 We note,
however, that for Rohlin’s entropy formula gives the correct answer h,(T) = 0
for irrational rotation transformations T, if only by coincidence, since they satisfy
T(z)=1.

The fact that irrational rotation transformations 7" have zero entropy contributes
to the strangeness of Sturmian a-expansions. The Kolmogorov-Sinai theorem shows
that entropy zero comes from the low complexity cq(n) = n + 1 of Sturmian se-
quences, and is thus directly related to the slow convergence Sturmian a-expansions.
Heuristically, most additional digits in a Sturmian a-expansion contribute no new
information about the number z.

Even more unusual is the fact that irrational rotation transformations 7' are
invertible, whereas (-transformations and the Gauss map are not. It follows from
the invertibility that the Sturmian a-expansion of any x extends to a two-sided
sequence

d=...d_od_1dg.drds...,

where d,, = pe(T™'z). Since the digits to the right of the “radix point” completely
determine x, the digits to the left contribute no new information. Equivalently, a
typical one-sided Sturmian sequence has a unique two-sided extension. The only
exceptions to this (which are countable in number) occur when z = na mod 1 for
n > 1. In such a case there are exactly two left-extensions that differ on exactly
two adjacent digits.

For (-expansions, allowing finitely many (nonzero) digits to the left of the radix
point gives an expansion of any x € R. In particular, the [-expansion of the
digit sequence d = d_nd_Ny1...dp.d1de ... isx = Z;‘;_N dpS~*. For continued
fractions, expansions of all x € R are obtained with a single non-zero digit to the
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left of the radix-point. The digits for the expansion

=dy + !
o dv + !
1 ds + !
2 d3 + ..
are usually written d = [dp;d1,d2,ds,...]. In both cases, this works because the

corresponding f-transformation T is not invertible.

To interpret continued fraction and (-expansions with more non-zero digits to
the left of the radix point, however, one needs to consider the natural extension
of T. This is the smallest invertible measure-preserving transformation 7' having
T as a factor. For example, if Tz = 2z mod 1 on [0,1) (the f-transformation
for ordinary base 2 expansions), the natural extension is the Lebesgue measure-
preserving map T : [0,1)2 — [0,1)2, defined T(z,y) = (22 mod 1, (|2z] + y)/2).
This Lebesgue measure-preserving mapping, called the baker’s transformation, is
isomorphic to the 2-sided Bernoulli shift with entropy log2. It is known that the
natural extensions for any g-transformations is isomorphic to a Bernoulli shift, as
is the natural extension of the Gauss map (see [3]).

Since an irrational rotation transformation T is already invertible, it is its own
natural extension. There is no new information to be obtained by an extension to a
bijection. Entropy theory provides another way to understand this phenomenon. A
well-known theorem says that any invertible map T with a 1-sided generator (like the
irrational rotation transformation) must have entropy zero (see [19]). Thus, no finite
partition can be a 1-sided generator for any invertible transformation T with positive
entropy. It is easy to see that the partition & = {[0,1/2) x [0,1),[1/2,1) x [0,1)} is
a 2-sided generator for the baker’s transformation T, since é(*"’”) is the partition
of [0,1)2 into 2™ x 2™ squares). But £ is the partition of [0,1)2 into 27" x 1
squares, and the factor corresponding to this partition is just Tz = 2z mod 1. Thus

¢ is not a 1-sided generator for 7T

6. Generalizations

Let ¢ and & be partitions of [0,1) into finitely or countably many intervals of
the form A = [a,b). Assume, moreover, that there is a nondecreasing function
pe = [0,1) — Z that is constant on each A € ¢, and is unequal on different A, A" € &.
The existence of such a function is automatic if |§] = d < oo, in which case we
usually take D := p¢([0,1)) = {0,1,...,d — 1}. It is a more substantial restriction
if || = co. In particular, the only limit points of the set of endpoints of A € £ can
be 0 and 1 (and at least one must be a limit point).

Let p denote Lebesgue measure, and suppose 7 : £ — £ is such that pu(r(A)) =
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w(A) for every A € €. Let T : [0,1) — [0,1) be the mapping so that 7" maps each
A € ¢ by translation to 7(A). We call T an interval exchange transformation (IET)
if [€] < oo, or an infinite interval exchange transformation (IIET) if |{| = co. In
either case, T preserves Lebesgue measure.

Let F(z) = T(x) + pe(x) and note that F : [0,1) — R is increasing, continuous
on each A € ¢ and continuous from the right on [0,1). We define f(z) = F~(x),
extended to continuous non-decreasing f : R — [0,1) with f(R) = [0,1].

Let T be an IET or IIET. We call a € [0,1) a cut-point of £ if it is the left endpoint
of some A € £. Given a cutpoint a, we define £, to be the set of all intervals in
A € & sothat z < a for € A. In particular, £, is a partition of [0, a) into intervals.
We say T is reducible if there is an a € [0, 1) that is a cut-point for both £ and ¢’,
and such that 7(&,) = &,. If there are no such a, we say T is irreducible. If T is
reducible, T'([0,a)) = [0, a). Such a T' cannot be minimal or ergodic.

If T is an irreducible IET, Keane [8] showed that T is minimal if and only if
the left endpoints of all the intervals A € £ have infinite and distinct orbits (this is
abbreviated IDOC). He proved that if the lengths g, ¢1, ... £q—1 of the intervals in &
are rationally independent then IDOC follows. The case || = 2 is just an irrational
rotation transformation T'. If T"is an IET, we call the f-expansions IET-expansions.

Proposition 5. If T is an irreducible IET with rationally independent interval
lengths (or that satisfies IDOC) then the corresponding IET-expansions are valid.

The proof of Proposition 5 is almost exactly the same as the proof of Theorem 2.
It depends on the fact that IDOC implies ||| — 0.

0

061 -

02 / B

00 I I I I
00 02 04 06 08 10

Figure 2: The von Neumann adding machine T : [0,1) — [0,1).

Unique ergodicity for an irreducible IET T is a bit stronger (and more difficult to
prove) than minimality, but (for appropriate choices of 7) it holds for almost every
choice of lengths g, ¢1, . .., ¢4_1 of the intervals in & (see [18], [9]), as does weak (but
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never strong) mixing, (see [1]). The entropy of an IET T is always zero. In summary,
IET-expansions have many of the same properties as Sturmian a-expansions, with at
least one notable difference. An interval exchange transformation 7" can be minimal
but not uniquely ergodic. In such a
case there will be non-normal numbers
x for the expansions, as well as up to d
different kinds of normal numbers (cor-
responding to, possibly, d different er-
godic invariant measures).

We conclude by considering expan- b ! 7
sions based on the well-known von Neu- o
mann adding machine (or odometer)
T. Let a, = 1—-1/2" b, = 1/2™, L
¢ = AHlan,any1) : n = 0,1,2,...}, e
¢ = {lbps1,bn) :n =0,1,2,...}, and oo S
7([an,@nt1)) = [but1,bn). Let T be
the corresponding ITET (see Figure 2), Lo
and let pe([an, ant1)) = n, noting that / .
|¢] = 0o and D = p([0,1)) = NU {0}. b
Define f : R — [0,1) as the extension P
of F~1, where F(z) = T(z) + pe(x), so /
that f(R) = [0, 1] (see Figures 3 and 4). S
We call the corresponding f-expansions
of z € [0,1) von Neumann expansions. §6 07 04 05 05 10
The fact that von Neumann expansions
are valid follows from the unique ergod-
icity of T', which is well known. In par-
ticular, the endpoints of the A € £ have
dense orbits, and this can be used to
show that [|¢(]| — 0. The entropy of

Figure 3: The function F(z) = T(z) +
pe(z) for the von Neumann adding ma-
chine 7.

T is zero.

To find the von Neumann expansion of & € [0,1), we first identify x with its
ordinary binary expansion, i.e., * = .r1Z2%3 ... means r = Zzozl 27k Tt is easy
to see that

dxoxsxy ... if 1 =0,

T(.$1$2I3 . ) = {

00...0lzp412p42  ifzi29...2—7 =11...1 and z,, = 0.

So T adds .1 to .xyxoxs ... with right carry, which is why T is called an “adding
machine”. Moreover, pe(.1"02y12%n 43 ... ) = n, where n > 0.
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1.2F
B
08 F
0.6F
04
02F

-02F

Figure 4: The function f for von Neumann expansions.

As an example, if x = 1/3 = .01010101. .., then

x =.0101010101010101010101.. .. 0

T2 =.1101010101010101010101.. .. 2

T2z = .0011010101010101010101 . ... 0
T3z = .1011010101010101010101. .. 1
T*z =.0111010101010101010101. .. 0
T°z =.1111010101010101010101. .. 4
Tz = .0000110101010101010101 . .. 0
T"z = .1000110101010101010101 . .. 1

where the numbers in the right column are d,, for n = 1,2,3,.... Thus we have the

digit sequence d = [0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,...].

Notice that in the list z, Tz, T%x..., the first column alternates 0 and 1, the
second 00 and 11, third 0000 and 1111 (the first 0000 being truncated to 00), etc.
Moreover, Os in earlier columns mask 1s in later columns. This implies that in any
von Neumann expansion, every 2nd digit in d = [dy,ds,ds,...] is a 0, every 4th
digit is a 1, every 8th digit is a 2, ..., every 2"t!st digit an n. About 2"t! digits
of d are needed to determine n binary digits of z. So like Sturmain a-expansions,
von Neumann expansions converge slowly.

As a final remark, we note that if we define e = .ejeses ..., by e, = d,, mod 2,
then the resulting sequence is a Toeplitz sequence (see [6]). For example, the Toeplitz
sequence corresponding to 1/3 is ¢ = .00010001000101010001000. ... Since it is
possible to recover the von Neumann sequence from the Toeplitz sequence, the map
x +— c is injective. However, we don’t know if it is possible to recover x from ¢ by
a simple formula like an f-expansion.
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